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AbstRAct – Nine issues of importance to the use of geomembranes (GMs) and geosynthetic clay liners
(GCLs) as part of composite liners in geoenvironmental applications are examined. These issues include the
effect of: GCL-leachate compatibility on hydraulic conductivity; freeze-thaw on GCL performance; internal
erosion on GCL hydraulic conductivity; temperature on advection and diffusion as well as desiccation of
GCLs and compacted clay liners (CCLs); the choice of protection layer on the strains developed in GMs;
wrinkles on strains developed in GMs and the thinning of GCLs; holes in GMs on leakage through composite
liners; winkles in GMs on leakage through composite liners; diffusion through GCLs and GMs; and
temperature and leachate exposure on the service life of GMs. It is suggested that GCLs and GMs can play a
very beneficial role in providing environmental protection. However, like all engineering materials they must
be used appropriately and consideration should be given to factors such as those addressed in this paper. There
is a need for site specific design, strict adherence to construction specification, and appropriate protection of the
geosynthetics after construction. In particular, given the diversity of available GCLs and their different
engineering characteristics, GCLs should be selected based on the required engineering properties, not just price. 
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1 – intRodUction

In recent years there have been many advances in the understanding of issues related to the use of
geosynthetics such as geosynthetic clay liners (GCLs) and geomembranes (GM) as con taminant
barriers. As a consequence there has also been a significant increase in geoenvironmental applications.
These applications range from the more traditional use of GCLs and GMs as composite base liners or
as part of capping systems for landfills (e.g. Rowe et al., 2004b), as liners for contaminated fluids (e.g.

leachate lagoons, Rowe et al., 2003), as barriers to contain past spills of hydrocarbons (e.g. Bathurst et

al., 2006), as secondary containment around fuel tanks to prevent possible future contamination in the
event of a tank rupture or equipment malfunction, as con tainment for fluids in heap leach pads (Thiel
& Smith, 2004), and as covers and liners for mine waste (e.g. Lange et al., 2005).

The objective of this paper is to highlight some of the recent advances in geosynthetic
engineering, illustrate some of the important considerations related to design and construction using
geosynthetics, and flag some of the remaining challenges related to the use of geosynthetics in
geoenvironmental applications. Attention will be primarily focused on data and findings published
since 2000. Readers requiring an introduction to the use of geosynthetics in barrier applications are
referred to Rowe et al. (2004b).
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This paper will address nine issues of importance to the use of geosynthetics in geoenvi -
ronmental applications: (1) GCL-leachate compatibility; (2) the effect of freezethaw on GCL
performance; (3) internal erosion of GCLs; (4) temperature; (5) protection of composite liners; (6)
wrinkles in GMs; (7) holes in GMs and the consequent leakage through composite liners; (8)
diffusion through GCLs and GMs; and (9) service life of GMs. This paper is intended to
complement two other extensive examinations of the use of geosynthetics in landfills (Rowe, 1998;
Rowe, 2005) and incorporates, but expands on, material presented by Rowe (2006). With respect
to issue 1, this paper updates the review reported by Rowe (1998) however there is much valuable
information in the 1998 paper which is not repeated here. Issues 2 and 3 are not addressed in either
of these earlier papers. Issues 4-9 are discussed in both of these previous papers. This paper will only
discuss issues 4 and 9 to the extent necessary to provide context of the overall thrust of designing
safe long-term containment and, where appropriate, broadening their applicability to applications
beyond landfills or providing new information. The reader is referred to Rowe (2005) for a more
in-depth discussion of these issues. In contrast this paper will provide much more detail with
respect to issues 3, 5, 6, 7 and 8 than was provided in either previous paper.

2 – gcl-leAchAte compAtibility

2.1 – municipal solid waste (msw) leachate

Many researchers (e.g. Schubert, 1987; Shan & Daniel, 1991; Daniel et al., 1993; Dobras &
Elzea, 1993; Ruhl & Daniel, 1997; Petrov et al., 1997; Petrov & Rowe, 1997; Kodikara et al., 2002;
Ashmawy et al., 2002; Kolstad et al., 2004; Katsumi & Fukagawa, 2005; Lee & Shackelford, 2005;
Guyonnet et al., 2005; Jo et al., 2005, 2006) have discussed the issue of GCL-leachate compatibility
and its effect on the hydraulic conductivity of GCLs. The hydraulic conductivity of a GCL has been
shown to be highly dependent on: the hydrating conditions, the applied effective stress during per -
meation, the method of GCL manufacture, and the mass of bentonite in the GCL (Rowe, 1998). For
exam ple, Petrov & Rowe (1997) showed that if there is a low applied stress at the time of per -
meation, there can be an order of magnitude increase in hydraulic conductivity to about 6 x 10-10 m/s
as the permeant was changed from water to MSW leachate (Table 1). The effect was far less
significant at higher confining stress and the hydraulic conductivity to MSWleachate was still very
low at 3 x 10-11 m/s. It has been shown that consolidation during permeation can greatly mitigate
the effects of clay-leachate interaction on hydraulic conductivity.

The hydraulic conductivity (k) of a GCL for a given permeant can be directly related to the
bulk void ratio of the GCL (eB) (Petrov et al., 1997). For example, for a particular GCL and
MSWleachate it can be shown that there is a relatively straightforward relationship between k and
eB, viz: 

-11.4 + 0.42eB < log10 k (m/s) < -11.2 + 0.42eB (1)
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table 1 – Effect of applied stress on hydraulic conductivity with respect to water
and MSW leachate (after Petrov & Rowe,1997).

hydration stress hydrated thickness hydraulic conductivity hydraulic conductivity to
(kpa) (mm) to water (m/s) msw leachate (m/s)

3 12.3 6 x 10-11 55 x 10-11

115 6 0.75 x 10-11 3 x 10-11



Relationships such as this will be both product and permeant dependent but can be established
for any given design situation.

Rowe (1998) demonstrated that when dealing with composite liners, the ability of the GCL to
minimize leakage through holes in a GM is not especially sensitive to the hydraulic conductivity of
the GCL but, rather, is much more dependent on the interface transmissivity between the GM and
the GCL. This helps explain the low leakage reported for composite liners with a GCL as discussed
later. Nevertheless consideration should be given to the potential increase in k due to interaction
with the leachate and the expected values should be used in the design leakage calculations. Inte -
rac tion is expected to be greatest for a GCL used in applications where there is low applied stress
and high concentrations of salts (especially those with divalent cations). An example of a poten -
tially problematic application would be the use of a GCL as part of a composite liner for a lagoon
to contain brines. Applications such as this will require special attention and possibly a GCL with
an amended bentonite (rather than the typical sodium bentonite) selected based on clay-permeant
compatibility considerations.

2.2 – mine waste waters

The control metal and metalloid contamination derived from waste rock and mine tailings is
a major challenge for the mining industry. Past research has focused on covers which reduce acid
production by limiting infiltration and oxygen. While there is certainly a need to deal with acid
drainage, recent research has suggested that potentially toxic elements (e.g. arsenic, selenium and,
sometimes, nickel and zinc) can be mobile under neutral-pH conditions. Also reductive dissolution
of As-bearing minerals can lead to the release of As (Stichbury et al., 2000). This increases interest
in segregating the most hazardous wastes for separate disposal in a fully lined containment facility.
GCLs have a potential role to play in containing these contaminants.

The attenuation of single metal and multi-metal permeants by sodium bentonite and similar
clay combinations have been examined by a number of investigators (e.g. Brain, 2000; Li & Li, 2001;
Cooper et al., 2002; Abollino et al., 2003). The primary mechanisms controlling metal mobility in
sodium bentonite are (Abollino et al., 2003): (i) cation exchange within the clay lattice structure;
and (ii) cation attraction to broken bonds at the edges of the clay mineral. Other mechanisms
include (iii) limited anion exchange (30 meq/100 g) where the anions typically attach to the clay
structure by substitution of hydroxides at the edges of gibbsite sheets (McKelvey, 1997), and (iv)
attenuation of metals by precipitation (Yong, 2001). It is well known that soil pH, redox, and soil
porewater composition can have a significant impact on metal mobility (Yong, 2001).

Lange et al. (2004, 2005) studied the potential for metal (Al, Fe, Mn, Ni, Pb, Cd, Cu, Zn)
migration through GCLs from an acid rock drainage (ARD) solution (pH 3.9). Mn was found to
experience the least attenuation and its migration was similarly to Cl. The ARD effluent remained
neutral for about 11 pore volumes of permeation during which time Al, Fe and Cu were highly
retarded and retained within the clay. Ni, Zn, and Cd were moderately attenuated. The Fe, Zn, Mn,
As, Pb and Al were primarily attenuated in the upper portion of the GCL. There was evidence to
suggest that Fe and Mn were predominantly attenuated by precipitation of Fe-Mn oxyhydroxides.
Ni and Cu were fairly uniformly attenuated throughout the thickness of the GCL.

As the buffering capacity of the bentonite was depleted and eventually exhausted, the pH
decreased until it eventually reached the influent value of 3.9 after 35 PVs of permeation. The shift
in pH resulted in some metals being remobilized from the bentonite back into solution. Thus for
ARD solutions there is considerable potential to retard metals but this potential is limited by the
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buffering capacity of the bentonite. In a design situation, this can be related to the mass per unit
area of bentonite in the GCL and the expected flow through the GCL. The hydraulic conductivity
of the GCLs permeated with ARD increased from 2.8 x 10-12 m/s to 3.7 x 10-11 m/s after 35 pore
volumes of permeation.

Lange et al. (2007) also examined the interaction between a GCL and gold mine leachate
(GML). The GML had much higher concentration of Ca2+ and Mg2+ than the ARD (Table 2) but
despite this the concentration of these cations in the effluent from the GCLs permeated with GML
was much lower than was observed in the ARD tests. This can be attributed to cation exchange
resulting from the high metal loading together with displacement by H+ ions.

Although both the ARD and GML had high concentrations of sulphate, there was much greater
retention of the sulphate by the GCL in the GML tests than in the ARD tests, with much of the sul -
pha te being precipitated in the upper portion of the GCL as gypsum for the GML tests but not for
the ARD tests. The significant attenuation of Cd in the GML was presumed to be largely associa -
 ted with precipitation of gypsum because Huang et al. (1999) had demonstrated that Cd can adsorb
to gypsum during its crystal growth. There was also more attenuation of arsenic for the ARD sam -
ples than the GML samples. The attenuation of arsenate in the GML was also partly attributed to
gypsum precipitation with As oxyanions substituting for SO4

2- in the gypsum structure.

2.3 – hydrocarbons

Several investigators have examined the effect of organic permeants on the hydraulic conduc -
ti vity of GCLs. This has included consideration of neat and diluted ethanol (Petrov et al., 1997),
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table 2 – Initial concentrations of permeant liquids examined by
Lange et al. (2005).

parameter* gold mine leachate(gml) Acid rock drainage
(ARd) leachate

Calcium (Ca2+) 110.1 0.7

Sodium (Na+) 964.0 457.7

Sulphate (SO4
2-) 2447.0 2932

Potassium (K+) 8.0 779.9

Magnesium (Mg2+) 83.5 0.15

Strontium (Sr2+) 2.2 n/a

Manganese (Mn2+) 2.1 26.59

Aluminium (Al3+) 3.56 88.73

Iron (Fe2+) 0.41 214.4

Copper (Cu2+) n/a 19.7

Chloride (Cl-) 268.0 69

Cadmium (Cd2+) 2.1 4.9

Nickel (Ni2+) n/a 20.2

Arsenic (As5+) 4.0 4.2

Zinc(Zn2+) n/a 107.2

Lead (Pb2+) n/a 13.9

pH 6.85 3.7

All units in mg/L, with exception of pH; *the valence indicated refers to how the ion was initially introduced.



gasoline (Shan & Lai, 2002) and Jet A-1 (Rowe et al., 2004a). Because of the hydrophobic nature
of many organic contaminants there can be a threshold pressure below which there is no permeation
of the hydrocarbon through a water saturated GCL. For example, Shan & Lai (2002) reported no
flow of gasoline through a GCL under a hydraulic gradient of 150 over a test period of 3 weeks.
Likewise, Rowe et al. (2007a) found that there was no flow of Jet A-1 through a hydrated GCL
until the pressure difference between the two sides of the GCL exceeded 27 kPa. These tests were
conducted with a flexible wall permeameter. Rigid wall permeameters are also commonly used to
obtain k and Rowe et al. (2005a) showed that in these tests, the k of GCLs permeated with Jet A-1
increased with increasing hydraulic gradient. This is thought to be because the higher pressures
associated with higher gradients overcome interfacial tensions in the smaller pores thereby opening
up more flow paths than were available at lower gradients. As a consequence, the values deduced
from rigid wall permeameter tests at high gradients may considerably overestimate the k that would
actually be mobilized in field applications.

