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Femoral cortical bone in a Portuguese 

reference skeletal collection

Massa óssea cortical do fémur numa 

coleção esquelética de referência portuguesa

Francisco Curate1,2,3a, Eugénia Cunha3,4b

Abstract This study aims to investigate pat-
terns of femoral cortical bone fragility with age 
(at death) and to evaluate its associations with 
sex and bone mineral density. Radiogramme-
tric parameters of the femur and bone mineral 
density at the proximal femur were assessed 
in an adult sample (N=98) from the Coimbra 
Identified Skeletal Collection (Portugal). Dia-
physis total width (DTW), femoral cortical in-
dex (FEMCI) and bone mineral density (BMD) 
are significantly higher in males, while medul-
lary width (MW) is not statistically different 
between sexes. Cortical bone parameters of 

Resumo Neste trabalho, pretende-se investi-
gar a fragilidade óssea cortical no fémur com 
a idade (à morte) e a sua associação ao sexo 
e à densidade mineral óssea. Os parâmetros 
radiogramétricos do fémur e a densidade mi-
neral óssea no fémur proximal foram avaliados 
numa amostra de indivíduos adultos (N=98) da 
Coleção de Esqueletos Identificados da Univer-
sidade de Coimbra (Portugal). A largura total da 
diáfise (LTD), o índice cortical do fémur (FEMCI) 
e a densidade mineral óssea (DMO) são signifi-
cativamente maiores nos homens, enquanto a 
largura medular (LM) não é estatisticamente di-
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Introduction

Osteoporosis and bone fragility are 
major public health problems facing 
postmenopausal women and aging in-
dividuals from both sexes. The clinical 
impact of osteoporosis stems from the 
complications associated to it, namely 
hip, distal radius, proximal humerus and 
vertebral compression fractures (Sattui 
and Saag, 2014). A growing body of litera-

ture has detailed the long history of bone 
fragility in past groups, recounting the 
diachronic fluctuations in its epidemio-
logical patterns, etiological agents and 
societal implications (Brickley and Ives, 
2008; Curate, 2014a; 2014b). 

Radiogrammetry and dual x-ray ab-
sorptiometry (DXA) are undoubtedly the 
most common methods to study bone 
loss in past populations (Brickley, 2002; 
Brickley and Agarwal, 2003; Curate, 2014a). 

the femoral diaphysis are associated with age 
only in women, whereas BMD decreases with 
age in both sexes. The evaluation of femoral 
cortical bone reveals sex-specific trajectories 
of endosteal bone loss and periosteal apposi-
tion, stemming from sexual differences in the 
rate and pattern of bone loss, and in bone size. 
In females, endocortical bone loss rises with 
age, particularly in peri- and postmenopausal 
years, decelerating later in life. Concomitantly, 
accretion of bone in the subperiosteal surfa-
ce persists throughout adulthood — partially 
offsetting bone fragility in women. Strength in 
the femoral mid-diaphysis appears to be pre-
served throughout most of the life course in 
both sexes.

Keywords: Radiogrammetry; dual x-ray ab-
sorptiometry; periosteal apposition; endosteal 
resorption; Coimbra Identified Skeletal Collec-
tion.

ferente entre os sexos. Os parâmetros corticais 
da diáfise do fémur encontram-se associados 
à idade apenas nas mulheres; por seu lado, a 
DMO declina com a idade em ambos os sexos. 
A avaliação do osso cortical do fémur revela 
trajetórias sexuais específicas de perda óssea 
endosteal e aposição periosteal, que têm ori-
gem em diferenças sexuais no grau e padrão 
de perda de osso, bem como no tamanho 
ósseo. Nas mulheres, a perda endocortical de 
osso aumenta com a idade, particularmente 
nos anos peri- e pós-menopáusicos, desace-
lerando mais tarde. De forma concomitante, 
a acreção de osso na superfície subperiosteal 
persiste durante a vida adulta – equilibrando 
parcialmente a fragilidade óssea nas mulheres. 
A resistência óssea a meio da diáfise do fémur 
parece ser preservada durante grande parte da 
vida em ambos os sexos. 

