NOVOS DESENVOLVIMENTOS NA INTERPRETAÇÃO DE RESULTADOS DE ENSAIOS DE CAMPO DE MOLINETE*

New developments on the interpretation of in situ vane test data

M.R. CARVALHO**
F.M. SALGADO**

RESUMO: Neste artigo propõem-se um método que permite determinar os parâmetros característicos de tensão-deformação, incluindo o módulo de corte (G), a partir de resultados dos ensaios de molinetes. Nesse sentido analisaram-se mais de 200 ensaios de molinetes, que se realizaram nos solos argilosos da Azambuja. Os resultados obtidos mostram que se devem corrigir os dados de campo em função da rigidez da roda da cabeça do molinete e que é necessário alterar os métodos de ensaio aplicados correntemente de modo a possibilitar a determinação dos parâmetros característicos de tensão-deformação. Numa primeira abordagem apresenta-se uma comparação entre os parâmetros obtidos a partir dos resultados dos ensaios de molinetes e os parâmetros correspondentes obtidos em ensaios de laboratório, triaxiais e de corte simples (que se realizaram em amostras não perturbadas, recolhidas nos depósitos lodosos). Subsequentemente usaram-se esses parâmetros em análises de elementos finitos (EF) para simular o ensaio de molinete (com simulações bidimensionais, 2D, e tridimensionais, 3D) e a rotação das formações lodosas de fundação (apenas com simulação 2D) que ocorreu durante a construção de um aterro na Azambuja.

SYNOPSES: In this paper a method is proposed to estimate stress-strain parameters, including the shear modulus, G, from in situ vane test data. The field data of more than two hundred (200) tests carried out in the soft, sensitive clay deposits of Azambuja, are analyzed. The assessment of the results show that the field data have to be corrected to take into account the stiffness of the vane’s spring and that the current procedures of the test need to be changed in order to estimate meaningful stress-strain parameters. The stress-strain parameters obtained from the vane tests are first compared with the correspondent parameters obtained from triaxial and simple shear tests that were carried out on undisturbed samples retrieved from the same soft clay deposits. Secondly these parameters are used with a two-dimensional (2D) and three dimensional (3D) finite element analysis to simulate the vane test itself and with 2D finite element analysis to simulate the foundation failure that occurred in the soft clay deposit at Azambuja during an embankment construction.

1 - INTRODUÇÃO

A Rede Ferroviária Nacional, EP (REFER) solicitou ao Laboratório Nacional de Engenharia Civil (LNEC) a sua colaboração no sentido de determinar a ou as razões que estiveram na origem da rotação da fundação (que ocorreu em 1994) dos solos moles e frágeis, das formações lodosas da Azambuja, que se verificou durante a construção do encontro Sul de uma Passagem Superior (P.S.). Nesse sentido, realizaram-se cerca de 240 ensaios de molinetes tendo como objectivo avaliar a...

** Assistentes de Investigação do Laboratório Nacional de Engenharia Civil
*** Investigador Principal do Laboratório Nacional de Engenharia Civil

Geotecnia nº 86 – Jul. 99
grandeza da resistência não drenada das formações lodosas. Os ensaios executaram-se em conformidade com a metodologia recomendada pelas normas Europeias.

Durante os ensaios registaram-se os valores do momento torçar, \(M \), aplicado na cabeça do molinetê e a rotação, \(\theta \), correspondente ao movimento das pás do molinetê. A análise detalhada dos resultados destes ensaios permite concluir que a relação entre \(M \) e \(\theta \) não é linear, e que se desenvolve de uma forma hiperbólica. Este assunto foi analisado e exposto por Carvalho (1997), que apresenta um método de avaliação dos parâmetros característicos de tensão-deforcação a partir dos resultados dos ensaios de molinetê, para posteriormente aplicar em análises de EF. Visando esta aplicação modificaram-se alguns dos procedimentos de execução dos ensaios de molinetê. Até aquela data apenas se avaliava, a partir destes ensaios, a grandeza da resistência não drenada e a fragilidade dos solos. Pelo facto pode considerar-se que se avançou um passo em frente na interpretação dos resultados dos ensaios de molinetê. Neste artigo apresenta-se um extracto do trabalho realizado por Carvalho (1997) nesse sentido.

