MODELO REOLÓGICO DE NEWTON SUJEITO A UMA TENSÃO PARABÓLICA CÍCLICA

A rheological Newton model submitted to a cyclic parabolic stress

Fernando Peres Rodrigues*

RESUMO - Estuda-se o modelo reológico de Newton dos materiais perfeitamente viscosos, sujeitos a uma tensão parabólica cíclica, verificando-se que as suas extensões ao longo do tempo seguem uma lei ondulatória, cujos pontos de inflexão definem uma recta passando pela origem. Esta recta corresponde à fluência estacionária do modelo de Newton sujeito a uma tensão igual ao valor médio da tensão parabólica. Quando o semi-período da tensão aplicada tende para zero, a extensão tende para a fluência estacionária referida.

SYNOPSIS - The rheological Newton model of the perfectly viscous materials subjected to a cyclic parabolic stress is studied. The strain-time law is ondulatory and the inflexion points define a straight line passing at the origin. This straight line corresponds to the stationary creep of the Newton model subjected to a stress equal to the average value of the parabolic stress. When the semi-period of the applied stress tends to zero the strain tends to the referred stationary creep.

1 - INTRODUÇÃO

Em continuação do estudo já apresentado relativo à análise da extensão resultante da aplicação de uma tensão linear cíclica a cinco modelos reológicos com aplicação na Geotecnia em geral e na Mecânica das Rochas em particular (modelos de Newton, Maxwell, Kelvin, Nakamura e Burger's) vai ser iniciado o mesmo estudo resultante da aplicação de uma tensão parabólica cíclica aos mesmos modelos reológicos.

Apresenta-se a seguir o estudo relativo ao modelo reológico de Newton seguindo um esquema semelhante ao da tensão linear cíclica.

2 - RELAÇÃO EXTENSÃO-TEMPO E DIAGRAMAS

O modelo de Newton, também denominado amortecedor, é formado por um êmbolo que se desloca num cilindro contendo um líquido viscoso (Figura 1) e representa os materiais perfeitamente viscosos ou de Newton (Rocha, 1981).

A sua equação reológica é

$$\sigma = K\dot{\varepsilon} = K\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} \tag{1}$$

sendo:

- σ tensão normal;
- K constante que caracteriza o amortecedor;
- ε extensão normal;
- t tempo.

Submeta-se o modelo de Newton a n ciclos iguais de tensão parabólica de período 2T, como se indica na Figura 2.

^{*}Investigador pelo LNEC e do CEGEO do IST.

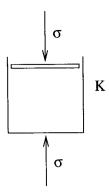


Fig. 1 - Representação esquemática do modelo de Newton.

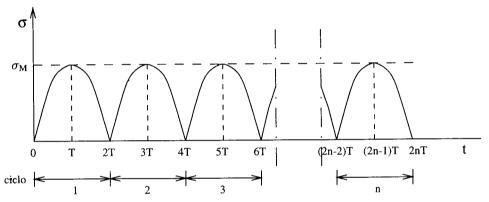


Fig. 2 - Ciclos de tensão parabólica.

A tensão parabólica, σ , do ciclo de ordem n, de valor máximo σ_M , será definida pelos seguintes três pontos:

$$\begin{cases} t = (2n-2)T \\ \sigma = 0 \end{cases} \begin{cases} t = (2n-1)T \\ \sigma = \sigma_M \end{cases} e \begin{cases} t = 2nT \\ \sigma = 0 \end{cases}$$
 (2)

sendo a equação da tensão parabólica genérica do ciclo de ordem n dada por:

$$\sigma = a + bt + ct^2 \tag{3}$$

A condição da equação (3) passar pelos três pontos indicados em (2) conduz ao sistema de três equações lineares seguintes:

$$\begin{cases} a + b(2n-2)T + c(2n-2)^2T^2 = 0\\ a + b(2n-1)T + c(2n-1)^2T^2 = \sigma_M\\ a + 2bnT + c(2n)^2T^2 = 0 \end{cases}$$
(4)