It can be concluded from the forgoing that hydrated GCLs can be an excellent hydraulic
barrier to hydrophobic hydrocarbons like Jet A-1 in the many practical applications where the
hydrocarbon head does not exceed the threshold value.

3 – fReeze-thAw

While there are many applications where a GCL will not be subjected to freezing, there are
also many parts of the world where GCLs will be subjected to freeze-thaw cycles. Hewitt & Daniel
(1997), Kraus et al. (1997), Rowe et al. (2007a) and Podgorney & Bennett (2006) performed tests
on GCLs subjected to 3, 20, 100 and 150 freeze-thaw cycles respectively and found that there was
no significant change in k of a GCL with respect to water due to these freeze-thaw cycles. While
this is very positive, it should be noted that these tests did not examine the effect of potential
interaction of the GCL with the pore water in adjacent soils. If these soils have pore fluid with
divalent cations (e.g. Ca2+ or Mg2+) then cation exchange of these cations for Na+ on the sodium
bentonite in the GCL can result in an increase in k of the GCL both in the laboratory (Shackelford
et al. 2000; Egloffstein 2001; Jo et al. 2001, 2004, 2005) and field (James et al. 1997; Melchior
1997, 2002; Egloffstein 2001). This, combined with a reduction in swell index due to cation
exchange and freeze-thaw, has the potential to give rise to an increase in k of the GCL with time
unless the GCL is subjected to sufficient confining stress to prevent shrinkage and crack formation
under the combined influence of double layer contraction and ice lensing. Egloffstein (2001, 2002)
has suggested that a 0.75-1.0 m thick soil cover is sufficient to protect GCLs from significant
increase in hydraulic conductivity. However more research is required to assess the potential effect
of relatively low stress and freeze-thaw cycles on the long-term performance of GCLs used in
covers and similar near surface applications to confirm when Egloffstein’s suggestion is generally
applicable.

The effects of freeze-thaw on k of GCLs with respect to hydrocarbons has, until recently,
received little attention. This is important for cases like those described by Bathurst et al. (2006)
where a composite liner was used to contain a hydrocarbon spill at a former DEW-Line site on
Brevoort Island in the Canadian Arctic until there can be future remediation. In this case shallow
permafrost provides a natural barrier to prevent significant downward migration of hydrocarbons.
However an engineered barrier was required to prevent lateral spreading of the hydrocarbon plume.
The geosynthetic composite barrier composed of a fluorinated high density polyethylene (f-HDPE)
and GCL was installed to cut off flow of hydrocarbons to the sea in the active zone above the
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permafrost in 2001. Another GM was used to cover the surface area between the source of the
plume and the barrier to minimize infiltration of rainwater or runoff into the contaminated zone.
The barrier is unfrozen in the summer months but frozen for most of the remainder of the year. Thus
the question arises as to how effective the GCL will be as a barrier to hydrocarbons after being
subjected to freeze-thaw cycles.

Rowe et al. (2004a, 2006, 2007a) performed freeze and thaw tests using flexible wall (FWP)
and rigid wall (RWP) permeameters. The GCL samples were hydrated for five days under low
confining pressure (15 ± 3 kPa), subjected to up to 100 freeze and thaw cycles, and then first
permeated with de-aired water followed by Jet A-1. Tests were also conducted on samples
recovered from the field after 1 and 3 years natural exposure to the groundwater and freeze-thaw
in the arctic.

Rowe et al. (2006) used RWP to permeate GCLs with Jet A-1 until equilibrium was reached.
The mean equilibrium k was about 8.0 x 10-11 and 14.5 x 10-11 m/s for 5 and 12 freeze-thaw cycles
respectively (i.e. about 4.0 and 5.6 times greater than the initial value with respect to water). Thus
the combination of high gradients and many pore volumes of permeation increased both the
intrinsic permeability and k. This was due to an increase in the pore size with SEM images showing
that the bentonite pore size for GCLs subjected to up to 12 freeze-thaw cycles was 2-3 times larger
than that of the bentonite in the virgin GCL. Application of Olsen’s (1961) cluster model suggested
that the double layer contracted by 20-40% after permeating with Jet A-1 while the free-space
expanded 1.2-2.5 times that before Jet A-1 permeation.

Tests performed using flexible wall permeameters (Rowe et al., 2007a) found that the threshold
pressure of Jet A-1 for hydrated GCLs with no freeze-thaw cycles was between about 27 to 55 kPa.
The range of threshold pressure for GCLs exhumed from the field after 3 years and those subjected
to up-to 50 freeze-thaw cycles in the laboratory was 13.8-20.7 kPa (e.g. see Fig. 1). This reduced
to between 0 and 13.8 kPa after 100 freeze-thaw cycles. Thus, freeze-thaw did reduce the threshold
pressure and this is attributed to an increase in the size of macro pores in the bentonite
following repeated freeze-thaw cycles.
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fig. 1 – Variation in cumulative inflow volume through the GCL with time for a GCL subjected
to 12 freeze and thaw cycles and permeated with water and Jet A-1 in flexible wall permeameter

test (modified from Rowe et al., 2005c).



The k (with respect to Jet A-1) of the hydrated GCL recovered from the field after 3 years was
less than 3 x 10-12 m/s. The k after up to 50 freeze-thaw cycles in the laboratory was less than 3 x
10-11 m/s at a gradient just above that required to initiate flow. There was some increase in k with
100 freeze-thaw cycles with a maximum value of about 1 x 10-10 m/s. Thus both the laboratory and
field evidence suggest that the GCL will provide an effective barrier to hydrocarbons for many
years and up to 100 freeze-thaw cycles for the conditions present at Brevoort Island.

4 – inteRnAl eRosion

GCLs are commonly used in applications where there may be several to many meters of fluid
over the GCL (e.g. ponds, lagoons, and landfills when a leachate mound builds up). Since GCLs
are relatively thin, these applications can give rise to high gradients and the potential for internal
erosion. This is particularly true when the GCL is placed over gravel or a geonet (e.g. in a double
lined landfill). Giroud & Soderman (2000) conducted an analysis of the implications of bentonite
loss from GCLs used above geonet drainage layers and concluded that a bentonite loss in excess of
about 100 g/m2 (i.e. about 2.5% of the initial bentonite mass) would impact on the GCL k and that
for these applications the impact on drainage was more severe than the impact on the permeability
of the GCL. Based on this analysis, they concluded that 10 g/m2 (i.e. about 0.25%) could be used
as a limit for impact on the drainage layer. Failures have occurred due to internal erosion. For
example, Stam (2000) reported a field case where a GCL was used to line a lake. Following obser -
va tions of excessive leakage, an investigation found “patchy” bentonite piping from the core of the
GCL through the lightweight nonwoven geotextile resting on the coarse sand subgrade. While
researchers have shown that damaged GCLs can self-heal with only a slight increase in k this self-
healing process can be compromised and significant bentonite loss can occur if the damaged GCLs
are placed on a coarse subgrade with large pore openings (Mazzieri & Pasqualini, 2000).

Rowe & Orsini (2003) studied the performance of five different GCLs (Table 3) resting on a
geonet (opening size of 0.8 cm and a diagonal span of 1.2 cm), 6 mm uniform gravel (d85 ≈ 7 mm,
d50 ≈ 6 mm, d15 ≈ 3.6 mm and d10 ≈ 3 mm), and a well graded sand (d85 ≈ 1.1 mm, d50 ≈ 0.17 mm,
d15 ≈ 0.043 mm and d10 ≈ 0.03 mm). Their findings are summarized in the following paragraphs.

When placed on the geonet, four of the five GCLs tested (BWD, NWD, WD, SNWD; see
Table 3) experienced internal erosion (bentonite loss) and an increase in hydraulic conductivity by
at least one order of magnitude for heads ranging from 8 m to 45 m. In contrast the BSNWD scrim-
reinforced GCL with a total carrier geotextile mass per unit area of 350 g/m2 did not exhibit any
sign of internal erosion (at heads of up to 55 m).

When placed directly over the 6 mm gravel GCLs with a single woven geotextile (BWD, WD,
and NWD with the woven down) in contact with the geonet and the NWD (with the light nonwoven
geotextile in contact with the geonet) all experienced internal erosion. In these cases the hydraulic
conductivity increased by at least one order of magnitude for water heads ranging from ~8 m to ~90
m. In contrast, the scrim-reinforced GCLs (SNWD, BSNWD) did not experience any detrimental
effects at hydraulic heads of 40-60 m for the conditions examined.

All of the GCLs tested performed well when placed over the well graded sand subgrade. For
these cases even heads in the range 50-80 m did not cause any significant bentonite loss and there
was no evidence of internal erosion for GCLs placed over this sand subgrade.

As the loss of bentonite increased, so too did the k. However failures, characterized by a
significant increase in k of the specimen, could initially be quite localized and in some cases failure
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was associated with relatively little bentonite loss (as little as 1%). This suggests that the limit
proposed by Giroud & Soderman (2000) of about 10 g/m2 (about 0.25%) may be appropriate as a
conser va ti ve limit for both hydraulic and drainage considerations. Rowe & Orsini (2003) concluded
that designs involving GCLs over a gravel or geonet subgrade need to be carefully examined since
internal erosion at water heads as low as 8 m caused an increase in the k by one to two orders of
magnitude. The gravel used in their tests meet the subgrade criteria of ASTM D6102, and thus it
appears that GCL installations meeting this standard could experience internal erosion and fail under
water heads encountered in reservoirs, lagoons or landfills where leachate mounding occurs.

Rowe & Orsini’s work showed that the choice of GCL carrier geotextile could significantly
affect GCL performance. A GCL with a woven geotextile down (i.e. in contact with the 6 mm gra vel
and geonet) did not perform as well as the other GCLs. GCLs with a nonwoven down performed
better for the gravel subgrade, but neither was acceptable for a GCL placed over the geonet. The
heavy scrim-reinforced GCLs performed best with BSNWD working well for all cases examined.

For the specific well graded sand subgrade tested, all GCLs performed well. This highlights the need
to carefully consider the choice of GCL in the context of the expected gradient and subgrade conditions.

5 – tempeRAtURe

5.1 – temperature at the base of a landfill

Heat generated by biodegradation of waste or the heat of hydration of incinerated residues
(ash) are known to increase the temperature at the base of a landfill. The temperature typically has
a maximum value in the main body of the waste and decreases towards the boundaries defined by
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table 3 – GCLs used in internal erosion tests (after Rowe & Orsini, 2003).

gcl product Upper core sodium lower total mass/ bentonite
descriptor geotextile1 bentonite geotextile1 unit area (g/m2) moisture

content (%)

BWD2 BFG5000 Bentonite Powder Slit film woven 5500 < 15
filled (800 g/m2) 4200 g/m2 200 g/m2

nonwoven
300 g/m2

WD2 NS Staple fibre Granular Slit film woven 4645 < 12
nonwoven 4340 g/m2 105 g/m2

200 g/m2

NWD3 ST Nonwoven Granular Slit film woven 5100 22
220 g/m2 4800 g/m2 100 g/m2

SNWD2 NW Staple fibre Granular Slit film woven, 4845 < 12
nonwoven 4340 g/m2 nonwoven
200 g/m2 composite

305 g/m2

BSNWD2 B4000 Nonwoven Powder Slit film woven 5350 < 15
300 g/m2 4700 g/m2 (100 g/m2),

nonwoven
(250 g/m2)
composite

1Polypropylene; 2Bentofix, thermally-treated and needle-punched; 3Bentomat, needle-punched.



the surface and the underlying liner (Fig. 2). The rate of increase in temperature with time both in
the waste and at the liner may vary depending on the waste management practice that is adopted.
For example, Fig. 3 shows temperatures ranging from 24-38 °C below 4-6 year old waste at the
Altwarmbüchen Landfill in Germany where waste was placed at a rate of 10-20 m/a but only 14-
20 °C after a similar period at the Venneberg Landfill where waste was placed at 2 m/a. The
availability of moisture can also have a profound effect on temperature as illustrated by Koerner &
Koerner (2006) who monitored the temperature on the GM liner beneath 50 m of waste at two
landfill cells north of Philadelphia, USA (mean annual temperature 12.6 °C). The cells had a similar
low permeability geosynthetic cover but in one case (“dry cell” in Fig. 4) there was no
additional moisture added while in the other case (“wet cell” in Fig. 4) there was moisture
augmentation at a rate of approximately 500 m3 per month. For the dry cell, the average liner
temperature has increased to about 32 °C after 10 years. In contrast for the wet cell the temperature
increased rapidly to between 41-46 °C.
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fig. 2 – Temperature variation with depth at two locations, (a) and (b), in an old landfill (1936-1980) in
Hannover Germany; waste circa 1938 at bottom (after Rowe, 1998).

fig. 3 – Temperature in drains at two German landfills approximately 4 years after last waste
placed above the drains (modified from Brune et al., 1991).