Palavras-chave: Radiogrametria; absorcio-
metria radiológica de dupla energia; aposição 
periosteal; absorção endosteal; Colecção de 
Esqueletos Identificados.
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DXA scanning on the proximal femur 
measures the integral bone mass of the 
cortical and trabecular bone compart-
ments (Bonnick, 2010). Conventional ra-
diogrammetry reveals the alterations that 
occur in cortical bone (Ives and Brickley, 
2004). As such, these techniques offer dif-
ferent – but not necessarily incompatible 
– views of bone remodeling and mainte-
nance (Brickley and Agarwal, 2003). 

Radiogrammetry quantifies the am-
plitude or geometry of cortical bone in 
tubular bones (Ives and Brickley, 2004). 
It is ineffective to evaluate osteoporosis 
at the individual level, but endures as a 
valuable tool to assess cortical bone loss 
in epidemiological settings (Shepherd et 
al., 2005; Yasaku et al., 2009). At the same 
time, radiogrammetry is still widely used 
in studies concerned with specific path-
ological conditions (Böttcher and Pfeil, 
2008). Radiogrammetry of the second 
metacarpal has been favored in anthro-
pological studies of cortical bone (e.g., 
Ekenman et al., 1995; Mays, 1996; Lazenby, 
1998; Mays, 2000; 2001; Rewekant, 2001; 
Mays, 2006; Ives, 2007; Beauchesne and 
Agarwal, 2014; Curate, 2011; Glencross and 
Agarwal, 2011; Robb et al., 2012; Curate et 
al., 2015; Umbelino et al., 2016). Less often, 
the humerus, femur and tibia have also 
been used to evaluate cortical bone loss 
in skeletal samples (e.g., van Gerven et al., 
1969; Bergot and Bocquet, 1976; Bloom 
et al., 1984; DeRousseau, 1985; González- 
-Reimers et al., 1998; Mays et al., 1998). 

The perception of osteoporosis as a 
disease of trabecular bone loss is funda-
mentally incorrect (Seeman, 2013). Tra-
becular bone exposure to faster remod-
eling and bone loss relates to its higher 
surface area; conversely, trabecular bone 
represents just 20% of the overall bone 
matrix volume. Therefore, the originally 
slower loss of cortical bone (~80% of the 
skeleton) causes a comparable amount 
of bone loss throughout the first years 
after menopause, being responsible for 
greater bone loss after 60 years of age 
(Seeman, 2013; Zebaze et al., 2010). Also, 
cortical bone is especially important to 
bone stability and strength – influencing 
resistance to external loads and the oc-
currence of fractures (Holzer et al., 2009). 

This study focuses on the assess-
ment of cortical bone at the femoral 
diaphysis in an adult sample from the 
Coimbra Identified Skeletal Collection 
(CISC). Radiogrammetry at the femur 
mid-diaphysis allows for comparisons 
with the second metacarpal, accounting 
for differences in functional stress – e.g., 
weight bearing and tension – associated 
with each bone. Also, given the relative 
size of the bones, femoral measurement 
error is lower. Finally, it conveys a valuable 
contrast with the proximal femur, rich in 
trabecular bone and a classic site for os-
teoporotic fractures. This paper aims to 
evaluate and interpret patterns of cortical 
bone fragility – with a particular emphasis 
on endosteal bone loss and periosteal ap-
position – with aging, and to explore its 
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associations with sex and bone mineral 
density (BMD) at the proximal femur. Sci-
entific advancement can be significantly 
supported by sharing both methods and 
raw data resources. As such, another ob-
jective is to divulge a database of femoral 
radiogrammetric parameters based in a 
reference skeletal population.