que, resolvido, permitirá escrever a equação de definição da tensão parabólica no ciclo de ordem n:

$$\sigma = \frac{4\sigma_M}{3} \left[-3n(n-1) + \frac{3}{2}(2n-1)\frac{t}{T} - \frac{3}{4}\left(\frac{t}{T}\right)^2 \right] \cos n \in [N]$$
 (5)

sendo [N] o conjunto dos números naturais e o domínio da variável t do ciclo de ordem n será dado por:

$$(2n-2)T \le t \le 2nT \tag{6}$$

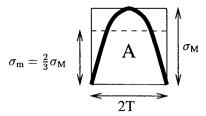


Fig. 3 - Parábola de semi-período T.

A área da tensão parabólica genérica, A, do ciclo de ordem n, será dada, atendendo a (5) e a (6), por:

$$A = \int_{(2n-2)T}^{2nT} \sigma dt = \frac{4\sigma_M}{3} \left[-3n(n-1)t + \frac{3}{4}(2n-1)\frac{t^2}{T} - \frac{1}{4}\frac{t^3}{T^2} \right]_{(2n-2)T}^{2nT} = \frac{4\sigma_M T}{3}$$
 (7)

Como seria de esperar, a área A é independente da ordem n do ciclo, dependendo apenas da tensão máxima, σ_M , e do semi-período, T.

O valor médio, σ_m , da tensão parabólica aplicada é dado, atendendo a (7), por:

$$\sigma_m = \frac{A}{2T} = \frac{2}{3}\sigma_M \tag{8}$$

A fórmula (7), como seria de esperar, mostra que a área da parábola é igual a $\frac{2}{3}$ da área do rectângulo que a circunscreve, e a fórmula (8) que a área da parábola é igual à do rectângulo com a mesma base e de altura igual a $\frac{2}{3}$ da altura da parábola (Figura 3).

Da equação (1) resulta que a extensão $\varepsilon(t)$ será dada por:

$$\varepsilon(t) = \varepsilon_0 + \frac{1}{K} \int_{t_0}^t \sigma dt \tag{9}$$

sendo:

- ε_0 extensão sofrida até ao início do ciclo de ordem n;
- t_0 tempo do início do ciclo de ordem n.

A substituição em (9) de (5) permite calcular a evolução da extensão $\varepsilon(t)$ com a evolução da tensão parabólica no ciclo de ordem n, tendo em consideração o domínio definido em (6):

$$\varepsilon(t) = \frac{4\sigma_M}{3K} \int_{(2n-2)T}^t \left[-3n(n-1) + \frac{3}{2}(2n-1)\frac{t}{T} - \frac{3}{4}\left(\frac{t}{T}\right)^2 \right] dt = 0$$

$$=\frac{4\sigma_{M}T}{3K}\left\{-\frac{1}{4}\left(\frac{t}{T}\right)^{3}+\frac{3}{4}(2n-1)\left(\frac{t}{T}\right)^{2}-3n(n-1)\frac{t}{T}+(n-1)^{2}(2n+1)+\varepsilon_{0}\left[(2n-2)T\right]\right\} \ (10)$$

A expressão (10) representa uma família de cúbicas tendo como constante de integração, portanto independente da variável t, o termo $\varepsilon_0[(2n-2)T]$ que tem valor nulo para o início da contagem dos tempos, isto é, para t=0.

A extensão $\varepsilon(t)$ é assim representada por troços de cúbicas correspondentes aos intervalos de tempo de cada um dos ciclos considerados.

Para um melhor conhecimento desta família de cúbicas, procure-se os lugares geométricos dos seus pontos máximos, mínimos e de inflexão.