At the Keele Valley Landfill (KVL) in Canada the temperatures above the liner appear to be
leveling off in the 30-40 °C range (“Canada” in Fig. 4). Even higher temperatures have been
reported in older landfills without a leachate collection system. For example, at the Tokyo Port
Landfill in Japan the temperatures at the base (“Japan” in Fig. 4) were up to 50 °C 7-10 years after
the beginning of landfilling and have reduced to 37-41 °C after 20 years (Yoshida & Rowe, 2003).
High temperature is not restricted to MSW landfills. At the Ingolstadt landfill in Germany
(“Germany” in Fig. 4), hydration of 9 m of MSW incinerator bottom ash produced a liner
temperature of 463 °C 17 months after the start of landfilling.

Temperature influences both k and diffusion coefficient. Table 4 gives the ratio of both the
diffu sion coefficient and k at different temperatures to that at 10 °C (typical groundwater tempera -
tu re in many parts of the world). Diffusive and advective transport is, respectively, 100% and 80%
higher at 35 °C than at 10 °C (Table 4). Temperature also has a significant impact on service lives
of GMs and clay liners as will be discussed later.
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fig. 4 – Some observed temperatures at the base of landfills (US data: Koerner & Koerner, 2006;
Canadian data: Rowe, 2005; Japanese data: Yoshida & Rowe, 2003; German data: Klein et al. 2001).

table 4 – Effect of temperature on diffusion coefficient, DT, and hydraulic conductivity, kT,
in a liner at temperature, T, relative to values at 10 °C (after Rowe, 1998).

temperature (°c) D
T
/D

10
k
T
/k
10

10 1.0 1.0

20 1.4 1.3

25 1.6 1.5

35 2.0 1.8

50 2.7 2.4

65 3.5 2.9



The discussion above deals with the temperature at the top of the primary liner. The tempe ra -
tu re at the top of the secondary liner will depend on the thermal insulation provided by the material
between the primary and secondaryGMliner. In the case of double composite liner systems
involving just a GM and GCL as the primary liner, unpublished measurements indicate that the
temperature of the secondary GM may only be 3 °C or less below that of the primary GM (Legge,
pers. comm.). This is consistent with theoretical modelling conducted by Rowe & Hoor (2007)
which suggested only about a 1 °C difference assuming no cooling is induced by the leak detection
layer. If there is a compacted clay liner (CCL) or foundation layer as part of the primary liner, then
the added thermal resistance will lead to a reduction in the increase in temperature on the secondary
GM that will depend primarily on the thickness of the clay liner/foundation layer. As shown in Fig.
5, for a steady state 40°C increase in temperature relative to ground water temperature on the
primary GM (i.e. a primary GM temperature of 50 °C if groundwater temperature is 10 °C), there
would be a 30°C increase on the secondary liner for a 0.75 m thick CCL. The calculated increase
in temperature in secondary GM for CCL thicknesses of 0.5, 0.75 and 1 m was 33, 30 and 28 °C
spectively. For a 20 °C increase at the primary GM (i.e. a primary GM temperature of 30 °C if
roundwater temperature is 10 °C), the temperature increase at the secondary GM below a 0.75 m  hick
CCL and 0.3 m leak detection system would be 15 °C. This needs to be considered when assessing
the service life of the secondary GM and the potential for desiccation of the secondary clay liner.

5.2 – effect of temperature on gcls and ccls

Both GCLs and CCLs are susceptible to shrinkage and desiccation cracking, particularly when
below a GMin a composite liner. Geomembrane temperature is very sensitive to solar radiation and
can reach 80 °C (Felon et al., 1992). An increase in GM temperature can cause evaporation of water
from the underlying GCL into any air space between the GCL and theGMand subsequent movement
of this water down-slope upon cooling of the GM. The temperature gradient beneath the GM can
also cause migration of moisture from the GCL into the subsoil. Field examples involving
desiccation of CCLs and shrinkage of GCLs due to temperature increase induced by solar radiation
have been reported by Corser et al. (1992), Basnett & Bruner (1993), and Thiel & Richardson
(2005). Laboratory studies also suggest that some GCLs are more susceptible to shrinkage than
others (Thiel et al., 2006).
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fig. 5 – Effect of primary liner thickness on temperature of secondary geomembrane assuming a 40 °C
increase on the primary liner (after Rowe & Hoor, 2007).



Rowe (2005) has provided a recent review of research relating to the desiccation of CCLs and
GCLs due to thermal gradients generated by the waste and the reader is referred to that source for
details. Based on the numerical studies conducted by Heibrock (1997) and Southen (2005), and the
experimental data published by Southen & Rowe (2004, 2005), Rowe (2005) reached a number of
tentative conclusions as described below.

The potential desiccation of composite liner systems (both GM/GCL and GM/CCL) is con -
trolled by the temperature gradient (and hence the temperature at the top of the liner). As discussed
earlier, this may be a function of landfill operation and the likely temperatures to be experienced at
the liner need to be considered in landfill design. For single composite liners involving a GCL, it
was suggested that:

(a) The unsaturated soil characteristics and initial water content of the foundation layer
beneath the GCL greatly influences the potential for desiccation.

(b) The greater the overburden stress at the time of GCL hydration, the lower is the risk of
desiccation. Thus both the potential for short term (e.g., solar induced) and long term (waste
temperature induced) desiccation can be minimized by placing the waste over the composite liner
as quickly as possible after the liner construction. This finding has significant implications for the
manner in which many landfills are developed.

(c) Increasing distance to the underlying watertable increased the risk of desiccation for aquifer
depths up to about 5 m below the GCL, but relatively little change was predicted for increased
depths beyond 5mdue to the offsetting effects of reduced water content and temperature gradient.

For single composite liners involving a CCL, it was suggested that:

(a) The unsaturated soil characteristics of the liner had a significant effect on the distribution
of moisture and stress.

(b) The effect of overburden stress was not as significant as for a GCL, although it did still
reduce the risk of desiccation.

There is a need for more research into the potential for long-term desiccation of clay liners
making up part of a composite liner, especially with respect to the paucity of relevant soil
parameters. Current research suggests that there is real potential for desiccation but also suggests
that this can be mitigated by appropriate design and construction.

6 – pRotection of composite lineRs

Geomembrane protection layers most commonly used in North America involve a relatively
light needlepunched nonwoven geotextile. This arises, in part, because a geotextile with a mass per
unit area as low as 270 g/m2 has been reported (Reddy et al., 1996) to “completely protect the GM
from construction loading”. Wilson-Fahmy et al. (1996), Narejo et al. (1996), and Koerner et al.

(1996) demonstrated a linear increase in protection resistance with increasing thickness (mass per
unit area) of the protection layer and proposed a methodology for selection of geotextile protection
layers that will provide short-term protection against puncture under the loads applied by the
overlying waste. Badu-Tweneboah et al. (1998) proposed a test methodology to assessing the
suitability of a protection layer. This approach involves three steps. Firstly, do a full scale test with
the actual materials that are being considered for the project (gravel leachate collection layer,
protection layer, GM, and subgrade, as appropriate) and subject the system to loads as close as
possible to the anticipated loads (construction loads, in-service loads). Secondly, take the GM from
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the system and conduct a large diameter (0.5m or more) burst test (hydrostatic test). If inflation is
impossible, this means that the GM specimen has a hole (which may not have been visible) and the
GM specimen fails the test. If inflation is possible, inflate until the GM fails. If failure occurs at the
apex of the dome, the point of maximum stress, then the GM specimen passes the test. If failure
of the GM occurs at a location other than the apex of the dome, then the GM has been weakened
in the field test and consequently fails the test. Thirdly, if the GM failed, redo the first two steps
with different protection layers until a satisfactory design is achieved.

Tognon et al. (2000) performed large-scale physical testing of a number of different protection
layers and showed that the protection layer between the GM and the overlying drainage material
has a critical effect on the tensile strains induced in the GM. The number of indentations and maxi -
mum strain induced for the different loadings and protection layers examined by Tognon et al.

(2000) are summarized in Table 5. The best protection for the underlying GM was provided by a
sand filled geocushion or a special rubber geomat, which limited strains induced by coarse (40-50
mm) angular gravel to 0.9% at 900 kPa and 1.2% at 600 kPa respectively. Of the protection layers
tested, the worst protection was provided by the lowest mass (435 g/m2) nonwoven geotextile
which allowed 350 indentations/m2 and a maximum strain of 8% at an applied pressure of 250 kPa,
and 1200 g/m2 of geotextile which allowed about 340 gravel indentations per square metre in the
GM and a peak strain (13%) close to the yield strain at 900 kPa. In either case, if only 0.001% of
the indentations eventually resulted in a pin hole, this would correspond to over 30 holes/ha.

The two rubber geomats examined were identical except for the presence of a polyester grid
reinforcement bonded to the second geomat. The large difference in maximum strains (7.5% and
1.2% respectively at a pressure of 600 kPa) observed for these two geomats suggests that the tensile
stiffness provided by the polyester grid played a significant role in reducing lateral deformation of
the rubber and hence reducing indentation and strains in the GM. Thus the tensile stiffness of the
protection layers may be a critical factor in minimizing strains in GMs.

The tests conducted by Tognon et al. (2000) were relatively short-term (200 to 720 min) and
at room temperature (24 ± 1 °C). Thus the peak strain may not represent the maximum localized
strain that could develop in longer term tests. Additional research is needed to clarify the time
dependent effects of strains induced by gravel particles. Nevertheless it is clear that a sand protec tion
layer provides the best potential long-term performance.
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table 5 – Summary of number of indentations and peak strains observed in large scale tests using
40-50mm coarse angular leachate collection gravel separated from a 1.5mm geomembrane

over compacted clay by various different protection layers (adapted from Tognon et al., 2000).

protection layer mass/area vertical pressure n. of maximum peak strain
(kg/m2) (kpa) indentations indentation (%)

(#/m2) (mm)

One layer geotextile 1 435 250 350 5.1 8.0

Two layers geotextile 2 1,200 900 338 7.6 13

Sand filled geocushion 2,130 650 69 3.8 0.8

Sand filled geocushion 2,130 900 78 2.9 0.9

Rubber mat 6,000 600 156 3.3 7.5

Rubber mat with
polyester scrim 6,000 600 38 1.7 1.2



7 – wRinKles in geomembRAnes

Wrinkles in a GM predominantly arise from thermal expansion when the GM is heated by the
sun after placement. Giroud & Morel (1992) performed a theoretical analysis that led to the con -
clu sion that HDPE may be expected to exhibit large wrinkles with heights up to 10 cm and widths
up to 30 cm. Rowe et al. (2004b) report a case where there were 1200 wrinkles/ha. Some typical
wrinkle dimensions observed in the field are summarized in Table 6. Wrinkles are important becau se
of the increased potential for contaminant migration through a hole in the GM at or near the wrinkle.
There is also increased potential for development of future holes due to stress cracking at points of
high tensile stress in the wrinkle.

Chappel et al. (2007) have developed a low altitude air photo system that can be used to
quantify the geometry of GM wrinkles at a large scale. The system consists of a Digital Single Lens
Reflex (DSLR) camera with remote infrared shutter control mounted on a tethered helium blimp (Fig.
6). This system allows the operator to obtain clear, accurate near-vertical air photos (Fig. 7). The
wrinkle geometry is analyzed from the low altitude air photos using the digital image processing
capabilities and custom functions in Matlab. This allows the user to geometrically correct images;
stitch images of parts of a site together into a single image; and select and quantify wrinkle geo me try
from the image of the site.