Materials and Methods

The CISC comprises 505 skeletons 
from the Cemitério Municipal da Con-
chada (cemetery at Coimbra, Portugal). 
All individuals died between 1904 and 
1936, i.e., before the massive introduction 
of medical therapies against bone loss. 
Biographical information for each individ-
ual is available, including sex and age at 
death (Cunha and Wasterlain, 2007). The 
observed sample includes 98 Portuguese 
nationals from both sexes, born between 
1831 and 1914, and that died between 
1910 and 1936. Recorded ages at death 
range from 21 to 89 years old. Individu-
als were predominantly non-specialized 
manual workers with low socioeconomic 
status. A purposive sampling strategy was 
adopted, with equal numbers of females 
and males. Also, only individuals without 
macroscopical post-depositional altera-
tions and/or blatant pathological condi-
tions were included in the sample. An-
teroposterior radiographs of the midshaft 
area of the left femur of each individual 
were taken using a mammogram film 
with an exposure time of mAseg 80-50, 

exposure of Kv 30-35 and focal distance 
of 1.0 m. Maximum length of the femur, 
as defined by Martin and Saller (1957), was 
determined. Measurements of diaphysis 
total width (DTW) and medullary width 
(MW) were taken following a standard-
ized guide (Ives and Brickley, 2004; raw 
data available in Data S1). Radiogramme-
try was used to establish cortical index 
(FEMCI) in the femoral mid-shaft (Mays 
et al., 1998). The revised femoral cortical 
thicknesses index (RFCI) and adjusted 
medullary width index (AMWI) were also 
computed (Glencross and Agarwal, 2011). 
Indexes were obtained from the raw 
measurements (in mm) as follows:

;

.

Bone mineral density was evaluated 
in the femoral neck through DXA. The 
femora were scanned using a Hologic 
QDR-4500A densitometer. Each femur 
was placed in standard anteroposterior 
position, with the diaphysis parallel to 
the central axis of the scanner, in a low- 
-density container with dehydrated rice 
(10 cm depth). The absence of soft tissues 
and bone marrow in historical skeletal 
remains hampers DXA measurements; as 
such, a water bath or rice are usually used 
as soft-tissue proxies (Brickley and Agar-
wal, 2003; Curate, 2014a). 
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Descriptive statistics, viz. group 
means, standard deviation (SD) and 95% 
confidence intervals (95% CI) for the mean 
were estimated for each continuous vari-
able. Normality was assessed through the 
skewness and kurtosis of the distributions 
(Kline, 2010). Homoscedasticity was evalu-
ated with the Levene’s test. A student’s t-
test (independent samples) was applied 
to evaluate the null hypothesis that the 
means of two groups were equal. Linear 
Pearson correlation was used to evaluate 
a possible linear relationship between 
the cortical parameters of the femur with 
recorded age at death and bone mineral 
density at the neck of the femur. Local 
polynomial regression fitting smoothing 
(LOESS) was employed to explore nonlin-
ear empirical relationships between vari-
ables. LOESS offers a graphical summary 
of the relationship between variables 
by fitting a function of the independent 
variables locally (Cleveland, 1979). Twenty 
femora were measured in different days 
to check repeatability of the cortical mea-
surements (DTW and MW). Measurement 
error was evaluated with the technical 
error of measurement (TEM), the relative 

technical error of measurement (rTEM) 
(Ulijaszek and Kerr, 1999) and the reliabil-
ity coefficient (Rc) (Ward and Jamison, 
1991). All statistical and graphical analyses 
were performed with R programming 
language (R Development Core Team, 
2016; Chang and Wickham, 2016).

Results

The detection of the endosteal mar-
gin is sometimes complex rendering ra-
diogrammetric measurements challeng-
ing (Schäfer et al., 2008). Notwithstanding, 
the results suggest that cortical measure-
ments (DTW and MW) were performed 
within adequate levels of measurement 
error (Table 1).