Os pontos máximos e mínimos serão os pontos que anulam a 1ª derivara de (10):

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = \frac{4\sigma_M T}{3K} \left[-\frac{3}{4} \left(\frac{t}{T}\right)^2 + \frac{3}{2} (2n-1) \frac{t}{T} - 3n(n-1) \right] \tag{11}$$

Igualando a zero e resolvendo a equação, obtem-se:

$$t_1 = 2(n-1)T e t_2 = 2nT (12)$$

a que correspondem, por substituição em (10), as ordenadas genéricas:

$$\varepsilon(t_1) = \frac{4\sigma_M T}{3K} \left\{ \varepsilon \left[(2n - 2)T \right] \right\} e \varepsilon(t_2) = \frac{4\sigma_M T}{3K} \left\{ 1 + \varepsilon \left[(2n - 2)T \right] \right\}$$
 (13)

Os pontos máximos e mínimos genéricos pertencem aos extremos de cada ciclo de ordem n, em face dos valores t_1 e t_2 dados por (12).

Por esta constatação vai ser possível calcular o valor da constante de integração, sabendo que, por convenção:

$$\varepsilon[0] = 0 \tag{14}$$

Para n = 1 as expressões (12) e (13) conduzem a:

$$\begin{cases} t_1 = 0 \\ \varepsilon(0) = \frac{4\sigma_M T}{3K} [1 - 1] = 0 \end{cases} \quad e \begin{cases} t_2 = 2T \\ \varepsilon(2T) = \frac{4\sigma_M T}{3K} [1 + 0] = \frac{4\sigma_M T}{3K} [2 - 1] \end{cases}$$
 (15)

Para n = 2 ter-se-á, atendendo a (12), (10), (13) e (15):

$$\begin{cases} t_1 = 2T \\ \varepsilon(2T) = \frac{4\sigma_M T}{3K} [2-1] \end{cases} \quad e \begin{cases} t_2 = 4T \\ \varepsilon(4T) = \frac{4\sigma_M T}{3K} [3-1] \end{cases}$$
 (16)

Para n=3 vem:

$$\begin{cases} t_1 = 4T \\ \varepsilon(4T) = \frac{4\sigma_M T}{3K}[3-1] \end{cases} \quad e \begin{cases} t_2 = 6T \\ \varepsilon(6T) = \frac{4\sigma_M T}{3K}[4-1] \end{cases}$$
 (17)

donde se infere que:

$$\varepsilon[(2n-2)T] = \frac{4\sigma_M T}{3K}(n-1) \tag{18}$$

que substituindo em (10) permite escrever, finalmente, a expressão da família de cúbicas definidoras das extensões correspondentes à carga parabólica cíclica considerada:

$$\varepsilon(t) = \frac{4\sigma_M T}{3K} \left\{ -\frac{1}{4} \left(\frac{t}{T} \right)^3 + \frac{3}{4} (2n-1) \left(\frac{t}{T} \right)^2 - 3n(n-1) \frac{t}{T} + n(n-1)(2n-1) \right\}$$
(19)

Os pontos de inflexão genéricos serão os que anulam a 2ª derivada de (10) ou (19) ou a 1ª derivada de (11):

$$\frac{\mathrm{d}^2 \varepsilon}{\mathrm{d}t^2} = \frac{4\sigma_M T}{3K} \left[-\frac{3}{2} \frac{t}{T} + \frac{3}{2} (2n-1) \right] \tag{20}$$

donde resultam as abcissas genéricas t_i dos pontos de inflexão:

$$t_i = (2n-1)T \tag{21}$$

que são as abcissas médias das dos pontos máximos e mínimos dados por (12) e que substituídas em (19) permitem obter as extensões genéricas dos pontos de inflexão:

$$\varepsilon(t_i) = \frac{4\sigma_M T}{3K} \frac{1}{2} (2n - 1) \tag{22}$$

As abcissas genéricas dos pontos máximos e mínimos t_1 e t_2 , dadas por (12), permitem substituídas em (20) determinar o sinal da 2^a derivada e, assim, identificar:

$$\frac{\mathrm{d}^2 \varepsilon}{\mathrm{d}t^2} [2(n-1)T] = \frac{5}{2} > 0 \text{ mínimos}$$

$$\frac{\mathrm{d}^2 \varepsilon}{\mathrm{d}t^2} [2nT] = -1 < 0 \text{ máximos}$$