2 - MOLINETÊ

Em muitos casos de obra, como o da Azambuja, é necessário conhecer a resistência não drenada das formações, bem como a respectiva fragilidade. O valor destas grandezas pode ser radicalmente alterado pelo processo de furação, amostragem e/ou manuseamento (nomeadamente em laboratório) das amostras. Desto modo, desenvolveram-se diversas ferramentas que permitem efectuar medições \textit{in situ}, não perturbadas e/ou remodeladas, das grandezas mencionadas. Destas ferramentas a mais versátil e correntemente utilizada é o molinetê, desenvolvido por Carlson (1948) e Cadling e Odenstad (1950).

2.1 – Metodologia corrente de execução dos ensaios

2.1.1 – Geometria, superfície de rotação e estimativa da resistência de corte

A geometria mais simples do molinetê consiste em 4 pás rectangulares, formando 90º entre elas, ligadas de uma forma rígida e permanente a uma haste metálica (Figura 1). As formações de solos molhados permitem a cravação do molinetê no terreno sem grandes perturbações no material a ensaiar. O ensaio consiste na medição do momento torçar que é necessário aplicar para conseguir rolar o molinetê com uma velocidade constante permitindo avaliar a resistência ao corte não drenada. A eq. (1) permite o cálculo da resistência ao corte não drenada, \(\tau \) (também aqui designada por \(C_e \)). Para este cálculo devem-se considerar as dimensões do molinetê (altura, \(H \), e diâmetro, \(D \)) e o momento torçar (\(M \)) aplicado. Parte-se do pressuposto de que durante o ensaio a resistência do solo é totalmente mobilizada, de uma forma constante e uniforme, e que o solo rompe segundo uma superfície de rotação cilíndrica (Figura 1) delimitada pelas pás do molinetê e por dois planos horizontais situados no topo e na base do molinetê.

\[
\tau = \frac{M}{\pi D^2(H/2+D/6)} \tag{1}
\]

Ambas as normas referidas, Americana e Europeia, recomendam que \(D=1/2H \), assim da eq.(1) \(\tau = 6M/7\pi D^3 \). O Eurocódigo recomenda que os diâmetros máximo e mínimo devem situar-se,
respectivamente, entre 100 e 40 mm. Como pode verificar-se, no Quadro 1, as geometrias recomendadas pela ASTM situam-se nesse intervalo de valores.

![Diagrama](image)

Figura 1 - Superfície de rotação assumida: superfície cilíndrica.

<table>
<thead>
<tr>
<th>Diâmetro D (mm)</th>
<th>Altura H (mm)</th>
<th>H/D</th>
<th>Dimensões</th>
</tr>
</thead>
<tbody>
<tr>
<td>38,1</td>
<td>76,2</td>
<td>2</td>
<td>AX</td>
</tr>
<tr>
<td>50,8</td>
<td>101,6</td>
<td>2</td>
<td>BX</td>
</tr>
<tr>
<td>63,5</td>
<td>127,0</td>
<td>2</td>
<td>NX</td>
</tr>
<tr>
<td>92,1</td>
<td>184,1</td>
<td>2</td>
<td>101,6</td>
</tr>
</tbody>
</table>

2.1.2 – Velocidade do ensaio

A velocidade do ensaio de molinetes deve ser constante e de modo a que a rotação do solo ocorra em condições não drenadas. A norma ASTM recomenda velocidades inferiores a 0,1%/s, o Eurocódigo recomenda que a velocidade seja situada num intervalo de 0,1 a 0,2%/s (6º a 12º por minuto). Geralmente a rotação do solo ocorre ao fim de 2 a 5 minutos de ensaio, exceto no caso dos solos moles em que o tempo de rotação pode cair-se entre os 10 e os 15 minutos. Assim, a norma ASTM recomenda que em solos mais ríos, em que a rotação ocorre para pequenas deformações, se reduza a velocidade angular, dos deslocamentos, para que as propriedades obtidas sejam representativas do comportamento dos solos.

2.1.3 - Registos de ensaio

Ambas as normas mencionadas, a Europeia e Americana, recomendam que se registre durante a execução do ensaio a rotação do molinete e o momento torçor correspondente, de modo a possibilitar a obtenção das características de tensão-deformação dos solos. O Eurocódigo recomenda ainda o recurso a registos automáticos e contínuos. A norma ASTM recomenda um intervalo de registos de cerca de 15 seg., ou menor se tal for possível.