Mean age (at death) is not statisti-
cally different between sexes (Student’s t: 
-0.442; df=96; p=0.660). Maximum length 
of the femur (MLF), DTW, FEMCI, higher 
in men (MLF, Student’s t: 6.307; df=96; 
p<0.001 / DTW, Student’s t: 4.141; df=96; 
p<0.001 / FEMCI, Student’s t: 2.140; df=96; 
p=0.035). Revised femoral cortical thick-
ness index and adjusted medullary width 

Table 1. Intraobserver error for the DTW and MW measurements.

Measurement TEM rTEM Rc N

DTW 0.0044 0.0170 0.99 20

MW 0.0036 0.0320 0.99 20
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index differences between sexes are close 
to significance but fail to reject the null 
hypothesis (RFCI, Student’s t: 1.958; df=96; 
p=0.053 / AMWI, Student’s t: -1.851; df=96; 
p=0.067). MW is slightly lesser in women 

but the difference is not significant (MW, 
Student’s t: 0.109; df=96; p=0.913). BMD is 
significantly lower in women (BMDneck, Stu-
dent’s t: 2.010; df=96; p=0.047). Descriptive 
statistics are summarized in table 2.

Table 2. Descriptive statistics for both sexes. 

Females Males
Student’s t 

test

Mean SD 95% CI N Mean SD 95% CI N t sig.

Age at 

Death
51.88 19.03 46.41–57.34 49 50.27 17.04 45.3-55.16 49 0.442 0.660

MLF 421.69 25.66 414.33-429.06 49 455.24 26.99 447.49-63.00 49 6.307 <0.001

DTW 24.81 2.34 24.14 – 25.49 49 26.81 2.44 26.11-27.52 49 4.141 <0.001

MW 11.23 2.00 10.65 -11.80 49 11.28 2.00 10.56-12.00 49 0.109 0.913

FEMCI 54.69 7.05 52.66 -56.71 49 57.99 8.19 55.64-60.34 49 2.140 0.035

RFCI 3.22 0.47 3.08 –3.35 49 3.42 0.55 3.26 -3.58 49 1.958 0.053

AMWI 2.67 0.50 2.53 –2.81 49 2.48 0.53 2.33-2.63 49 -1.851 0.067

BMDneck 0.696 0.15 0.652 -0.740 49 0.758 0.15 0.714-0.802 49 2.010 0.047

Cortical bone parameters are linearly 
correlated with age in women (Pear-
son’s DTW*age: 0.413; p=0.003 / Pear-
son’s MW*age: 0.495; p<0.001/Pearson’s 
FEMCI*age: -0.291; p=0.043 / Pearson’s 
AMWI*age: 0.480; p<0.001), except the 
revised femoral cortical thickness index 
(Pearson’s RFCI*age: 0.004; p=0.979). MW, 
DTW and AMWI exhibit a moderate posi-
tive bivariate relationship with age. FEMCI 
displays a weak, although significant, cor-
relation with age. The net loss of cortical 

bone between the first years of adulthood 
(20-29 years) and the seventh decade (70+ 
years) is 13.6%, with an average loss of 2.3% 
per decade. Periosteal apposition (DTW as 
surrogate) increases by 12.4%, while endo-
cortical loss (MW as surrogate) increases 
by 26.0%. Notwithstanding, the pattern of 
net loss is not constant, with minor varia-
tion in the first decades of adulthood and 
an impressive net cortical loss of 19.8% 
between the fifth and sixth decades. Lo-
cal polynomial regression fitting smooth-
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ing shows that MW increases faster after 
the fifth decade (Figures 1-3). BMDneck is 
negatively associated with age (Pearson’s 
BMDneck*age: -0.659; p<0.001). FEMCI, MW 
and AMWI are moderately associated with 
BMDneck (Pearson’s FEMCI*BMDneck: 0.478; 
p<0.001; Pearson’s MW*BMDneck: -0.472; 
p<0.001; Pearson’s AMWI*BMDneck: 
-0.499; p<0.001), while RFCI is weakly corre-
lated with BMD at the ROI “neck” (Pearson’s 
RFCI*BMDneck: -0.318; p=0.026). DTW is not 
linearly correlated with BMDneck (Pearson’s 
DTW*BMDneck: -0.079; p=0.588).