Inspection of Fig. 7 shows: (A) the seams between GM panels at a spacing of about 6.6 m, (B)
wrinkles at a spacing of about 3.4mthat run the entire length of the panel along the folds produced
during the manufacture of the GM, (C) wrinkles perpendicular to the panel, (D) wrinkles at about
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table 6 – Reported HDPE geomembrane wrinkle dimensions.

wrinkle comment Reference
width (m) height (m) spacing (m)

0.2-0.3 0.05-0.1 4-5 Primary wrinkles parallel to seam between Pelte et al. (1994)
rolls; smaller wrinkles perpendicular
to main wrinkles

0.1-0.8 0.05-0.13 0.3-1.6 Wrinkles < 4 m long Touze-Foltz et al.
(2001)

0.3 0.2 - At the slope to floor transition zone Davies (pers. comm.)

fig. 6 – Photograph showing digital camera mounted to the underside
of the blimp (after Chappel et al. 2007).



45 ° to the panel, and (E) the interconnectedness of wrinkles. Since fluid entering a hole in a wrinkle
can run along the entire interconnected length, the length of a wrinkle should be regarded as the
total linear distance fluid can migrate along a wrinkle and its interconnections. For the site shown,
there was about 530 m of wrinkle per hectare and about 420 m of connected wrinkle per hectare.
As will be discussed in the section on leakage, the presence of wrinkles can significantly increase
the leakage through the composite liner.

7.1 – behaviour of geomembrane wrinkles under load

The wrinkles formed during placement of the GM do not necessarily disappear when the GM is
covered and the waste is placed (Stone, 1984; Soong & Koerner, 1998; Gudina & Brachman, 2006a,b).
Compression of these wrinkles due to loading can be expected to induce tensile strains in theGMand
these may contribute to the formation of holes due to stress cracking. Gudina & Brachman (2006a,b)
examined the interaction between the granular material and the wrinkle using a specially designed
apparatus that allows the simulation of the foundation layer, composite liner with a wrinkle in the GM,
the protection layer and the granular drainage layer. The system can then be loaded to simulate pressure
due to the waste of 1000 kPa (or more). For example, Fig. 8 shows the initial wrinkle shape and the
deformed shape of the wrinkle following application of 1000 kPa for a test with sand above and below
the GM (SP). Results are also shown for a test with 50 mm gravel above and a GCL beneath the GM
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fig. 7 – Air photo of geomembrane installation. 1.5mm smooth HDPE; Camera elevation 65 m;
Latitude 43 °16’ N; Air temperature 28 °C; 1:20 pm Aug 18 2006 (modified from Chappel et al. 2007).

fig. 8 – Wrinkle geometry in a 1.5 mm HDPE geomembrane before and after application
of 1000 kPa vertical pressure for 10 h. Results shown for sand above and below the geomembrane (SP)
and 50mm gravel directly above and a GCL beneath the geomembrane at two locations on the wrinkle:

GP1 and GP2 (after Rowe et al. 2004b).



(GP1 and GP2). The gravel resulted in more severe and nonuniform deformation of theGMthan the
sand due to the discrete nature of the interactions with the coarse gravel. With gravel there was both
pinching (GP1) and flattening at the top (GP2) of the GM which give rise to increased tensions in
the GM. This indicates the desirability of having a sand protection layer that is of sufficient
thickness to cover the wrinkles between the gravel drainage layer and the underlying GM.

Tests performed by Gudina & Brachman (2006a) found that with a compacted clay subgrade
beneath the GM, the gap between an initially 200 mm wide and 60 mm high wrinkle and the CCL
could be completely filled with clay if sufficient pressure was applied. The pressures required for
this ranged from 100 kPa for a CCL with a water content (16%) at the plastic limit for that clay and
500 kPa for the same clay at a water content (13%) 1% wet of standard Proctor optimum.

The strains induced in the GM with a wrinkle are given in Table 7 for four different protection
layers and an applied pressure of 250 kPa. Without protection the strains are very large (42%, which
is twice the yield strain) but even with a heavy (1200 g/m2) geotextile protection layer the strains
reached 11%. Only the sand protection layer provided low strains (2%) in the GM. Although these
tests are for a limited range of conditions, the message that a sand protection layer is far superior to
the use of even a thick geotextile protection layer is consistent with other findings described above.

Gudina & Brachman (2006b) and Dickinson & Brachman (2006) performed tests similar to those
discussed above except that instead of a CCL a GCL and sand foundation layer were located below the GM.
They found that the GM wrinkle experienced a decrease in height and width when subjected to vertical pressure.
However, the gap between the GM and GCL remained for all the tests at applied pressures up to 1000 kPa.

Dickinson & Brachman (2006) focused their attention on the effect of the wrinkle on GCL
deformations and the effectiveness of different protection layers to minimize GCL deformations.
The thickness of the GCL was found to decrease beside the wrinkle and increase beneath the
wrinkle due to lateral extrusion of bentonite into the gap beneath the wrinkle. Without a protection
layer the gravel backfill caused bentonite extrusion from beneath gravel contacts to zones in between
particles causing large variations in the thickness of the GCL (with a minimum thickness of about
2 mm). More surprising was the finding that the heavy (MA = 1200 and 2000 g/m2) nonwoven
needle-punched geotextile protection layers tested were not effective at reducing the number and
magnitude of these indentations. As shown in Figs. 9 and 10, at an applied pressure of 250 kPa,
even with a 2000 g/m2 protection layer there was thinning of the hydrated GCL to as little as 2.2
mm compared to an average initial thickness of 7.8 mm. In contrast, the 150mm thick sand
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table 7 – Strains induced in a geomembrane with a wrinkle at an applied pressure of 250 kPa
for different protection layers for a configuration comprised of (from top down) nominal 50 mm

gravel, protection layer, geomembrane and CCL compacted at the plastic limit (moisture content of 16%).
The initial wrinkle was 60 mm high and 240 mm wide (adapted from Gudina & Brachman, 2006b).

protection layer maximum gm strain (%)

None 42

Needle-punched nonwoven GT 15
(M

A
= 390 g/m2)

Needle-punched nonwoven GT 11
(M

A
= 1200 g/m2)

150 mm sand layer 2

GT = geotextile; M
A

= mass per unit area.



protection layer reduced both the number and magnitude of local indentations giving a minimum
final GCL thickness at 250 kPa of 4.2 mm with the sand layer. The sand protection layer redistri -
bu tes the gravel contact stresses such that the majority of the GCL deformation was due to consoli -
da tion of the bentonite rather than lateral extrusion. As noted by Dickinson & Brachman (2006),
this is preferable because a relatively uniform reduction in void ratio from consolidation would be
accompanied by a reduction in hydraulic conductivity.

While more research is needed, it appears that in order to provide the best performance of both
the GM and GCL used in composite liners, a 150 mm thick sand protection layer is far preferable
to even a thick nonwoven needle-punched geotextile (2000 g/m2) on the base of a landfill.

8 – leAKAge thRoUgh composite lineRs

8.1 – holes in geomembranes

In the absence of holes, a GM is essentially impermeable to water and hence any leakage
(advective transport) through GMs must be through holes in the GM. Based on 205 results from
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fig. 9 – Contours of the final thickness of a GCL after application of 250 kPa vertical pressure.
Configuration comprised (from top down) nominal 50 mm gravel, for a 2000 g/m2 needlepunched

nonwoven protection layer, geomembrane and GCL (w = 115%), sand layer (adapted from Dickinson &
Brachman, 2006). Marked cross-section shown in Fig. 10.

fig. 10 – Cross-section through Fig. 9 at the location of minimumGCL thickness
(adapted from Dickinson & Brachman, 2006).



four published leak detection surveys, Rowe et al. (2004b) found that: (a) no holes were detected
for 30% of the cases; and (b) less than 5 holes/ha were detected for half of the surveys. Nosko &
Touze-Foltz (2000) reported 3 holes/ha after installation and 12 holes/ha after placement of drai -
nage layer. Table 8 indicates that 50% of holes in studies reported by Colucci & Lavagnolo (1995)
had an area of less than 100 mm2 (ro < 5.64 mm). Since the leak detection surveys used to establish
the number and size of holes discussed above are conducted shortly after construction of the liner
system, it is uncertain how many holes may develop under combined overburden pressures, elevated
temperatures and chemical exposure years after construction and placement of the waste. These
holes may arise from: (a) indentations at gravel contacts following placement of the waste; (b)
stress cracking at points of high tensile strain in wrinkles; and (c) sub-standard seams subjected
to tensile stresses.

8.2 – calculation of leakage through holes in the geomembrane

Rowe (2005) has provided an extensive discussion of leakage through composite liners based
on both theoretical considerations and observed field behaviour and only a brief summary is
provided here - the reader is referred to the prior publication for details. At present, the leakage
through composite liners is usually calculated using empirical equations (established by curve
fitting families of solutions from analytical equations; e.g., Giroud & Bonaparte, 1989; Giroud,
1997; Giroud & Touze-Foltz, 2005; Touze-Foltz & Giroud, 2005 ). The results obtained from these
equations can be compared with the observed leakage through the primary liner at a large number
of landfills with double liner systems as reported by Bonaparte et al. (2002).

Rowe (2005) made this comparison and concluded that one can not explain the typical observed
leakage using the traditional equations and a reasonable number of holes per hectare.

Rowe (1998) presented an analytical solution for the case where a hole coincides with a wrinkle
in the GM of length, L, and width, 2b (Fig. 11). The transmissivity beneath the wrinkle is much
greater than the interface transmissivity, θ, where theGMis in contact with the underlying soil. It is
also assumed that L > b such that the effects of leakage at the ends of the wrinkle can be neglected.
This solution assumes unobstructed lateral flow along the length, L, and across the width, 2b, of the
wrinkle and then lateral flow between the GM and the soil outside the wrinkle. One dimensional,
vertical flow is assumed from the transmissive layer through the underlying soil beneath the wetted
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table 8 – Reported size of holes in geomembranes
(based on data reported by Colucci & Lavagnolo, 1995).

leak area equivalent radius for percentage cumulative
(mm2) circular hole, r

o
(mm) (%) percentage (%)

0-20 0-2.5 23.2 23.2

20-100 2.5-5.64 26.3 49.5

100-500 5.64-12.6 28.2 77.7

500-1000 12.6-17.8 8.8 86.5

103-104 17.8-56.4 7.8 94.3

104-105 56.4-178 4.5 98.2

105-106 178-517 1.2 100



distance from the wrinkle (this is an approximation). Rowe’s solution allows consideration of
interactions between adjacent similar wrinkles assumed to be spaced at a distance 2x apart and the
leakage, Q, is given by:

(2)

where L is the length of the wrinkle; 2b is the width of the wrinkle; k is the hydraulic conductivity
of the clay liner; θ is the transmissivity of the GM-clay liner interface; α = [k/(Dθ)]0.5; hd is the head
loss across the composite liner; and D is the thickness of the clay liner. Assuming no interaction
with an adjacent wrinkle, the leakage, Q, is given by:

(3)

The leakage calculated using this wrinkle analytical solution is compared with that from a 2D
finite element analysis in Figs. 12 and 13 and again it can be seen that there is excellent agreement
between the analytical solution and the 2D numerical analysis with an error of 5% (or less) for both
the GM/GCL composite liner (Fig. 12) and GM/CCL composite liner (Fig. 13) for range of cases
considered. Figures 12 and 13 also highlight the difference in leakage that would be expected for a
hole in direct contact with the clay liner and one in a 15 m long wrinkle. 