A substituição de (18) em (13) e as expressões (12) permitem, finalmente, escrever as coordenadas genéricas dos pontos mínimos:

$$t_1 = 2(n-1)T \ e \ \varepsilon(t_1) = \frac{4\sigma_M T}{3K}(n-1)$$
 (23)

e dos pontos máximos:

$$t_2 = 2nT e \varepsilon(t_2) = \frac{4\sigma_M T}{3K} n \tag{24}$$

Verifica-se que os pontos genéricos máximos, mínimos e de inflexão estão alinhados e passam pela origem das coordenadas; sendo assim, haverá proporcionalidade entre as suas coordenadas genéricas. Tendo em atenção (21), (22), (23) e (24) ter-se-á:

$$\frac{\varepsilon(t_1)}{t_1} = \frac{\varepsilon(t_2)}{t_2} = \frac{\varepsilon(t_i)}{t_i} \tag{25}$$

ou seja, o coeficiente angular da recta será

$$\frac{\frac{4\sigma_M T}{3K}(n-1)}{2(n-1)T} = \frac{\frac{4\sigma_M T}{3K}n}{2nT} = \frac{\frac{4\sigma_M T}{3K}\frac{1}{2}(2n-1)}{(2n-1)T} = \frac{2\sigma_M}{3K}$$
(26)

e a sua equação dada pela expressão:

$$\varepsilon(t) = \frac{2\sigma_M}{3K}t = \frac{4\sigma_M T}{3K} \frac{1}{2} \frac{t}{T} \tag{27}$$

Esta recta corresponde à extensão por fluência estacionária de uma tensão normal constante de valor:

$$\sigma = \frac{2\sigma_M}{3} \tag{28}$$

igual ao valor médio obtido para a tensão parabólica aplicada (fórmula (8)) o qual, introduzido na expressão (9), tendo em atenção que $\varepsilon_0 = 0$ e integrando entre 0 e t, dá

$$\varepsilon(t) = 0 + \frac{2\sigma_M}{3K} \int_0^t dt = \frac{2\sigma_M}{3K} t$$
 (29)

igual à expressão (27) como se queria mostrar.

Para que os pontos da curva da extensão (19) comuns a cúbicas contíguas da família não sejam pontos angulosos é necessário que as tangentes nesses pontos apresentem coeficientes angulares iguais à esquerda e à direita, isto é, quando considerados em cúbicas contíguas.

Os coeficientes angulares são obtidos a partir da 1^a derivada, expressão (11), fazendo t = (2n-2)T, considerado como ponto da cúbica do ciclo de ordem n:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}\left[(2n-2)T\right] = 0\tag{30}$$

o que mostra que a tangente é horizontal.

Para se ter o coeficiente angular do mesmo ponto, mas pertencendo à cúbica do ciclo de ordem (n-1), deve substituir-se n por (n-1) na expressão (11), donde:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = \frac{4\sigma_M T}{3K} \left[-\frac{3}{4} \left(\frac{t}{T} \right)^2 + \frac{3}{2} (2n-3) \frac{t}{T} - 3(n-1)(n-2) \right]$$
(31)

que, no ponto t = (2n - 2)T assume o valor:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t}\left[(2n-2)T\right] = 0\tag{32}$$

igual ao obtido em·(31), o que mostra serem as duas tangentes coincidentes, não sendo, por isso, angulosos os pontos considerados.