2.1.4 - Determinação da resistência de corte e da fragilidade dos solos

Ambas as normas referidas recomendam métodos similares para avaliação dos valores máximos e residuais da resistência de corte não drenada.
O valor máximo da resistência ao corte, τ_{\max}, de um solo determina-se, recorrendo à eq. (1), considerando o valor máximo de M medido durante o ensaio. Depois de ser ter verificado a rotação (e após o registo do valor máximo de M) deve rodar-se rapidamente o molinete (no mínimo 10 voltas completas) de modo a que o solo fique remoldado na superfície de rotação. Realiza-se novamente o ensaio e registra-se o valor de M; com este valor calcula-se, novamente a partir da eq. (1), o valor remoldado da resistência, τ_{rem}. A fragilidade (S) do solo é a razão entre τ_{\max} e τ_{rem}.

O Eurocódigo recomenda que, para se obter o valor da resistência não drenada de projecto, se corrija o valor obtido a partir dos ensaios de molinete com o factor de correção, μ, em função dos limites de liquidez (LL), de plasticidade (LP) ou ainda em função da tensão efectiva. As retro-análises efectuadas por Carvalho (1997) indicaram que $\mu=0.9$ (tal como se indica na figura 2), para o caso particular dos solos da fundação da P.S. da Azambuja.

![Figura 2 - Curva de Bjerrum, considerando o caso referente à P.S. da Azambuja.](image)

2.1.5 - Determinação dos parâmetros característicos de tensão-deformação a partir do ensaio de molinete

As normas Europeia e Americana pronunciam-se acerca da importância do registo da rotação do molinete em função do valor do momento torção do ensaio, de modo a permitir a obtenção das características de tensão-deformação dos solos. No entanto, nenhuma das duas normas propõem métodos que permitam a determinação da grandeza desses características a partir dos resultados destes ensaios.

2.2 - Proposta de novos métodos de ensaio

2.2.1 - Introdução

Pretendendo analisar a origem da rotação dos solos de fundação lodosos, meles e frágis, ocorrida em 1994 na Azambuja durante a construção de um dos aterros dos encontros de uma P.S., realizaram-se cerca de 240 ensaios in situ de molinete (Figuras 3 e 4), com o objectivo de avaliar a grandeza dos valores característicos da resistência desses solos. No Quadro 2 apresenta-se o tipo de formações, bem como a sua profundidade e possaça, que caracterizam o perfil geológico da zona. A análise detalhada, efectuada por Carvalho (1997), dos resultados de campo (Figura 5) permitiu concluir que o desenvolvimento da resistência não drenada, C_{ns}, durante o ensaio não é linear, e que
apresentava um desenvolvimento com forma hiperbólica. Com base nesta conclusão, propôs-se a aplicação da fórmula hiperbólica para interpretar o comportamento apresentado pelos resultados destes ensaios, de modo a permitir a obtenção dos parâmetros de tensão-deformação para usá-los em análises de estabilidade com o método de EF. No entanto, foi necessário realizar algumas modificações na metodologia corrente dos ensaios de molinetes.

<table>
<thead>
<tr>
<th>Tipo de solo</th>
<th>Espessura (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argila arenosa</td>
<td>1,0 a 1,5</td>
</tr>
<tr>
<td>camada de topo</td>
<td>2,0</td>
</tr>
<tr>
<td>lodos</td>
<td>12,0 a 14,0</td>
</tr>
<tr>
<td>areias</td>
<td>8,0</td>
</tr>
<tr>
<td>arenitos</td>
<td>?</td>
</tr>
</tbody>
</table>

Figura 3 - Planta de localização da P.S. da Azambuja.

Figura 4 - Ensaios de molinetes realizados, a várias profundidades, nas fundações da P.S. da Azambuja.

2.2.2 - Correções para ter em conta a rigidez da mola da cabeça do molinetes e medição directa da rotação do molinetes.