Amongst men, none of the cortical 
bone parameters is significantly correlat-
ed with age at death (Pearson’s DTW*age: 
0.139; p=0.340 / Pearson’s MW*age: 0.069; 
p=0.639 / Pearson’s FEMCI*age: -0.016; 
p=0.911 / Pearson’s RFCI*age: 0.120; 
p=0.413 / Pearson’s AMWI*age: 0.123; 
p=0.398). Cortical bone net loss between 
the first adult decade (20–29 years) and 
old age (70+ years) is 5.4%. DTW in-
creased by 7.2%, and MW increased by 
12.6%. The pattern of cortical loss is very 
irregular, with decennial discrepancies in 
the cortical bone net balance (Figures 
4–6). Bone mineral density at the femo-
ral neck is negatively associated with age 
(Pearson’s BMDneck*age: -0.541; p<0.001). 
None of the femoral cortical bone param-
eters is associated with BMDneck (Pearson’s 
DTW*BMDneck: 0.047; p=0.747 / Pearson’s 
MW*BMDneck: -0.186; p=0.201 / Pearson’s 
FEMCI*BMDneck: 0.243; p=0.092 / Pearson’s 
RFCI*BMDneck: 0.196; p=0.176 / Pearson’s 
AMWI*BMDneck: -0.230; p=0.112). 

Discussion

Sexual dissimilarity in femoral corti-
cal parameters, particularly DTW and 
FEMCI, but also femoral length, revised 
femoral cortical thickness index and ad-
justed medullary width index, stems from 
sex-specific variations in bone size, and 
rate and pattern of bone loss (Samuel 
et al., 2009). Generally, males have larger 
bones, with puberty enacting a major 
role in skeletal size determination (See-
man, 2003; Samuel et al., 2009). In women, 
post-pubertal estrogen production sup-
posedly inhibits periosteal bone forma-
tion and, consequently, bounds bone di-
ameter; while pubertal androgen in men 
intensifies periosteal bone formation and 
bone diameter. Also, during growth men 
undergo a long-standing period of bone 
gain, resulting in the increase of bone 
cortical thickness (Seeman, 2003). On the 
other hand, bone loss accelerates in peri- 
and post-menopausal women as estro-
gen withdrawal increases the rate of bone 
remodeling, and more bone is resorbed 
and less is formed at each basic multicel-
lular unit (Seeman, 2008). The differences 
between the sexes in cortical bone loss 
have been detailed both in modern (e.g., 
Virtamä and Helelä, 1969; Maggio et al., 
1995; Ginsburg et al., 2001) and historical 
populations (e.g., Carlson et al., 1976; Mays 
et al., 1998; Drusini et al., 2000; Ives, 2007; 
Glencross and Agarwal, 2011; Umbelino et 
al., 2016). In the same skeletal collection 
but with a different sample, radiogram-
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Figure 1. Local polynomial regression fitting smoothing for DTW (mm) and age at death in 

females from the CISC sample.

Figure 2. LOESS smoothing for medullary width (mm) and age at death (females, CISC sample).
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Figure 4. LOESS smoothing for diaphysis total width (mm) and age at death (males, CISC sample).

Figure 3. LOESS smoothing for FEMCI and age at death (females, CISC sample).
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Figure 5. Local polynomial regression fitting smoothing for MW (mm) and age at death in 

males from the CISC sample.

Figure 6. LOESS smoothing for femoral cortical index and age at death (males, CISC sample).



Fe
m

or
al

 C
or

tic
al

 B
on

e 
in

 a
 P

or
tu

gu
es

e 
Re

fe
re

nc
e 

Sk
el

et
al

 C
ol

le
ct

io
n

101

metry of the second metacarpal also 
exposed significant differences between 
sexes (Curate et al., 2015).