Na Figura 4 encontram-se representadas as quatro primeiras cúbicas da família e as correspondentes tensões normais parabólicas em função do tempo e dos ciclos referidos a dois sistemas de eixos (ε,t) e (σ,t) , ortonormados e monométricos, isto é, com graduações iguais, indicandose em cada um deles a factor de escala que permite esta circunstância. Os factores de escala foram os mesmos apresentados em Peres Rodrigues (1990) e em Peres Rodrigues (1995) para uma mais fácil comparação das duas tensões cíclicas utilizadas. Igualmente se representa a recta (27) lugar geométrico dos pontos máximos, mínimos e de inflexão da família de cúbicas.

Apresenta-se o Quadro 1 que permitiu traçar as quatro primeiras cúbicas da família, sendo assinaladas a "bold" as ordenadas dos pontos das cúbicas pertencentes às extensões devidas à tensão parabólica cíclica aplicada.

No Quadro 2 apresentam-se os valores das tensões normais do ciclo de ordem n, tendo como unidade σ_M e que permitiu traçar as tensões parabólicas cíclicas das Figuras 2, 3 e 4.

Procure-se agora verificar que as extensões (19) se encontram enquadradas por duas rectas paralelas à recta (27). Para isso determine-se os pontos de (19) que admitem tangente paralela à recta (27), isto é, os valores de t da 1^a derivada (11) que tornem esta igual ao coeficiente angular de (27), portanto que seja:

$$\frac{4\sigma_M T}{3K} \left[-\frac{3}{4} \left(\frac{t}{T} \right)^2 + \frac{3}{2} (2n-1) \frac{t}{T} - 3n(n-1) \right] = \frac{4\sigma_M T}{3K} \frac{1}{2}$$
 (33)

que resolvida conduz a:

$$t_s = \left[(2n-1) + \sqrt{\frac{1}{3}} \right] T e t_i = \left[(2n-1) - \sqrt{\frac{1}{3}} \right] T$$
 (34)

Substituindo estes valores em (19) obtêm-se as ordenadas genéricas correspondentes aos pontos tangentes superiores e inferiores do diagrama das extensões:

$$\varepsilon(t_s) = \frac{4\sigma_M T}{3K} \left[n - \left(\frac{1}{2} - \frac{2}{3} \sqrt{\frac{1}{3}} \right) \right] e \varepsilon(t_i) = \frac{4\sigma_M T}{3K} \left[n - \left(\frac{1}{2} + \frac{2}{3} \sqrt{\frac{1}{3}} \right) \right]$$
(35)

Estes pontos tangentes estão alinhados sobre as duas rectas paralelas:

$$\varepsilon(t_s) = \frac{4\sigma_M T}{3K} \left(\frac{1}{2} \frac{t}{T} + \frac{1}{6} \sqrt{\frac{1}{3}} \right) \text{ recta superior}$$
 (36)

$$\varepsilon(t_i) = \frac{4\sigma_M T}{3K} \left(\frac{1}{2} \frac{t}{T} - \frac{1}{6} \sqrt{\frac{1}{3}} \right) \text{ recta inferior}$$
 (37)

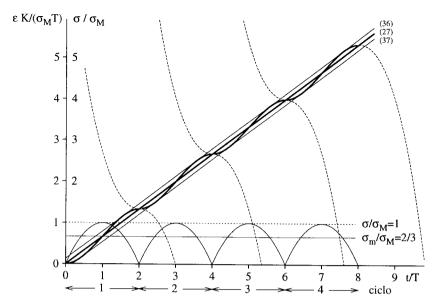


Fig. 4 - Diagramas das extensões e tensões em função de t/T.