O momento torcor aplicada directamente ao molinetes, o que exige uma calibração prévia da mola da cabeça do molinetes. Esta calibração realizou-se nos laboratórios do LNEC, onde se simulou o comportamento de um material rígido-plástico para vários níveis de resistência. No trabalho desenvolvido por Carvalho (1997) refere-se a necessidade de, para a obtenção da curva de tensão-deformação a partir de ensaios de campo, considerar as correções devidas à rigidez da mola da cabeça do molinetes.
Nos métodos de ensaio correntes considera-se que a rotação do molinete, na zona de rotação, é igual à da cabeça do molinete. No entanto, em laboratório simulou-se o ensaio de molinete num material rigido-plástico, segurando as pás do molinete enquanto o momento torcendo aumentava na cabeça do molinete, obtendo-se uma rotação fictícia na cabeça do molinete. Esta rotação reflete a rigidez da mola. Para entrar em linha de consideração com esta rigidez recorreu-se à seguinte metodologia:

1) Simulação do comportamento do material como rigido-plástico para diferentes níveis de resistência. Para realizar esta simulação foi necessário fixar as pás do molinete. Se um ensaio fosse efectuado num material rigido-plástico o seu comportamento real, em termos de resistência versus rotação, caracterizar-se-ia por uma rotação nula das pás até se atingir a resistência desse material, a partir da qual a rotação das pás cresceriam para infinito sob carga constante e igual à resistência do material. Seguindo este método obteve-se uma relação entre C_p e o ângulo de rotação fictícia das pás do molinete (Figura 6).

2) Correção do ângulo de rotação de acordo com o anteriormente descrito, que foi medido durante o ensaio (seguindo as metodologias correntes de ensaio).

![Figura 5 - Resultados dos ensaios de campo obtidos em 1996 no furo ST3.](image)

Com a finalidade de confirmar a necessidade introduzir a correção devido à rigidez da mola do molinete executaram-se, em 1996, ensaios adicionais nos quais se seguiram métodos diferentes dos ensaios correntes. Nestes ensaios adicionais mediu-se a rotação das hastes, que ligam a cabeça ao molinete, directamente recorrendo para tal a um sistema composto por um fio inviar ligado a um dinamômetro de alta precisão. Os resultados obtidos apresentam-se também na Figura 6. Refere-se ainda que os resultados obtidos em laboratório indicaram a existência de uma relação linear, como era de se esperar, dado que refletiam a rigidez da mola. Os dados de campo apresentam alguma dispersão, no entanto a sua média praticamente coincide com a recta obtida a partir dos resultados de laboratório. As razões que estão na base da dispersão obtida a partir dos valores de campo são basicamente duas, e são as seguintes: i) as hastes podem por vezes estar deficiência enroscadas, pelo facto os valores ficam abaixo da recta obtida em laboratório; ii) pode ocorrer uma situação de paragem temporária à carga constante, durante a qual as pás do molinete podem rodar (devido a fenômenos de fluência) sem acção externa adicional, i.e. o operador não aplicou nenhuma rotação (volta) adicional à cabeça do molinete, neste caso os valores ficam acima da recta obtida em laboratório.

Em suma propõe-se que os métodos correntes de ensaio incluam recomendações relativamente à rigidez da mola e à leitura directa da rotação das hastes, para se poderem inferir
valores representativos dos parâmetros característicos de tensão-deformação a partir dos resultados dos ensaios de moinhete.

Figura 6 - Calibração dos resultados em função da rotação da mola da cabeça do moinhete.

3 - MÉTODOS DE AVALIAÇÃO DOS PARÂMETROS CARACTERÍSTICOS DE UM SOLO

3.1 - Parâmetros de deformação

Os métodos propostos neste documento para a avaliação dos parâmetros característicos de tensão-deformação referem-se ao modelo hiperbólico modificado desenvolvido por Duncan et al., (1980). Neste modelo simula-se o comportamento não linear do solo recorrendo à aproximação do modelo com pequenos incrementos lineares, assumindo que em cada um desses incrementos o solo possui um comportamento isotrópico e linear. Considerou-se que o comportamento (em termos de tensão-deformação) é definido pela lei de Hooke usando-se os módulos tangentes seguintes: de corte, G_c e de extensão volumétrico, B_v.

Seguindo métodos similares aos desenvolvidos por Kondner e Zelasko (1963), considerou-se que, no plano de corte máximo, a relação traduzida pela eq (2) é representativa do modelo hiperbólico (Figura 7):

$$
\tau = \frac{\gamma}{G_i} + \frac{\gamma R_i}{\tau_{\text{tot}}}
$$

em que:

- τ_{tot} - tensão de corte de rotação
- $R_i = \tau_{\text{tot}} / \tau_{\alpha}$ - coeficiente de rotação
- τ - tensão máxima de corte mobilizada
- τ_{α} - valor asintótico de τ_{tot}
- γ - deformação de corte
Com base no trabalho desenvolvido por Duncan e Chang (1970) considerou-se que a eq. (3) define G_i para uma determinada condição de nível de tensão de corte ("shear stress level", SSL):

$$
G_i = G_i(1 - R_e(SSL))^2
$$

em que:

$$
SSL = (R_e(1 - \sin\phi)(\sigma_t - \sigma_s))/(2C \cos\phi + 2\sigma_3 \sin\phi)
$$

$$
G_i = K_p \sigma_t (\sigma_t / \sigma_a)^n
$$

G_i - modulo de corte inicial
K_p, n - coeficiente de distorção e modulo expoente
σ_t, σ_s - tensão principal máxima e mínima, respectivamente
C, ϕ - coesão e ângulo de atrito
σ_a - pressão atmosférica

Duncan et al. (1980) desenvolverão para o cálculo de B_i a expressão seguinte:

$$
B_i = K_p \sigma_t (\sigma_t / \sigma_a)^n
$$

em que: K_p é o coeficiente de extensão volumétrico e n o modulo expoente

Duncan e Chang (1970) e Duncan et al., (1980) desenvolveram métodos que a partir de ensaios triaxiais permitem obter parâmetros associados a G_i e B_i.

Carvalho (1997) apresenta uma metodologia que permite calcular alguns destes parâmetros, nomeadamente G_i, n e R_e a partir dos ensaios de molinetes. Neste artigo apresenta-se uma sumula dessa metodologia.

Para avaliar a grandezas dos parâmetros característicos em termos de tensão-deformação a partir de ensaios de campo de molinetes é necessário definir uma espessura efectiva (e_f) de solo, Figura 8, para poder avaliar a distorção, γ, mobilizada no ensaio para um determinado deslocamento provocado pelas pisadas molinetes, d_{ma} (eq. 7):

$$
\gamma = \frac{d_{ma}}{e_f}
$$

Figura 8 - Esquema representativo de e_f.

12
Com base em estudos paramétricos realizados por Carvalho (1997), cujos resultados se apresentam na Figura 9 (onde se consideraram diferentes valores de e_f), obteve-se uma boa aproximação dos valores de R_e e de G_i para um valor de $e_f=2a$ (sendo a o raio do molinete) a partir dos resultados dos ensaios de molinete, de corte simples e triaxiais.

Usando os resultados obtidos em 6 ensaios triaxiais (consolidados não drenados, TCU), em 2 ensaios de corte simples (não drenados, SSU) e de 9 ensaios de molinete obtiveram-se os seguintes parâmetros (Figuras 9 e 10): $R_e=0,99$; $k_p=27$ e $n=1,33$. Consideraram-se estes valores representativos dos parâmetros características do comportamento do solo em termos de tensão-deformação (Carvalho, 1997).

Figura 9 - Determinação dos parâmetros característicos de deformação a partir dos ensaios de molinete.

Figura 10 – Determinação de n e k_p.

Notas: 1) o valor de $R_e=0,99$ obteve-se a partir da figura 9 considerando $\gamma_{t=0}=C=26$ kPa (coesão não drenada dos livros superiores da Azambuja); 2) os 5 pontos assinalados na Figura 10 pelo círculo não se consideraram na determinação do valor de k_p e n dado que correspondem a areia argilosa (Carvalho 1997).

Para avaliar a grandezza do valor de k_p, assumiu-se que a relação entre o módulo de corte e o módulo de extensão volumétrico é a mesma relação que entre k_o e k_p. O valor de k_p pode determinar-se com a eq. (8):
Dado que o ensaio de molinete se realiza em condições não drenadas, o valor do coeficiente de Poisson, ν, deve ser de 0,5. No entanto, este valor dá origem a uma instabilidade numérica, pelo fato de se considerar $\varepsilon=0,0495$, obtendo-se neste caso $k_v=2650$. Em adição, considerou-se $m=0,0$ para se obter um valor constante e elevado para B_v (eq. (6)).

Com a finalidade de aferir a metodologia proposta realizaram-se algumas simulações, pelo método dos elementos finitos (MEF), dos ensaios de molinete. No ponto 4 deste artigo apresentavam-se as simulações efectuadas e analisam-se os resultados obtidos. De seguida aborda-se a questão relacionada com a determinação da resistência ao corte não drenada dos solos moles da Azambuja.