Table 9 compares the observed and calculated (using Eq. (2) and accounting for interaction
assuming equally spacing of the wrinkles) leakage for a GM over a 0.9 m thick CCL. Three
different liner conditions were examined: (a) low hydraulic conductivity liner and good interface
conditions; (b) typically specified liner and good interface conditions; and (c) typically specified
liner and poor interface conditions. The typical range of observed average leakage could be
explained by 12 holed (0.2 m wide) winkles/ha (3 to 30 m long) with a typical liner and good
contact (Case (b)). Similarly Table 10 shows that the observed average leakage of 60-160 lphd
could be explained by one holed wrinkle that has a 70-180 m long interconnected length per hectare
for Case (b) (based on Eq. (3); i.e. assuming the wrinkle is linear). 
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fig. 11 – Schematic defining leakage through a composite liner with a wrinkle. Assumes lateral
migration at interface and vertical flow in clay liner.
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fig. 12 – Comparison of leakage rates for GM/GCL/attenuation layer composite liner and a range of
interface transmissivities as calculated from analytical solutions and FEM analysis for (a) a single hole in

direct contact with the GCL and (b) a single 15 m long wrinkle with a hole. kL = 5 x 10-11 m/s, HL = 0.01 m,
kf = 1 x 10-6 m/s, Hf = 0.5 m, L = 15 m, B = 30 m and 2b = 0.3 m.

fig. 13 – Comparison of leakage rates for GM/CCL composite liner and a range of interface
transmissivities as calculated from analytical solutions and FEM analysis for (a) a single hole in direct

contact with the GCL and (b) a single 15 m long wrinkle with a hole. kL = 5x10-9 m/s,
HL = 0.51 m, L = 15 m, B = 30 m and 2b = 0.3 m.



The peak leakage of 390 lphd could be explained by about 1 holed 440 m long interconnected
wrinkle/ha and good interface conditions (Table 10). Thus the typical observed leakage for composite
liners involving CCLs can be readily explained by holes in wrinkles for a reasonable number of holes/ha.

Table 9 also shows observed leakage and the calculated leakage for two GCL cases: (d) low k
GCL (assuming no significant clay-leachate interaction) and (e) high k GCL (assuming significant
clay-leachate interaction). Both cases assume the highest interface transmissivity measured by
Harpur et al. (1993). It can be seen that for the best conditions (Case (d)) about 2.5 holed 3-30 m
long wrinkles/ha are needed to explain the typical observed range of 0.6-1.5 lphd. Alternatively this
range could be explained by one holed 8-20 m long interconnected wrinkle per hectare (Table 10).
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table 9 – Comparison of calculated (with wrinkles) and observed leakage during the active period for
0.9mthick CCL and GCL. k = hydraulic conductivity, θ = interface transmissivity.

case liner k (m/s) θ (m2/s)

leakage for stated number of observed2 (lphd)
holed wrinkles/ha1 (lphd)

2.5 12 Range peak4

(a) 0.9 m CCL 1 x 10-10 1.6 x 10-8 2-20 10-65 60-1603 3904

(b) 0.9 m CCL 1 x 10-9 1.6 x 10-8 7-70 30-310

(c) 0.9 m CCL 1 x 10-9 1 x 10-7 16-160 80-580

(d) GCL7 5 x 10-11 2 x 10-10 0.6-6 3-30 0.6-1.55 546

(e) GCL7 2 x 10-10 2 x 10-10 1.6-16 8-75

table 10 – Calculated leakages with one holed wrinkle per hectare for comparison with
observed leakages given in Table 9 (after Rowe, 2007).

case1, 2 liner k θ wrinkle leakage
(m/s) (m2/s) length (m) (lphd)

(b) 0.9 m CCL 1 x 10-9 1.6 x 10-8 70 60

(b) 0.9 m CCL 1 x 10-9 1.6 x 10-8 180 160

(b) 0.9 m CCL 1 x 10-9 1.6 x 10-8 440 390

(d) GCL3 5 x 10-11 2 x 10-10 8 0.6

(d) GCL3 5 x 10-11 2 x 10-10 20 1.5

(d) GCL3 5 x 10-11 2 x 10-10 670 54

(e) GCL3 2 x 10-10 2 x 10-10 250 54

1Corresponds to same cases as examined in Table 9 but only one holed wrikle and effect of wrinkle length is examined.
2h

w
= 0.3 m, h

a
= 0, 2b = 0.2 m.

3Calculations assume thickness of 0.01 m.

Rounded; 1Range of calculated values corresponds to L = 3 and 30 m (accounting for interaction); Hole r
o

= 5.6 mm; 
h

w
= 0.3 m, h

a
= 0, 2b = 0.2 m; 

2based on data from Bonaparte et al. (2002) for systems with a GN LDS; 
3Time weighted based on the reported vales for different time periods for 4 landfill cells with 900 mm CCL and GN LDS
(from Table 4 of Rowe, 2005); 
4Largest peak value reported for a monitoring period; 
5Mean of average monthly flows in post-closure and active period; 
6Largest peak monthly flow reported; 
7Calculations assume thickness of 0.01 m.



The peak flow of 54 lphd can be explained by good conditions (Case (d)) and one holed 670 m long
interconnected wrinkle per hectare or poorer conditions (Case (e)) and one holed 250 m long
interconnected wrinkle per hectare (Table 10). Thus the typical observed leakage for composite
liners with GCLs also can be readily explained by holes in wrinkles for the typical number of
holes/ha and reasonable combinations of other parameters.

The monitoring of flows in the leak detection system can provide insights about when there
has been damage to the liner. This may be particularly important when the composite liner is
comprised of a GM and GCL. It has been shown that this combination generally gives the less
leakage and a GM and CCL. However, unless it is protected by an adequate protection layer or
operating procedures, this system is the most prone to damage. Even if a landfill is well cons truc -
ted, subsequent landfill activity such as moving waste can result in holes through the entire
GM/GCL primary liner system. This, in turn, can result in the flow in the leak detection system
increasing from the normal values (10 lphd or less) to values several orders of magnitude higher.
The advanta ge of a double lined system is that it allows the detection of these accidents and their
repair before too much waste has been placed over the location. With a single lined system it is
unlikely that such a breach would be detected until the waste has all been placed and it is no longer
practical to repair. This highlights the need to place an adequate protection layer above the
composite liner to minimize the risk of such accidental damage. It also highlights the need to
closely monitor not only the construction of the liner but also any waste placement or other work
that could potentially cause damage to the liner.

There are a number of other factors that can influence the leakage that is observed in the leak
detection system of double lined landfills. For example, the interpretation of data for the initial
period may complicated by the contribution of construction water to the measured leakage and
interpretation of the data from systems employing CCL layers is complicated by the presence of
water that squeezes out of the clay as the load on the clay increases, referred to as consolidation
water. However the field cases reported here are all for systems with a geonet leak detection system
and there would not be much retained water in these systems. Also Rowe (2005) looked at data for
composite liners with CCLs and the was no correlation between leakage and liner thickness as one
would expect if consolidation water was representing a significant component of the fluid being
collected. Furthermore, the time to for consolidation of typical CCLs is relatively short and the
amount of water that would be released more than a few after months loading is quite small and
could not explain the leakages reported for CCLs. Thus the most likely explanation for the higher
than expected flows based on typical calculations is holes in wrinkles.

Of particular note is the need to design systems involving a geonet leak detection system such
that swelling and intrusion (under vertical stress) of any overlying GCL does not compromise the
drainage function of the underlying geonet (Shaner & Menoff, 1992; Legge & Davies, 2002).

While the foregoing indicates the necessity of considering holes in wrinkles if one is to reaso -
na bly estimate leakage through composite liners (assuming there are wrinkles, as in most cases), it
should be emphasized that in the post-closure period the observed leakages (Bonaparte et al. 2002)
are small. For landfills with composite liners involving a GCL the post closure maximum monthly
flow was 10 lphd which corresponds to an advective flux of less than 0.4 mm per year. For landfills
with a GM/CCL composite the average peak monthly flow was 60 lphd (i.e. an advective flux of
about 2mm per year) and in these circumstances contaminant transport is likely to be controlled by
diffusion through the liner system for contaminants that can readily diffuse through a GM.
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9 – diffUsion thRoUgh gcl’s And geomembRAnes

Diffusion is a process wherein contaminants migrate from locations of high concentration (e.g.

a landfill, lagoon or contaminated groundwater) to a region of lower concentration (e.g. clean
groundwater). It can occur in air, water, soil or even through solids such as an HDPE GM.

9.1 – basic concepts associated with diffusion in water and saturated porous media

In its simplest form, molecular diffusion in water is a result of the kinetic activity (random
movement) of the atoms (e.g. H+, Cl-, Na+, Fe2+, Cd2+) or molecules (e.g. OH-, HS-, HCO3

-, CH3COO-,
Fe(CN)6

3-,CH2Cl2, C6H6, C6H5C2H5, H2O, D2O). The amount of movement is directly proportional to
absolute temperature (i.e. there is no movement, and hence no diffusion, only at zero degrees Kelvin).
At the location where a contaminant enters a body of water there is a high concentration (i.e. large
number of atoms and/or molecules of the contaminant per unit volume) and thus a high probability
that these molecules will collide with other atoms/molecules. As a result of the collision the
atoms/molecules are likely to be propelled out of the region of high concentration into a region of
lower concentration.

Imagine, as a very crude analogy, the start of a game of billiards where there is an initial
collection of balls at one location on a billiard table. As the cue ball is driven into the collection of
balls, the energy imparted by the collision causes the balls to spread out around the table reducing
the concentration around the initial location of the clustering of balls. Assuming no balls fall into
the pockets in the table, further play is likely to cause further spreading of the balls.

The diffusion coefficient of a given contaminant in water is a complex function of the mass,
radius, valence, and concentration/dissociation state of the contaminant, and the viscosity, dielectric
constant and temperature of the diffusing medium (water in this case). The presence of soil parti cles,
particularly clay minerals and organic matter, complicates the diffusion process. Diffusion through a
network of clay particles (or fibres in a geotextile for the geotextile component of a GCL) involves
the diffusive movement of the species of interest in the pore water between the clay particles (or
geotextile fibres). There are many complicating factors that affect the diffusion of contaminants
through water in the pores of a saturated porous medium (see Chapter 6 of Rowe et al. 2004b for
a detailed discussion). However for most practical purposes these can be represented in terms of
the effective porosity, n, of the medium and an effective diffusion coefficient, De. The greater the
porosity, the more the pore water (per unit volume) available for diffusion to occur and, hence, the
greater the diffusive flux of contaminant (other things being equal). Techniques for establishing the
effective diffusion coefficient and their limitations are described by Rowe et al. (2004b).

The migration of certain organic contaminants can be retarded by adsorption and/or absorption
onto organic matter in the soil or polymer fibres for a needle punched GCL. Another completely
different mechanism involves cation exchange between certain ionic contaminants (e.g. NH4

+, K+,
Mg2+, Fe2+ etc) and clay soils (e.g. bentonite in a GCL) and this results in a similar reduction in con -
cen tration. Since the precise details of the mechanism are not important for most practical purposes,
adsorption, absorption and cation exchange are often lumped together and referred to as “sorption”.
Historically, sorption parameters are obtained from batch tests where a given mass of soil is added
to a solution with a known initial concentration of the contaminant of interest. There is then a
partitioning of the contaminant between the dissolved phase (i.e. in the solution) and the soil. At
the point of chemical equilibrium, a partitioning coefficient, Kd, can be deduced. Assuming low
concentrations of contaminant, the partitioning coefficient will be a constant for a given conta mi nant
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and soil and, as a consequence, the mass of contaminant sorbed onto the soil per unit mass of the
soil, C [-], will be a linear function of the concentration, c [ML-3), in the pore fluid:

C = Kd c (4)

where Kd is called the partitioning or distribution coefficient [M-1L3]. More complicated cases (e.g. non-
linear sorption) are described by Rowe et al. (2004b). It should be noted that for organic contaminants
the actual mechanism associated with sorption onto organic matter in soil or the geotextile fibres in a
GCL involves (a) partitioning of contaminant between the pore fluid and the surface of the solid, and
(b) diffusion into the solid organic matter or geotextile fibre. Thus, while it takes some time to reach
equilibrium, the time scale is generally short relative to the time scale of the diffusion through the
porous medium because the particles are very small (thin, in the case of geotextile fibres) and thus is
modelled as instantaneous. The processes involved in sorption of organic contaminants here are similar
to those described below for diffusion through GMs. The difference is that in the case of diffusion into
organic matter or geotextile fibres in the soil, the contaminant is being removed from solution in a
situation where the primary path for diffusion is in the pore fluid and thus it ceases to participate in
diffusion from source to receptor (unless the concentration in the pore fluid drops, in which case it can
be slowly released back into solution for reversible sorption). In the case of an intact GM discussed
below, the only way for the contaminant to diffuse from pore fluid on one side of the GM (e.g. source)
to that on the other side (e.g. receptor) is for the contaminant to diffuse through the GM.