Quadro 1 - Valores das extensões normais normalizadas - $\frac{\varepsilon K}{\sigma_M T}$

$\frac{t}{T}$	ciclo			$\frac{t}{T}$	ciclo				
	1	2	3	4	_	1	2	3	4
0	0	8.00000	-	-	5.25	-	0.45312	3.57812	4.70312
0.25	0.05729	6.18229	-	-	5.50	-	-0.70833	3.79167	4.29167
0.50	0.20833	4.70833	-	-	5.75	-	-	3.94271	4.06771
0.75	0.42188	3.54688	-	-	6.00	-	-	4.00000	4.00000
1.00	0.66667	2.66667	-	-	6.25	-	-	3.93229	4.05729
1.25	0.91146	2.03646	-	-	6.50	-	-	3.70833	4.20833
1.50	1.12500	1.62500	-	-	6.75	-		3.29688	4.42188
1.75	1.27604	1.40104	-	-	7.00	-	-	2.66667	4.66667
2.00	1.33333	1.33333	9.33333	-	7.25	-	-	1.78646	4.91146
2.25	1.26562	1.39062	7.51562	-	7.50	-	-	0.62500	5.12500
2.50	1.04167	1.54167	6.04167	-	7.75	-	-	-0.84896	5.27604
2.75	0.63021	1.75521	4.88021	-	8.00	-	-	-	5.33333
3.00	0	2.00000	4.00000	-	8.25	-	-	-	5.26562
3.25	-0.88021	2.24479	3.36979	-	8.50	-	-	-	5.04167
3.50	-	2.45833	2.95833	-	8.75	-	-	-	4.63021
3.75	-	2.60938	2.73438	-	9.00	-		-	4.00000
4.00	-	2.66667	2.66667	-	9.25	-	-	•	3.11979
4.25	-	2.59896	2.72396	8.84896	9.50	-	-	-	1.95833
4.50	-	2.37500	2.87500	7.37500	9.75	-	-	-	0.48438
4.75	-	1.96554	3.08854	6.21354	10.00	-	-	-	-1.33333
5.00	-	1.33333	3.33333	5.33333	10.25	-	-	-	-

Quadro 2 - Valores das tensões normais normalizadas a σ_M no ciclo de ordem n.

$\frac{t}{T}$;	$\frac{\sigma}{\sigma_M}$	$\frac{t}{T}$	$\frac{\sigma}{\sigma_M}$
2n	- 2	0	2n - 0.75	0.9375
2n-	1.75	0.4375	2n - 0.50	0.7500
2n-	1.50	0.7500	2n - 0.25	0.4375
2n-	1.25	0.9375	2n - 0	0
2n	- 1	1	-	-

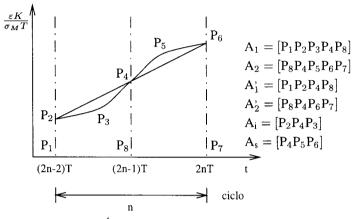


Fig. 5 - Áreas a calcular.

que se encontram representadas igualmente na Figura 4.

Prove-se agora que as áreas limitadas em cada ciclo pela curva das extensões (19) e pela recta (27) são iguais.

Por conveniência do estudo vão ser determinadas as áreas indicadas na Figura 5 respeitantes à curva das extensões (19) e da recta (27).

Depois de efectuadas as operações, obteve-se, sucessivamente, no que se refere à curva das extensões (19):

$$A_1 = \int_{(2n-2)T}^{(2n-1)T} \varepsilon(t) dt = \frac{4\sigma_M T^2}{3K} \left(n - \frac{13}{16} \right)$$
 (38)

$$A_2 = \int_{(2n-1)T}^{2nT} \varepsilon(t) dt = \frac{4\sigma_M T^2}{3K} \left(n - \frac{3}{16} \right)$$
 (39)

e no que se refere à recta (27):

$$A_1' = \frac{2\sigma_M}{3K} \int_{(2n-2)T}^{(2n-1)T} t dt = \frac{4\sigma_M T^2}{3K} \left(n - \frac{3}{4} \right)$$
 (40)

$$A_{2}^{\cdot} = \frac{2\sigma_{M}}{3K} \int_{(2n-1)T}^{2nT} t \mathrm{d}t = \frac{4\sigma_{M}T^{2}}{3K} \left(n - \frac{1}{4}\right) \tag{41}$$

A área A_c limitada no ciclo de ordem n pela curva das extensões (19) e pelo eixo dos tempos, t, será então, atendendo a (38) e (39):

$$A_c = A_1 + A_2 = \frac{4\sigma_M T^2}{3K} (2n - 1) \tag{42}$$

A área A_r limitada no ciclo de ordem n pela recta (27) e pelo eixo dos tempos, t, será então, atendendo a (40) e (41):

$$A_r = A_1' + A_2' = \frac{4\sigma_M T^2}{3K} (2n - 1) \tag{43}$$

As expressões (42) e (43) provam a igualdade das áreas pretendidas.