3.2 - Parâmetros de resistência

No modelo hiperbólico considera-se o critério de rotação de Mohr-Coulomb, definido em função da coesão, C, e do ângulo de atrito, ϕ. No caso em estudo considerou-se uma condição não drenada, $C=C_u$ e $\phi=\phi_u$. O valor de C_u determinou-se a partir dos valores de pico, C_{up}, obtidos a partir dos ensaios de molinete executados na Azambuja.

Os dados apresentados na Figura 11 são relativos a ensaios realizados em locais em que a sobrecarga introduzida pela construção do aterro representou um efeito nulo. Com a finalidade de simplificar os cálculos considerou-se um valor médio da coesão não drenada de $C_{up}=26$ kPa e de $C_u=39$ kPa para as camadas superior e inferior de lodos, respectivamente.

No Quadro 3 apresentam-se os parâmetros característicos usados no modelo hiperbólico. Estes parâmetros foram os usados, por Carvalho (1997) e Carvalho e Salgado (1997), nos cálculos efectuados para simulação 2D da rotação de fundação nos solos lodosos da Azambuja.

Quadro 3 - Valores característicos em termos de tensão-deformação dos solos da Azambuja

<table>
<thead>
<tr>
<th>K_t</th>
<th>n</th>
<th>K_o</th>
<th>m</th>
<th>R_t</th>
<th>C_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(未)</td>
<td>(未)</td>
<td>(未)</td>
<td>(未)</td>
<td>(未)</td>
<td>(未)</td>
</tr>
<tr>
<td>27</td>
<td>1.33</td>
<td>2650</td>
<td>0.00</td>
<td>0.86</td>
<td>26</td>
</tr>
</tbody>
</table>

4 - SIMULAÇÃO DOS ENSAIOS DE MOLINETE PELO MEF

4.1 - Introdução

A simulação do ensaio de molinetes não é de execução simples, dada a necessidade de ter que se considerar diversos factores, tais como a heterogeneidade, a não uniformidade e diversos aspectos relacionados com a anisotropia dos solos. Para a simulação dos ensaios de molinetes recorreu-se ao programa 3DSDLB (Salgado, 1990). Nas malhas de EF considerou-se 11 anéis, com 176 elementos de solo, no que se refere ao número de nós consideraram-se 177 e 354 respectivamente para as análises 2D e 3D (Figura 12). Nas análises 3D impediram-se os deslocamentos na direcção vertical simulando desta forma uma condição de deformação plana.

A questão relacionada com o desenvolvimento da não uniformidade, em termos de tensão-deformação, desenvolvida pela rotação das pás do molinetes foi estudada por Carvalho (1997). Nesse estudo considerou-se a variação da tensão-deformação com a distância radial dos elementos de solo ao molinetes. Relativamente aos aspectos relacionados com a anisotropia Carvalho (1997) apenas considerou os efeitos dos diferentes valores do coeficiente em repouso, k_0, nas condições de tensão inicial ($k_0=\sigma_{10}/\sigma_{20}$). Os resultados obtidos nas simulações efectuadas, com recurso ao MEF, indicaram que o valor inicial de k_0 afecta significativamente os resultados de resposta inicial no comportamento do solo.

Figura 12 - Malha de EF para a simulação do ensaio de molinetes.

4.2 - Soluções exactas

Um método clássico para afinar qualquer modelo analítico (matemático), relacionado com a malha de EF e com as condições de fronteira, consiste na comparação de soluções pré-definidas (soluções de forma fechada) com soluções elástico-lineares. Adicionalmente, para a mesma solução clássico-linear, realizaram-se análises 2D e 3D considerando em cada uma delas dois níveis distintos de resistência.
Com base no trabalho desenvolvido por Lamé (1852) as soluções elástico-lineares correspondentes à distribuição radial da resistência de corte (τ), da distorção (γ) e dos deslocamentos (d), podem ser obtidas do seguinte modo:

\[\tau = \tau_0 \frac{a^2}{r^2} \]

\[\gamma = \frac{\tau}{G} \quad \text{ou} \quad \gamma = \tau_0 \frac{a^2}{r^2G} \]

\[d = \frac{\gamma a^2}{2r} \quad \text{ou} \quad d = \tau_0 \frac{a^2}{2r^3G} \]

Em que: \(\tau_0 \) é a tensão de corte aplicada pelo moinhete, quando a distância radial (r) é igual ao raio (a) do moinhete.