Radioactive contaminants and some organic contaminants will also experience a decrease in
concentration due to radioactive decay or biodegradation. This can often be represented in terms of
first order decay where the rate of reduction of concentration, dc/dt, is proportional to the current
concentration, c, so that:

(5)

where λ is the first order decay constant [T-1].

The factors discussed above can be combined and the contaminant transport through the soil
component of barrier systems can be modelled by solving the equation for one- dimensional
contaminant transport of a single reactive solute through a porous medium (Rowe et al., 2004b):

(6)

subject to appropriate boundary and initial conditions, where c is the concentration at depth z and
time t; n is the effective porosity; De is the effective diffusion coefficient; ρd is the dry density of
the medium through which diffusion takes place; Kd is the partitioning coefficient; and λ is the first
order decay constant. Typically, diffusion parameters are inferred from laboratory tests conducted
using the soil of interest and a leachate similar to that anticipated in the field application. While the
diffusion coefficient may vary from soil to soil and case to case, it usually falls within a much
narrower range than hydraulic conductivity.

9.2 – diffusion through unsaturated soils

For non-volatile contaminants which will readily diffuse through water but not air, unsaturated
soil provides a better diffusion barrier than a saturated soil since they can only diffuse thought the
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water phase. Equations for estimating the diffusion coefficient for unsaturated soils are given by
Rowe et al. (2004b). For volatile contaminates the opposite is true. Volatile organic contaminants
(VOCs) such as dichloromethane (DCM), 1,2 dichloroethane (DCA), trichloroethene (trichlo roe -
thy lene, TCE), benzene, toluene, ethylbenzene, m&p-xylene and o-xylene will diffuse orders of
magnitude faster in a dry soil than they will through a saturated soil. In an unsaturated soil, they
will diffuse in both the gaseous and dissolved phases, but diffusion will be predominantly though
the gas filled pores if the water content is low enough to have a significant number of continuous
gas filled pores. This issue is addressed in more detail by Rowe et al. (2004b), however it is worth
noting here that for double liner systems, even if there is no leachate in contact with a primary or
secondary GM liner, VOCs in the gaseous phase in the leachate collection system will readily
diffuse through typical primary composite liners, an unsaturated leak detection system, and the
secondary GM with the secondary liner and attenuation layer providing the most signifiant resis -
tan ce to their migration.

9.3 – diffusion through hydrated gcls

There is a direct correlation between the diffusion coefficient and the bulk void ratio of the
GCL and Lake & Rowe (2000) showed that the chloride diffusion coefficient ranged between 1 x
10-10 m2/s (0.003 m2/a) and 4 x 10-10 m2/s (0.013 m2/a) for the range of conditions they examined.
This may be compared with a typical diffusion coefficient of about 6 x 10-10 m2/s (0.02 m2/a) through
a CCL. Lake & Rowe (2004) reported diffusion coefficients of between about 2 x 10-10m2/s
(0.006m2/a) to 3 x 10-10m2/s (0.009m2/a) for several VOCs (DCM, DCA, TCE, benzene and toluene)
through a GCL at room temperature and a confining pressure less than 10 kPa. Rowe et al. (2005b)
extended this work by examining the effect of temperature on the diffusion of benzene, toluene,
ethylbenzene, m&p-xylene and o-xylene (BTEX). They showed that the geotextile component of a
GCL was the primary contributor to sorption of hydrocarbons by the GCL, and partitioning
coefficients (Kd at 22 °C and 7 °C in mL/g) for the entire GCL were: m&p-xylene (42, 25) >
ethylbenzene (36, 22) > o-xylene (27, 14) > toluene (15, 8.7) > benzene (4.4, 2.6). The diffusion
coefficients (at 22 °C and 7 °C in m2/s) followed the order benzene (3.7 x 10-10, 2.2 x 10-10) > toluene
(3.1 x 10-10, 1.8 x 10-10) > ethylbenzene (2.9 x 10-10, 1.7 x 10-10) > m&pxylene (2.5 x 10-10, 1.5 x 10-

10) ≈ o-xylene (2.6 x 10-10, 1.5 x 10-10). While the change in temperature from 22 °C to 7 °C reduced
both the diffusion and sorption coefficients, these reductions had opposite effects on mass transport
through the GCL with the decrease in mass transport due to a reduced diffusion coefficient
dominating over the increase due to smaller sorption. Thus the net effect was less mass transport at
lower temperature.

9.4 – diffusion through geomembranes and composite liners

Although the basic mechanism causing molecular diffusion is the same as for a porous
medium (e.g. GCL, CCL or underlying subsoil), the details of how diffusion occurs through a
“solid” GM are somewhat different. In the case of the saturated porous medium the diffusion occurs
in the pore water between the solids (be they soil particles or geotextile fibres) and sorption onto
the soil particles or geotextile fibres serves to remove contaminant from the pores and hence from
impact on an underlying receptor. In the case of a solid GM, sorption (partitioning) onto the
polymer is an essential first step that attaches the contaminant to the plastic and provides an initial
concentration for diffusion through the GM (Fig. 14). It needs to be remembered that while a GM
is a solid, at the molecular level it is made up of chains of polymers that are vibrating (with the
amount of vibration being a function of temperature) and there is space between these polymer
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chains which, although not visible to us, may be significant with respect to the size of contaminant
atoms or molecules. Thus the diffusion of contaminants through an intact GM is a molecule
activated process that can be envisioned to occur by steps or jumps over a series of potential
barriers, following the path of least resistance. For dilute aqueous solutions, the process involves
three key steps (Haxo & Lahey, 1988) as illustrated in Fig. 14: (i) partition of the contaminant
between the medium containing the contaminant and the inner (i.e. contacting) surface of the GM
(sorption); (ii) diffusion of the permeant through the GM; and (iii) partition between the outer
surface of the GM and the outer medium (desorption). The diffusive motion depends on the energy
availability and the relative mobilities of the penetrant molecules and polymer chains. This will
depend on temperature, the size and shape of the penetrant, the nature of the polymer and,
potentially, concentration.

The extent to which permeant molecules are sorbed in a polymer depends upon the activity of
the permeant within the polymer at equilibrium (Müller et al., 1998). When a GM is in contact with
a fluid, there will be a relationship between the final equilibrium concentration in the GM, cg, and
the equilibrium concentration in the fluid, cf where the concentrations cf and cg represent the amount
of the substance of interest (contaminant) dissolved per unit volume of the water or GM
respectively. The concentration is typically represented in terms of mol per litre (mol L-1) or as a
mass concentration in mg/L or µg/L. For the simplest case where the permeant does not chemically
interact with the polymer (e.g., as is the case for dilute solutions such as typical landfill leachates
and HDPE), the relationship between the concentration in the fluid and the GM is given by
(Henry’s law):

cg = Sgf cf (7)

where Sgf is called a partitioning coefficient and in principle is a constant for the given molecule,
fluid, GM, and temperature of interest. Note that Sgf greater than 1 implies a preference for the GM
(i.e. the amount of substance per unit volume of theGMis greater that that per unit volume of the
fluid). This is typically the case for hydrophobic organic contaminants (i.e. those with low
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fig. 14 – Concentration profile for diffusion across a geomembrane showing (a) partitioning between the
concentration in the source solution, cf1, and the concentration in the adjacent geomembrane,
cg1; (b) diffusion profile from the top to bottom of the geomembrane; (c) partitioning between

the concentration at the bottom of the geomembrane, cg2 and the concentration in the receptor solution,
cf2. Note that cg1/cf1 = cg2/cf2 = Sgf.



solubility in water) which can readily dissolve in HDPE, with the value of Sgf being greater the more
hydrophobic the contaminant. Thus Sgf for ethylbenzene is greater than for benzene which is greater
than for dichloromethane (Table 11). Conversely hydrophilic contaminants (i.e. those highly
soluble in water, like salts such as NaCl) do not readily dissolve in HDPE and have a value of Sgf

which is less than unity (see chloride in Table 11) since, at equilibrium, most of the substance will
be dissolved in the water rather than the GM.

In the second stage of the migration, diffusion of the sorbed penetrant within the GM can be
described by Fick’s first law:

(8)

where, f is the mass flux, Dg is the diffusion coefficient of the considered contaminant in the GM,
cg is the concentration of diffusing substance in the GM, and z is the direction parallel to the direc tion
of diffusion. In transient state, the governing differential equation is (Fick’s second law):

(9)

which must be solved for the appropriate boundary and initial conditions.

The last stage in the migration process is permeant desorption from the GM to the outer
solution. This stage is similar to the first except that here contaminants will diffuse from the GM
into the adjacent fluid so that at equilibrium the contaminant concentration in the adjacent fluid is
related to that in the GM by the relationship:

c’g =S’gf c’f (10)

where S’gf is the contaminant partitioning coefficient between the outside fluid and the GM. In the
simplest case where the solutions on either side of the GM are aqueous, these two partitioning
coefficients may be assumed to be the same (Sgf = S’gf ). The two partitioning coefficients described
by Eqs. (7) and (10) are conceptually similar to that described for a porous medium by Eq. (4) and
can also be obtained in a similar way from batch tests. The parameter differs in detail because of
the difference between a porous media and a solid GM and the fact that in the soil, partitioning and
the related sorption removes contaminant from the diffusion process through the porous medium
while for a solid GM partitioning is associated with the contaminant entering and exiting the GM,
with it diffusing through the GM.
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table 11 – Time to establish steady state diffusion through HDPE geomembrane
for three volatile organic compounds.

contaminant diffusion parameters time to reach steady state (years)

D
g

(m2/a) S
gf

(-) 1.5 mm gm 2.5 mm gm

Dichloromethane, CH2Cl2 2 x 10-5 6 0.11 0.3
Benzene, C6H6 1.3 x 10-5 30 0.16 0.4
Ethylbenzene, C6H5C2H5 5.7 x 10-6 285 0.36 1
Chloride, Cl- 1.3 x 10-6 0.0008 1.6 4.4

All numbers have been rounded. Note parameters for chloride represent an upper bound and hence the times shown here are
lower bounds (actual time is expected to be longer than shown).



Since the primary interest is in the concentrations of contaminant in water (not the GM) it is
convenient to express the diffusion equations in terms of the concentration in adjacent solutions cf.
Substituting Eq. (7) into Eq. (8), the flux from an aqueous solution on one side of the GM to an
aqueous solution on the other side is given by:

(11)

where the permeation coefficient (called the permeability in the polymer literature), Pg, is given by:

Pg =Sgf Dg (12)

and where Pg is a mass transfer coefficient that takes into account the partitioning and diffusion
processes. There are various methodologies that can be used (Rowe, 1998) to deduce the
partitioning, diffusion and permeation coefficients.

The permeation coefficient, Pg, is highly dependent on the similarity of the penetrant and
polymer. For example, Eloy-Giorni et al. (1996) indicated values of Sgf = 8 x 10-4 and Dg = 2.9 x 10-

13m2/s giving a very low value of Pg = 2.3 x 10-16 m2/s for water and HDPE. Similarly, August &
Tatzky (1984) found that strongly polar penetrant molecules have very low permeation coefficients
through polyethylene (with the permeation coefficients being in the following order: alcohols <
acids < nitroderivatives < aldehydes < ketones < esters < ethers < hydrocarbons). August et al.

(1992) found that there was negligible diffusion of heavy metal salts (Zn2+, Ni2+, Mn2+, Cu2+, Cd2+,
Pb2+) from a concentrated (0.5 M) acid solution (pH = 1-2) through HDPE over a 4 year test period.

Hydrocarbons can readily diffuse through HDPE GMs, although the permeation coefficient
will vary depending on factors such as the crystallinity of the GM, temperature and in some cases,
the chemical composition and concentrations in the contaminant source (Sangam & Rowe, 2001).
The diffusion of hydrocarbons such as benzene, ethylbenzene, toluene and xylenes can also be
reduced by a factor of between about 2 and 5 by using a fluorinated HDPE as an alternative to a
conventional GM (Sangam & Rowe, 2005).

Rowe (2005) reported on chloride diffusion tests where a source and receptor are separated by
a 2 mm thick HDPE GM. After about 12 years, the receptor concentration remained below about
0.02% of the source concentration and lies within the range of analytical uncertainty for the
chemical analysis. This data provides an upper bound of 3 x 10-17 m2/s on the permeation coefficient
of chloride through an HDPE GM (Dg = 4 x 10-14 m2/s or 1.3 x 10-6 m2/a, Sgf = 0.0008).