As áreas A_i e A_s limitadas em cada semi-período, T, do ciclo de ordem n pela curva das extensões (19) e pela recta (27) (com interesse no item 3) são dadas pelas seguintes expressões:

$$A_i = A_1 - A_1 = \frac{\sigma_M T^2}{16K} \tag{44}$$

$$A_s = A_2 - A_2 = \frac{\sigma_M T^2}{16K} \tag{45}$$

As áreas A_i e A_s são iguais e independentes da ordem n do ciclo.

Se, num dado instante, t, se retirar a tensão aplicada, o modelo de Newton, dadas as suas características de funcionamento, conservará a extensão sofrida, que servirá de extensão inicial, ε_0 , para uma nova aplicação de tensão, qualquer que seja a sua lei de variação.

3 - CASO DO SEMI-PERÍODO, T, TENDER PARA ZERO

Conservando o valor máximo da tensão parabólica cíclica, σ_M , faça-se tender o semi-período, T, para zero.

As rectas (36) e (37) paralelas à recta (27) e que enquadram a curva das extensões (19), tenderão para a recta (27) quando o semi-período, T, tender para zero, donde, de (36):

$$\lim_{T \to 0} \varepsilon(t_s) = \frac{4\sigma_M}{3K} \lim_{T \to 0} \left(\frac{1}{2}t + \frac{1}{6}\sqrt{\frac{1}{3}}T\right) = \frac{2\sigma_M}{3K}t \tag{46}$$

e de (37):

$$\lim_{T \to 0} \varepsilon(t_i) = \frac{4\sigma_M}{3K} \lim_{T \to 0} \left(\frac{1}{2}t - \frac{1}{6}\sqrt{\frac{1}{3}}T\right) = \frac{2\sigma_M}{3K}t \tag{47}$$

o que prova que as rectas (36) e (37) tendem para a recta (27).

Por outro lado, se se determinarem as extensões de (19) correspondentes aos pontos quartos (pontos P_3 e P_5 da Figura 5), do seu domínio (6), ter-se-á para os pontos quartos inferiores (pontos P_3) a abcissa genérica:

$$t = \left(2n - \frac{3}{2}\right)T\tag{48}$$

que, por substituição em (19) e efectuadas as operações adequadas conduz à extensão genérica:

$$\varepsilon \left[\left(2n - \frac{3}{2} \right) T \right] = \frac{2\sigma_M T}{3K} \left(2n - \frac{27}{16} \right) = \frac{2\sigma_M T}{3K} \left(2n - \frac{3}{2} - \frac{3}{16} \right) \tag{49}$$

Tendo em atenção (48), a expressão (49) poderá tomar a forma:

$$\varepsilon \left[\left(2n - \frac{3}{2} \right) T \right] = \frac{2\sigma_M}{3K} \left[\left(2n - \frac{3}{2} \right) T - \frac{3}{16} T \right] = \frac{2\sigma_M}{3K} \left(t - \frac{3}{16} T \right) \tag{50}$$

que, no limite, será:

$$\lim_{T \to 0} \frac{2\sigma_M}{3K} \left(t - \frac{3}{16}T \right) = \frac{2\sigma_M}{3K}t \tag{51}$$

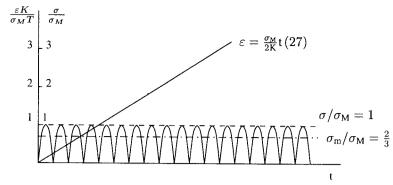


Fig. 6 - Diagrama das extensões e tensões quando o semi-período, T, tende para zero.