Os resultados obtidos a partir das equações (9) a (11) e das análises de EF apresentam-se nas Figuras 13 a 15. A análise destes resultados permite concluir que existe uma boa aproximação entre os resultados obtidos nas análises 2D e 3D, efectuadas pelo MEF, e nas soluções elástico-lineares consideradas. Face aos bons resultados a malha de EF e as respectivas condições de fronteira ficaram validadas, para as análises de EF dos ensaios de moinhete de campo.

4.3 - Simulação do ensaio de moinhete

Pretendendo realizar uma verificação dos parâmetros de solo estimados a partir dos ensaios de laboratório e de campo, apresentados no quadro 3, realizar-se-ão análises de EF onde se simulou a execução destes ensaios. Para simulação dos ensaios de laboratório (triaxiais e de corte simples) recorreu-se a um elemento isoparamétrico com as condições de fronteira correspondentes a cada um dos ensaios de modo a garantir um estado de tensão e deformação uniforme no elemento. Detalhes sobre estas simulações podem encontrar-se no trabalho realizado por Carvalho (1997). Na Figura 16 apresentam-se os resultados obtidos nos ensaios de laboratório e nas respectivas simulações; é de referir que a aproximação é muito boa, tal como se pode constatar pela análise da Figura 16.

Molinete-Comparaçao das Soluções Elásticas

![Figura 13 - Resistência ao corte em função da distância ao centro do moinhete](image-url)
Figura 14 - Deformação de corte em função da distância ao centro do molinete.

Figura 15 - Deslocamentos em função da distância ao centro do molinete.

Figura 16 - Simulação dos ensaios de: a) triaxial; b) corte simples.
Os ensaios de campo de molinete foram simulados pelo MEF, com a malha apresentada na Figura 12. Os resultados obtidos na simulação apresentam-se na Figura 17, onde também se representam os limites superior e inferior dos resultados dos ensaios de campo (1992, 1994, 1995 e 1990); na mesma figura apresentam-se ainda os resultados corrigidos, devido à rigidez da mola da cabeça do molinete (correção efectuada com base nos dados apresentados na Figura 6), dos ensaios de molinete executados em 1996. É de referir que a banda de valores entre os limites representados na Figura 17 é bastante grande, o que indica que os métodos de ensaio usados em 1992, 1994 e 1995 não são os mais indicados (ou os melhores). Por outro lado os ensaios realizados em 1996 foram executados com a coordenação dos autores deste artigo e seguindo a nova metodologia de ensaio. Refere-se ainda que existe uma boa aproximação entre os resultados obtidos na análise de EF e os ensaios de molinete de 1996, o que confirma a aplicabilidade da nova metodologia de ensaios de molinete.

![Figura 17 - Representação dos valores corrigidos de campo e dos resultados de EF.](image)

5 - CONCLUSÕES

1. A possibilidade de determinar parâmetros característicos de tensão-deformação do solo a partir dos ensaios de molinete, usando os métodos de ensaio expostos neste documento, é considerado um passo em frente na interpretação dos resultados obtidos neste tipo de ensaio.

2. Para obter valores representativos é necessário considerar a correção devida à rigidez da mola da cabeça do molinete. Pelo facto, torna-se necessário calibrar o equipamento de ensaio.

3. A leitura contínua dos registos durante o ensaio de campo de molinete é muito importante pois é necessário evitar paragens a carga constante, induzida pela mola da cabeça do molinete, para poder definir a evolução da curva de tensão-deformação e avaliar a grandeza da fragilidade do solo.

4. Para o caso particular dos solos moles em análise concluiu-se que com uma espessura efectiva de ef=2a se obtém uma boa aproximação nas simulações dos ensaios de molinete. No entanto,
considera-se que é necessário proceder a novos estudos, com diferentes solos, para que se possa concluir mais sobre este assunto.

5 - É importante que se desenvolvam estudos com base em análises de EF 3D que considerem os efeitos e as contribuições da tensão de corte mobilizada nos planos horizontais situados no topo e no fundo do molinetes.

AGRADECIMENTOS

Os autores expressam os seus agradecimentos ao LNEC, à REFER e à Terceira Duarte pela sua colaboração tornando assim viável a realização deste trabalho.

BIBLIOGRAFIA

BJERRUM, L. - Embankments on soft ground. ASCE Conf. on Performance of Earth and Earth-Supported structures, Purdue University, 2, 1972.
EUROCODE 7, PART 3 - Geotechnical design assisted by field Tests. CEN/tc 25, 1995.