Cortical bone changes were signifi-
cantly related with age only in females, 
with results showing signs of gendered 
trajectories of age-related cortical bone 
loss. In the second metacarpal, cortical 
index and medullary width were signifi-
cantly associated with age in both sexes 
(Curate et al., 2015). Femoral medullary 
cavity enlarges in the course of aging as 
a result of imbalance of endosteal bone 
formation and resorption that leads to 
endocortical bone loss (Jergas, 2008). Al-
though bone remodeling at the endoste-
al envelope is thought to increase mildly 
in aging men, it drastically increases in 
perimenopausal and early postmeno-
pausal women, slowing with further ag-
ing (Clarke, 2008). As such, the “rate” of 
endosteal cortical bone loss is faster in 
women when compared to men – con-
sidering both MW and AMWI. Medullary 
width in women generally shows a slow 
and gradual increase with age, but the 
LOESS regression curve suggests an ac-
celeration of endosteal bone loss starting 
around 50 years of age – it is important to 
note that the mean age of menopause in 
historical populations most likely ranged 
from 45 to 50 years (Pavelka and Fedigan, 
1991). Remarkably, MW increases 15.1% 
between the fifth and sixth decades, 
and only 4.5% between the sixth and the 
seventh decades of life. Bone loss decel-
erates in the three to five years ensuing 

menopause, although it endures at a fast-
er rate than before menopause (Seeman, 
2008). Amongst men, medullary expan-
sion is virtually absent until much later in 
life, with an apparent MW increase only 
after the middle of the sixth decade. 

Age-continuous apposition of bone 
on the periosteal surface was originally 
validated by Smith and Walker (1964) and 
has been considered as an adaptive re-
sponse to preserve resistance to bending 
(Lazenby, 1990; Allen et al., 2004; Szulc et 
al., 2006; Seeman, 2008; Peck and Stout, 
2009). Diaphysis total width at the medio-
lateral axis — which can be regarded as a 
surrogate of periosteal apposition — in-
creases moderately with age in women. 
In contradiction with some cross-section-
al studies, in men DTW did not increase 
significantly with age (Virtamä and Helelä, 
1969; Lazenby, 1990; Feik et al., 2000; Mays, 
2001; Peck and Stout, 2009), and perios-
teal apposition (as a decennial percent-
age) was greater in women. Nevertheless, 
other epidemiological studies describe a 
greater percentage increase in periosteal 
apposition in women (Garn et al., 1967; 
1972; Kaptoge et al., 2003). In a prehistoric 
Mississippian sample, van Gerven et al. 
(1969) reported female gains and male 
losses in periosteal diameter; while Wal-
lace et al. (2014) observed (in a sample of 
Inuit foragers) that periosteal area did not 
increase with age in either sex. 

Dynamics of periosteal apposition 
in the femoral and second metacarpal 
diaphyses are apparently different: the 
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external dimensions of the second meta-
carpal do not increase with age in males 
or females (Curate et al., 2015). The femur 
is a weight-bearing bone, subjected to 
increased biomechanical loading, which 
can explain some of the observed dis-
similarities. 

The underlying causes of periosteal 
apposition are intricate to delimit but it is 
probable that the extent of mechanical 
compensation depends on initial bone 
size, with smaller bones – women in the 
studied sample are generally smaller than 
men – showing more periosteal apposi-
tion. Sex-specific disparities in periosteal 
apposition have been partially attributed 
to sexual bone size differences, with slen-
der diaphyses requiring greater rates of 
periosteal bone gain over time (Jepsen 
and Andarawis-Puri, 2012). Also, loading 
differences possibly contribute to individ-
ual dissimilarities in periosteal apposition 
at the lower limbs; e.g., long-term immo-
bilization seems to inhibit periosteal bone 
formation (Schäfer et al., 2008). Mechanical 
stimulation is usually much greater in men 
than women (Vanderschueren et al., 2006). 
Certainly, most men in the CISC sample 
were manual workers engaged in highly 
demanding physical occupations – but, as 
a rule, women also experienced a physi-
cally active lifestyle, involving strenuous 
workloads (Cunha and Umbelino, 1995). 