Para os pontos quartos superiores (pontos P_5) ter-se-á:

$$t = \left(2n - \frac{1}{2}\right)T\tag{52}$$

com raciocínio idêntico, dará, por substituição em (19) e tendo em atenção (52):

$$\varepsilon \left[\left(2n - \frac{1}{2} \right) T \right] = \frac{2\sigma_M T}{3K} \left(2n - \frac{5}{16} \right) = \frac{2\sigma_M}{3K} \left(t + \frac{3}{16} T \right) \tag{53}$$

que, no limite, será:

$$\lim_{T \to 0} \frac{2\sigma_M}{3K} \left(t + \frac{3}{16}T \right) = \frac{2\sigma_M}{3K}t \tag{54}$$

As expressões (51) e (54) provam que os pontos quartos da curva das extensões (19) tendem para a recta (27) quando o semi-período, T, tende para zero.

As áreas (44) e (45), iguais e limitadas em cada semi-período T do ciclo de ordem n pela curva das extensões (19) e a recta (27) tendem para zero com o semi-período T, donde:

$$\lim_{T \to 0} A_i = \lim_{T \to 0} A_s = \lim_{T \to 0} \frac{\sigma_M T^2}{16K} = 0 \tag{55}$$

O valor médio, σ_m , da tensão parabólica aplicada dada pela expressão (8) é independente do semi-período, T, e, portanto, o seu valor mantém-se quando T tender para zero.

Pelo que acaba de se expor, pode-se concluir que quando o semi-período T tende para zero, a família de cúbicas e a curva das extensões correspondentes degeneram e passam a coincidir com a recta (27), recta esta que define uma fluência estacionária quando lhe é aplicada uma tensão normal de valor igual ao valor médio da tensão normal σ_m da carga parabólica aplicada (Figura 6).

4 - CONCLUSÕES

A análise efectuada mostra que um material que seguisse o modelo reológico de Newton e fosse sujeito a uma tensão parabólica cíclica, sofria uma extensão, tipo ondulatório, cujos pontos de inflexão estariam alinhados sobre uma recta que passava pela origem. Esta recta correspondia à fluência estacionária do material considerado submetido a uma tensão constante igual ao valor médio da tensão parabólica aplicada.

Se se fizesse tender o semi-período da tensão parabólica cíclica para zero, a extensão ondulatória degeneraria na recta definida pelos seus pontos de inflexão.

Se num dado instante se retirasse a tensão parabólica cíclica aplicada, o material conservaria a extensão sofrida até então.

A aplicação prática deste estudo está limitada à existência de materiais cujo comportamento reológico se aproxime do modelo de Newton, isto é, que tenham um comportamento quase viscoso perfeito. Serve, sobretudo, para o estudo de outros modelos reológicos que contenham o modelo de Newton na sua constituição, como sejam, por exemplo, os modelos reológicos de Maxwell, Kelvin, Kelvin generalizado ou Nakamura e Burger's.

AGRADECIMENTOS

Agradece-se penhorado a valiosa colaboração do Professor Nuno Guerra do Departamento de Engenharia Civil do Instituto Superior Técnico, sem a qual não teria sido possível esta publicação.

REFERÊNCIAS BIBLIOGRÁFICAS

Peres Rodrigues, F. (1990). *Modelo reológico de Newton sujeito a uma tensão linear cíclica*. Geotecnia, Revista da Sociedade Portuguesa de Geotecnia, 60, páginas 27–36.

Peres Rodrigues, F. (1995). Modelo reológico de Newton submetido a uma tensão linear cíclica. Casos particulares. Em 50 Congresso Nacional de Geotecnia, volume 2, páginas 143–151, Coimbra.

Rocha, M. (1981). Mecânica das Rochas. Laboratório Nacional de Engenharia Civil, Lisboa.