The time it takes to establish steady stage diffusion through an HDPE GM from a constant
source to zero concentration receptor can be obtained by solving Eq. (9) subject to these boundary
conditions and only depends on the diffusion coefficient Dg (i.e. it does not depend on the parti tio -
ning coefficient Sgf). The time it takes to reach steady state is given in Table 11 for a number of
contaminants and 1.5 and 2.5 mm thick GMs. It can be seen that increasing the thickness of the GM
increases the time to reach steady state by about a factor of 2.8 (i.e. by the ratio of the square of the
thicknesses = 2.52/1.52) but even so, for the three hydrocarbons considered, the time is a year or
less. Even for chloride it is less than 5 years. However this highlights the fact that the time to reach
steady state diffusion only tells a small part of the story since it only depends on Dg and says
nothing about the mass flux that is transported from the contaminant source across the GM which
also depends on Sgf (see Eq. (11)). The impact that this has is illustrated below.
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Table 12 summarizes the calculated time required for contaminant to diffuse through an HDPE
GM and increase the concentration, c, in a 1 cmthick receptor to the specified levels relative to the
constant source concentration co for two GM thicknesses and three hydrocarbons (using the diffusion
parameters given in Table 11). It can be seen that it takes 3 to 17 days for the concentration in the
receptor to reach 0.1% of the source and only 12 to 55 days to reach 10%. In contrast, Table 13
shows that it would take at least 15 years for chloride to reach 0.1% for a 1.5mm HDPEGM and at
least 1500 years to reach 10% of the source concentration. This highlights how effective the GM is
as a diffusion barrier to ions like chloride.

To give a sense of the rate of diffusive migration, Table 14 summarizes the calculated distance
dichloromethane would diffuse in given time periods. This case considers diffusion from a constant
source (co) through a 1.5 mm HDPE GM, 8.5 mm thick GCL and underlying subgrade. It assumes
no sorption in the GCL or soil and thus represents an upper limit to the extent of migration likely
to be observed. The distance at which the concentration reaches a given concentration level (c/co =
0.01, 0.1 and 0.5) is shown together with an apparent “velocity” of diffusion (the distance divided
by the time). It can be seen that within a year DCM could diffuse to the 1% level (c/co = 0.01) to a
depth of up to 0.44 m and in 10 years it would migrate more that 1.5 m. The “velocity” of migration
is fastest at low times when the concentration gradient is greatest and decreases with subsequent
time. It was found thatDCMdiffusion was not significantly slower when there was no GM. For
example in 1, 2 and 4 years, DCM migrated at the c/co = 0.01 level to depths of 0.5 m, 0.72 m and
1.03 m with no GM as compared with 0.44 m, 0.66 m and 0.96 m with a GM. The reduction in the
distance is a little more significant for contaminants for which Sgf is higher.
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table 12 – Time required for contaminant to diffuse through HDPE geomembrane and increase
the concentration, c, in a 1 cm thick receptor to the specified level relative to the constant

source concentration co (in percent) for two geomembrane thicknesses.

time to reach c/c
o

in receptor (days)

c/c
o

(%) dcm benzene ethylbenzene

1.5 mm 2.5 mm 1.5 mm 2.5 mm 1.5 mm 2.5 mm

0.01 2 5 2 6 5 13
0.1 3 7 3 9 6 17
1 5 12 5 14 10 27
10 12 28 12 30 20 55

All numbers have been rounded.

table 13 – Time required for chloride to diffuse through HDPE geomembrane and increase
the concentration, c, in a 1 cm thick receptor to the specified level relative to the constant source

concentration co (in percent) for 1.5 mm HDPE GM (Dg = 1.3 x 10-6 m2/a; Sgf = 0.0008).

c/c
o

(%) time to reach c/co in receptor (days)

0.1 15
1 150
10 1500

All numbers have been rounded; Note parameters for chloride represent an upper bound and hence the times shown here
are lower bounds (actual time is expected to be longer than shown).



Similar calculations for chloride show no migration below the GM at the 0.01 level for thousands
of years. This is because what does diffuse through theGMdiffuses away in the underlying soil
because of the very low flux through theGMand the much higher diffusion coefficient in the
underlying soil. This again highlights the effectiveness of a GM as a diffusion barrier.

For landfill with double liner systems, the leakage through the primary liner will be mostly
collected by the leak detection system. This will minimize the potential for advective movement
through the secondary liner. However volatile organic compounds (VOCs) will volatilize in the
LDS and can then diffuse through the underlying secondary composite liner, and hence diffusion
still needs to be considered for these cases. The time for VOCs to migrate through the primary liner
at detectable levels will depend on the thickness of the primary liner (e.g. see Table 14). Evidence
suggesting the likely diffusion of VOCs through geosynthetic liners arises from field observations
reported by Workman (1993), Othman et al. (1996), and Shackleford (2005). There are other, as yet
unpublished, examples of migration through CCLs.

In summary, HDPE GMs are an excellent diffusion barrier to water and water soluble
contaminants such as metal salts. However, they will allow diffusion of VOCs. Control of the
migration of these compounds will depend on the clay liner and any attenuation layer between the
GM and any receptor aquifer. Additional control can be provided by using a fluorinated HDPE GM.

10 – seRvice life of geomembRAnes

10.1 – geomembranes for msw landfills

The foregoing sections have demonstrated that even with typical wrinkles and holes in
wrinkles, provided there is appropriate construction quality control and construction quality
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table 14 – Diffusive migration of dichloromethane through composite GM/GCL liner
and underlying subgrade. Depth to location where c/co = 0.01, 0.1 and 0.5 and

corresponding apparent “velocity” of the diffusion front.

c/c
o

= 0.01 c/c
o

= 0.1 c/c
o

= 0.5

time (years) Depth (m) “Velocity” (m/a) Depth (m) “Velocity” (m/a) Depth (m) “Velocity” (m/a)

1 0.44 0.44 0.26 0.26 0.06 0.06
2 0.66 0.33 0.39 0.20 0.12 0.06
4 0.96 0.24 0.59 0.15 0.2 0.05
6 1.19 0.20 0.74 0.12 0.26 0.043
8 1.4 0.18 0.84 0.11 0.31 0.039
10 1.55 0.16 0.96 0.096 0.36 0.036
15 1.92 0.13 1.2 0.08 0.45 0.03
20 2.22 0.11 1.4 0.07 0.53 0.027
25 2.5 0.1 1.56 0.062 0.6 0.024
30 2.74 0.091 1.72 0.057 0.66 0.022
40 3.19 0.080 2 0.05 0.78 0.020
50 3.57 0.071 2.25 0.045 0.87 0.017

GM: 1.5mm D
g

= 1.3 x 10-6m2/a; S
gf

= 6; GCL: 8.5mm D = 0.009m2/a, n = 0.7; Attenuation Layer 4m, D = 0.02m2/a, n = 0.3
no sorption or decay; constant source.



assurance (CQC/CQA), the leakage through composite liners can be controlled to such low values
that diffusion becomes the controlling transport mechanism. Geomembranes are also excellent
diffusion barriers to ions (like chloride and heavy metals) and the while volatile organic compounds
can readily diffuse through the GM they can be controlled by design of the barrier system with an
adequate attenuation layer (Rowe et al., 2004b; Rowe, 2005). This all assumes that the GM is
performing as designed. However GMs will have a finite service life and their long-term perfor -
man ce will depend on their properties (e.g. stress crack resistance, crystallinity, and oxidative
induction time), the tensile strains induced by the overlying drainage material and wrinkles (as
discussed earlier), the exposure to chemicals in the leachate and temperature. This has been
discussed in some detail by Rowe (2005).

It is generally recognized that the chemical ageing of an HDPEGMhas three distinct stages
(Viebke et al., 1994; Hsuan & Koerner, 1998): (a) depletion time of antioxidants; (b) induction time
to the onset of polymer degradation; and (c) degradation of the polymer to decrease some property
(or properties) to an arbitrary level (e.g. to 50% of the original value). It has been reported that the
consumption of antioxidants and subsequent oxidation reaction in polyethylene can be increased in
the presence of transition metals (e.g. Co, Mn, Cu, Pd and Fe) present in leachate (Osawa & Saito,
1978; Wisse et al., 1990; Hsuan & Koerner, 1998). Since it is not practical to establish the service
life under actual field conditions, accelerated ageing tests are conducted at elevated temperatures
and the results are then used to calculate the expected service life at the temperatures expected at
the base of a landfill (e.g. Hsuan & Koerner, 1998; Sangam & Rowe, 2002; Mueller & Jacob, 2003;
Rowe, 2005).

In most cases this testing to assess ageing of GMs has involved immersing samples in a fluid
of interest and then, after different periods of immersion, samples are removed and tested to obtain
the oxidative induction time (OIT). The ln(OIT) is then the is plotted versus the period of
incubation (Fig. 15). The linear plot implies a first order relationship between OIT and time and
hence the OIT (an indicator of the total amount of antioxidants) remaining at time t can be given by:
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fig. 15 – Variation in ln(OIT) with time at different temperatures in leachate. OIT0 is the initial OIT and
OITt is the OIT at time t (month), s is the antioxidant depletion rate (month-1) (after Islam & Rowe, 2007).



OIT(t) = OITO e-st (11)

where OITo is the initial OIT value (typically in minutes) and s the rate of antioxidants depletion
(typically in month-1).

Sangam & Rowe (2002) examined the depletion of antioxidants in air, water and simulated
MSW leachate while Rowe (2005) and Rowe & Rimal (2007) reported results for simulated liner
systems with a collection layer over the geotextile protection layer, theGMand a GCL on a sand
subgrade. Based on the laboratory data and Arrhenius modelling, the time required for antioxidant
depletion was deduced and is given in Table 15 for the GMs tested. It can be seen that the exposure
conditions and temperature have a profound effect on the time to antioxidant depletion. In parti cu -
lar it is noted that there is a significant difference between immersion in water and leachate. Islam
& Rowe (2007) have demonstrated that the primary factor affecting this difference is the presence
of surfactant in the leachate. Volatile fatty acids and ions typically found in leachate (e.g. Na, Cl
etc) had no significant effect on the time to antioxidant depletion.

The simulated liner results presented in Table 15 represent only the first stage of the service
life. To obtain estimates for Stages 2 and 3, Rowe (2005) used data obtained by Viebke et al. (1994)
for polyethylene gas pipe with minimal antioxidant and a wall thickness comparable to a GM
thickness (2.1 mm). The antioxidant depletion times (Stage 1) for the simulated liner (Table 15)
were combined with the service life projections for Stages 2 and 3 based on the activation energies
given by Viebke et al. (1994) to obtain the “unadjusted” estimates of GM service life given in Table
16. Since Viebke et al. (1994) tests were with water on the inside and air on the outside of the pipe
wall, the unadjusted values may be expected to overestimate the service life of aGMin a landfill.
Thus these values were adjusted to reflect the observed difference between exposure to air, water
and a simulated liner exposed to leachate on one side as described by Rowe (2005) to obtain the
“adjusted” estimates given in Table 16. It can be seen that for temperatures around 20 °C, service
lives are projected to be of the order of 565 to 900 years and hence a service life of 600 years (or
more) could be anticipated at a temperature of 20 °C (or less). For liners at a temperature of 35 °C,
the service life is of the order of 130-190 years. Finally at temperatures of 50-60 °C, the service
lives are very short (15-50 years).

In the context of the earlier discussion of the effect of temperature on primary and secondary
liners, it should be noted that for an area where the background temperature is 15 °C and assuming
the primary GM temperature increases to 35 °C (i.e. by 20 °C), the secondary GM might be
expected to be at about 30 °C (assuming a primary composite liner with a GM, 0.75 m compacted
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table 15 – Estimated antioxidant depletion time for an HDPE geomembrane (modified from Rowe 2005).

temperature (°c) Air1 t
air

(years) water1 t
water

(years) leachate1 t
leachate

(years) simulated liner2 t
sl
(years)

10 510 235 50 280
20 235 110 25 115
30 110 55 15 50
35 80 40 10 35
40 55 30 8 25
50 30 15 5 10
60 15 8 3 6

All times greater than 10 have been rounded to nearest 5 years. 12 mm HDPE, OIT
o
= 133 min (ASTM D3895), crystallinity

= 44%; based on data from Sangam & Rowe (2002). 21.5 mm HDPE, OIT
o

= 135 min (ASTM D3895), crystallinity = 49%.



clay and an 0.3 m thick gravel leak detection system). Under these circumstances Table 16 suggests
that the service life of the primary and secondary GMs would be of the order of 130-190 years and
205-315 years respectively.