Cortical bone resorption at the end-
osteal and periosteal sites react differently 
to distinct metabolic stimuli (Grampp et 
al., 1997). The endosteal surface exhibits 

a higher remodeling activity, probably as 
a consequence of greater biomechani-
cal strains or cytokine exposure from the 
contiguous bone marrow (Clarke, 2008). 
Also, periosteal cells appear to differ from 
endosteal cells; each cell population re-
sponds differently both qualitatively and 
quantitatively to a wide variety of hor-
mones and growth factors (Allen et al., 
2004). The femoral cortical index refers 
to a dimensionless parameter that is the 
ratio of medullary cavity width to bone 
diameter (Shepherd et al., 2005), and ten-
tatively reflects the conjoint endosteal 
and periosteal remodeling activity. FEMCI 
declines slightly with age in females (but 
not in males) as a result of the uncou-
pling in bone deposition and resorption 
that occurs throughout aging – a small 
increase in periosteal bone formation in 
women is exceeded by a greater inten-
sification in endosteal resorption with 
subsequent cortical thickness reduction. 
LOESS regression indicates that FEMCI 
decline in females occurs only after the 
seventh decade, suggesting that the fe-
mur maintains its strength until later in 
life. In males, strength seems preserved 
throughout the life course. Cortical index 
– as observed in the second metacarpal 
– usually declines from younger to older 
age groups in both females and males 
(Rewekant, 2001; Ives, 2007; Beauchesne 
and Agarwal, 2014; Mays, 2015) or just in 
females (Mays, 1996) from archeologi-
cal samples. Cortical bone in the femur 
seems to decrease only in females (Erick-
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sen, 1982; Mays et al., 1998), but a nega-
tive association of relative cortical area of 
the femur with age in both sexes has also 
been observed (Doyle et al., 2011). Inter-
estingly, the revised femoral cortical thick-
ness index (a ratio adjustment intended to 
remove size information) (Glencross and 
Agarwal, 2011) does not show an associa-
tion with age in any of the sexual groups. 

For females, correlations between 
cortical parameters at the femoral diaph-
ysis and BMD measured at the ROI “neck” 
are significant (except for DTW with BMD-

neck), but the association is moderate. In 
males, cortical bone in the femur is not 
associated with BMDneck. Female results 
are similar to the associations between 
cortical bone and BMD stated by Mays 
et al. (1998), with a weaker association in 
males. Ives and Brickley (2005) reported 
a non-significant association between 
BMDneck and metacarpal cortical index in 
a pooled sample from both sexes. The re-
sults support the concept that bone loss 
and mass are not homogeneous within 
and among skeletal elements of the same 
individual, both because biomechanical 
factors and differences in macroscopical 
bone composition (Bonnick, 2010).

Conclusions

Femoral cortical bone loss during ag-
ing does not follow a linear course, with 
sex-specific patterns of endosteal bone 
loss and periosteal apposition. In women, 
endocortical bone loss increases with age, 

especially in presumed perimenopausal 
and early postmenopausal women, slow-
ing later in life. Concurrently, accretion 
of bone in the femoral outer diameter 
throughout adult life continues – help-
ing to preserve bone strength until the 
sixth decade. In men, medullary expan-
sion and periosteal apposition are fun-
damentally nonexistent during adult life. 
Strength in the femoral diaphysis seems 
to be preserved throughout life. The ob-
served correlations between femoral cor-
tical bone and BMD at the femoral neck 
are suggestive of skeletal heterogeneity 
in bone loss and mass both between 
bones and within the same bone. 

Radiogrammetry of the femur offers 
additional viewpoints to the study of 
bone loss in historical populations, and 
this study reiterates that different meth-
ods offer unique insights about bone 
remodeling and maintenance (Brickley 
and Agarwal, 2003). Notwithstanding, this 
study presents some limitations, includ-
ing the cross-sectional nature of the data, 
reliance on mediolateral axis measure-
ments only and sample size. 
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