The service lives presented in Table 16 provide a general idea of the order of magnitude of the
GM service-life and highlight the importance of liner temperature. While these numbers represent
the best currently available information they should be used with caution since only the results for
Stage 1 are based on actual tests on GMs typically used in landfill applications in a simulated liner
configuration.

The calculated antioxidant depletion times (Table 15) and service lives (Table 16) are based
on a constant temperature. Rowe (2005) examined the effect of the liner temperature varying with
time. This showed that while operational features such as operating a landfill as a bioreactor may
shorten the period of high temperatures on the liner, the increase in temperature associated with this
mode of operation can actually decrease the overall service life. This highlights the importance of
considering the mode of landfill operation when developing a liner design.

10.2 – geomembranes in contact with neat hydrocarbons

As indicated in the previous section, the fluid in contact with the GM can have a profound
impact on the depletion of antioxidants and hence the service life of a GM. Since GMs may be used
to retain neat hydrocarbons, as discussed earlier, Rowe et al. (2007b) immersed both conventional
HDPE and fluorinated HDPE (f-HDPE) GM specimens in Jet A-1 and then examined the change
in oxidative induction time with the period of immersion. They reported that immersion in Jet A-1
accelerated antioxidant depletion relative to that observed in water or MSW leachate by Sangam &
Rowe (2002). Fluorination of the HDPE GM significantly (by a factor of 2.7) reduced antioxidants
depletion relative to conventional HDPE. At 23 °C, the total antioxidant depletion time was esti -
ma ted to be about 2 and 6 years for untreated and fluorinated GMs respectively. This can be
compared with projected depletion times of between 20 years and 90 years (at 23 °C) based on
Sangam & Rowe’s (2002) tests for GM immersed in MSW leachate and water respectively.

11 – conclUsions

Over the last decade there have been significant advances in knowledge concerning the factors
potentially affecting the performance of GCLs and GMs in a wide range of geoenvironmental
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table 16 – Estimated service lives for an HDPE geomembrane for a MSW landfill
(modified from Rowe 2005).

Temp (°C) Service life (years) Service life (years)
Unadjusted tSL Adjusted tSLa

20 900 565
30 315 205
35 190 130
40 120 80
50 50 35
60 20 15

All times have been rounded to nearest 5 years.



applications. This paper has examined nine of these issues and it can be concluded that for the
specific materials and conditions discussed:

• GCLs may interact with municipal solid waste (MSW) leachate. The level of interaction is highly
dependent upon the vertical effective stress at the time of permeation. At very low stress there
may be an order of magnitude increase in GCL hydraulic conductivity (to about 6 x m/s) as the
permeant was changed from water to MSW leachate. At stress levels more typical of likely field
conditions, the effect is far less significant with a hydraulic conductivity to MSW leachate still
very low at 3 x 10-11 m/s.

• GCLs have the potential to provide strong attenuation of many metals and metalloids present in
acid rock drainage (ARD) leachate and a neutral-pH gold mining leachate (GML). The hydraulic
conductivity of the GCLs permeated with ARD increased from 2.8 x 10-12 m/s to 3.7 x 10-11 m/s
after 35 pore volumes of permeation. There was no significant change in hydraulic conductivity
for GCLs permeated with GML.

• There is negligible flow of hydrocarbons through a saturated GCL until a critical threshold
pressure is exceeded. This threshold pressure is greater than that likely to be experienced in many
applications and hence a hydrated GCL is likely to be an excellent barrier to hydrocarbons under
these conditions. Above this threshold pressure the effect on intrinsic permeability is largely
masked by the effect on density and viscosity such that the hydraulic conductivity of GCLs
remains low and it appears that GCLs such as those tested can provide good containment of
hydrocarbons for many practical applications.

• Up to 150 freeze-thaw cycles had very little effect on the hydraulic conductivity of GCLs per -
meated with water under conditions where there was no chemical interaction (cation exchange)
with the bentonite prior to permeation. More research is required to assess the potential combined
effect of cation exchange and freeze-thaw cycles at relatively low stress on the long-term
performance of GCLs used in covers and similar near surface applications.

• 50 to 100 freeze-thaw cycles reduces the breakthrough pressure for permeation by jet fuel through
a GCL. This was attributed to an increase in the size of macro pores in the bentonite following
repeated freeze-thaw cycles. The hydraulic conductivity after up to 50 freeze-thaw cycles in the
laboratory was less than 3x10-11 m/s at a gradient just above that required to initiate flow. There
was some increase in hydraulic conductivity with 100 freeze-thaw cycles with a maximum value
of about 1 x 10-10 m/s.

• The hydraulic conductivity (with respect to jet fuel) of GCL recovered from the field in the arctic
after 3 years was less than 3 x 10-12 m/s at a pressure just above the breakthrough pressure.
Increasing the gradient increases the hydraulic conductivity to 6 x 10-11 m/s. This higher value is
at a gradient unlikely to be encountered in a real field situation but is still very low.

• Different GCLs have substantially different susceptibilities to internal erosion that can occur at
high hydraulic gradients (e.g. in pond and lagoon applications). The choice of GCL carrier
geotextile plays a key role in this different performance. GCLs with a woven geotextile in contact
with the underlying subgrade did not perform as well as the other GCLs. GCLs with a nonwoven
geotextile performed better than the GCLs with a woven over the subgrade but still experienced
internal erosion over a geonet at high heads. In contrast, the scrim-reinforced GCL with a carrier
geotextile mass of 350 g/m2 did not exhibit any sign of internal erosion when placed over the
geonet, gravel or sand tested at heads of 40-60 m.

• All the GCLs tested performed well with respect to internal erosion when on a suitable sand
subgrade.
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• The available evidence would suggests that temperatures of 30-40 °C can be expected at the top
of the primary liner for MSW landfills. Higher temperatures (40-60 °C) can occur in situations
where there is sufficient moisture to accelerate biodegradation of organic waste (e.g. in bioreactor
landfills or when there is no operating leachate collection system) or due to hydration of
incinerator ash.

• Diffusive and advective transport are, respectively, 100% and 80% higher at 35 °C than at a
common groundwater temperature of 10 °CC.

• The temperature of the GM in a secondary liner will be highly dependant on the nature of the
primary liner. For a geocomposite primary liner comprised of only a GM and GCL, the secondary
GM temperature may be expected to be only a few degrees (at most) less than that of the primary
GM. As the thickness of the primary liner increases (e.g. if there is a foundation layer below the
GCL as part of the primary liner or if there is a CCL), the temperature of the secondary GM
decreases. The temperature of the primary and secondary GM may have a profound impact on the
service life of these GMs.

• Both GCLs and CCLs may be susceptible to shrinkage and desiccation when used as part of a
composite liner. This results from exposure to solar radiation prior to placement of adequate cover
over the GM or after placement of waste (due to heat generated by the waste as discussed above).
The potential for shrinkage and desiccation will depend on the temperature gradient, the charac -
te ristics of the GCL or CCL, the unsaturated soil characteristics and initial water content of the
foundation layer beneath the clay liner, the overburden stress, and the distance to the underlying
watertable. The available information suggests that while there is potential for desiccation and
shrinkage, this can be mitigated by appropriate design and construction.

• Typical construction practice will result in GMs developing a significant number of wrinkles
(waves) by the time they are covered. Techniques have been developed for quantifying the size
and distribution of wrinkles.

• Under typical applied loads, wrinkles tend to remain in the GM. A gap typically remains between
the GM wrinkle and a GCL. For a GM with wrinkles initially up to 60 mm high over a CCL, the
gap may be filled at stress levels of 100 kPa or more when the CCL is compacted at the plastic
limit. The lower the water content of the CCL at the time of compaction (relative to the plastic
limit) the higher the pressure needed to extrude sufficient clay to fully close the gap.

• While needle-punched nonwoven geotextiles may provide reasonable protection against short-
term holes in an underlying GM (i.e. limiting the number of holes to less than about 12 per hectare
after placement of the drainage layer), recent research has shown that if gravel is used as the
drainage layer (the preferred choice for providing good long-term leachate collection) then typical
geotextile protection layers (up to 2000 g/m2) will not prevent large local strains in the GM and
thinning of any underlying GCL (especially near wrinkles). Additional research is needed to
clarify the time dependent effects of strains induced in GMs and the GCL by the gravel particles.
Nevertheless it is clear that a sand protection layer between the gravel and the GM (perhaps
combined with a traditional nonwoven geotextile) provides the best potential long-term
performance.

• Field evidence of significant increases in leakage into LDS due to damage to composite liners
involving a GM and GCL due to landfill activities after liner construction highlight the need to
place an adequate protection layer above the composite liner to minimize the risk of such
accidental damage. It also highlights the need to closely monitor not only the construction of the
liner but also any waste placement or other work that could potentially cause damage to the liner.
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• Field data indicates that the leakage through a GM/CCL composite liner was typically one to two
orders of magnitude higher than that observed for GM/GCL composite liners.

• The calculated leakage obtained assuming direct contact (no major wrinkles) and typical size and
number of holes in GMs using commonly used equations significantly underestimated the
observed leakage for both GM/CCL and GM/GCL systems.

• The typical observed leakage for composite liners with CCLs and GCLs can be readily explained
by holes in wrinkles for the typical number of holes/ha and reasonable combinations of other
parameters using the Rowe (1998) equation.

• The design and construction of systems with a geonet leak detection system must ensure that the
swelling and intrusion (under vertical stress) of any overlying GCL does not compromise the
drainage function of the underlying geonet.

• Available field data suggests that even with typical numbers of wrinkles and holes per hectare, for
landfills with good CQC/CQA and where there is no damage to the liner during landfilling
activities, the post-closure leakages are very small and contaminant transport is likely to be
controlled by diffusion through the liner system for contaminants that can readily diffuse through
a GM.

• Volatile organic compounds (VOCs) can diffuse through both GMs and GCLs. Typical diffusion
coefficients have been reported for both HDPE GMs as well as GCLs. Diffusion of hydrocarbons
is much slower for fluorinated HDPE (f-HDPE) than conventional HDPE GMs. Control of the
migration of these compounds will depend on the clay liner and any attenuation layer between the
GM and any receptor aquifer.

• Ionic contaminants exhibit negligible diffusion through intact HDPE GMs. The diffusion
coefficient for ionic contaminants through GCLs is a function of the bulk void ratio of the GCL.

• For landfills with double liner systems, the leakage through the primary liner will be mostly
collec ted by the LDS. This will minimize the potential for advective movement through the
secondary liner. However volatile organic compounds will volatilize in the leak detection system
and can then diffuse through the underlying secondary composite liner, and hence diffusion needs
to be considered for these cases. The time for VOCs to migrate through the primary liner at
detectable levels can range from as little as a year to a decade depending on the thickness of the
primary liner and the concentration in the landfill leachate collection system.

• The long-term performance of a GMwill depend on the GM properties (e.g. its stress crack
resistance, crystallinity, and oxidative induction), the tensile strains in the GM (which can be
induced by the overlying drainage material and wrinkles in the GM), the exposure to chemicals
in the leachate, and temperature.

• The service life of HDPE GMs meeting GRI GM-13 and used in MSW landfills are projected to
be of the order of 600 years or more at a temperature less than 20 °C. At a temperature of 35 °C,
the service life is projected to be of the order of 130-190 years. At temperatures of 50-60 °C,
service lives are very short (15-50 years).

• Immersion of HDPE GMs in Jet A-1 accelerates antioxidant depletion relative to that observed in
water or MSW leachate. The antioxidant depletion time was estimated to be about 2 and 6 years
for untreated and fluorinated GMs, respectively, at 23 °C. This can be compared with a projected
20 years and 90 years based on GMs immersed inMSWleachate and water respectively (at 23 °C). 
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The evidence reviewed in this paper suggests that GCLs and GMs can play a very beneficial
role in providing environmental protection. Like all engineering materials they must be used appro -
pria tely and consideration should be given to factors such as those addressed in this paper. There is
a need for site specific design, strict adherence to construction specifications, and appropriate
protection of the geosynthetics after construction. In particular, given the diversity of available
GCLs and their different engineering characteristics, GCLs should be selected based on the
required engineering properties, not just price.
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