RESPOSTA SÍSMICA DE CAMADAS DE SOLO
POR MEIO DE UMA ABORDAGEM
ESTOCÁSTICA

Soil deposits earthquake response by means of a stochastic
approach

J.P. BILÉ SERRA
L.M.M. SARAIVA CALDEIRA

RESUMO - Apresenta-se uma abordagem estocástica para a análise da resposta de camadas de solo sob
acção sísmica moderada, o que permite a aplicação do denominado método linear equivalente. Neste
método, a não linearidade do comportamento do solo é considerada pela dependência das propriedades de
rigidez e de amortecimento relativamente à deformação de corte nominal no volume de solo em análise.
Esta abordagem desenvolve-se tradicionalmente através do denominado método de resposta complexa
numa forma mista envolvendo os domínios do tempo e da frequência. A representatividade estatística dos
resultados é garantida pela realização dum número suficiente de análises determinísticas pseudo não
lineares.

Nesta comunicação apresenta-se uma abordagem alternativa em que a acção sísmica é definida
estocasticamente. Comparam-se os resultados dum conjunto de análises determinísticas com a respectiva
contrapartida estocástica de modo a evidenciar a utilidade desta última. A modelação estatística das
respostas foi alcançada por meio da escolha criteriosa da distribuição estatística de máximos coerente
com a hipótese banal de que a evolução cronológica de qualquer grandezza envolvida constitui um
processo de banda estreita.

SYNOPSIS - The analysis of the dynamic response of soil deposits under not too severe earthquake
excitation by a stochastic approach is presented. The range of earthquake severity considered makes
the equivalent non-linear method suitable for the earthquake response analysis. In this method the soil non-
linearity is modelled through the adequate adjustment of the stiffness and damping properties as a
function of the average strain level achieved in a given soil volume. Traditionally this kind of approach is
used with the time-frequency response complex method. The required statistical significance of the
analysis makes it necessary to perform several equivalent non-linear time domain analyses.

Herein an alternative approach by means of a stochastic definition of the input excitation and of the
responses is presented. A comparison between a set of onedimensional site time analyses and their
stochastic counterpart is made. This allows to appreciate the effectiveness of the later. The statistical
modelling of the responses was achieved by a judicious choice of the exceedance statistical distribution of
probability in view of the essential hypothesis that either the input and or the responses constitute narrow
band processes.

1 - INTRODUÇÃO

A análise dinâmica de estruturas geotécnicas e de locais de fundação, em particular sob a
acção dos sismos, constitui actualmente um aspecto importante do dimensionamento estrutural
e geotécnico. Em rigor, a não linearidade do comportamento do solo obriga à realização de

* Assistente de Investigação do LNEC
** Investigadora Auxiliar do LNEC

Geotecnia nº 81 – Nov. 97 51
análises incrementais no domínio do tempo com consideração explícita do comportamento histerético.

Neste contexto a denominada análise linear equivalente tem sido usada de forma intensiva. Este tipo de análise realiza-se tradicionalmente através de formulações no domínio do tempo. A representatividade estatística dos resultados é garantida mediante a realização dum número suficiente de análises temporais e pela consideração como resultados nominais dos valores médios das respostas consideradas de interesse. Devido à variabilidade espacial das propriedades dos solos é-se forçado à realização dum número considerável de análises deste tipo tornando o estudo de grandes áreas pouco flexível dada a natureza determinística de cada análise.

Uma abordagem de natureza estatística baseada na teoria dos processos estocásticos constitui uma forma alternativa de modelar a variabilidade das respostas no tempo. Nesta abordagem, o movimento sismico em cada direcção é definido por uma função de densidade espectral de potência. Obteém-se deste modo a representatividade estatística dos resultados dum forma relativamente expedita.

Nesta comunicação, apresenta-se a formulação teórica dessa metodologia bem como a sua efectivação num programa de elementos finitos planos. Um aspecto crucial deste tipo de análise reside na escolha da distribuição estatística dos máximos das respostas, pelo que se torna importante validar os resultados obtidos por via estatística através da comparação com resultados médios de análises determinísticas. Tal comparação é aqui efectuada no âmbito dum resposta de "free-field" numa análise sismica de sítio.

2 - MÉTODO LINEAR EQUIVALENTE

No denominado método linear equivalente a não linearidade do solo é tida em consideração pela dependência dos parâmetros de rigidez secante elástica de corte e de amortecimento histerético relativamente à deformação de corte. O processo iterativo de resolução consiste na realização sucessiva de análises respetivas à totalidade do intervalo de tempo de análise, ou seja, correspondendo cada uma à resolução dum problema linear de equilíbrio dinâmico. No final de cada análise as propriedades acima referidas são compatibilizadas com o nível nominal de deformação de corte alcançado. Considera-se atingida a convergência do processo iterativo quando as propriedades iteradas correspondentes a dois cálculos sucessivos se encontram suficientemente próximas. De modo a salvaguardar a representatividade estatística dos resultados torna-se necessário proceder a várias análises pseudo-não lineares, cada uma das quais correspondendo a uma história de movimento, definido, por exemplo, por um acelerograma. A média entre os valores de cada resposta obtidos para diversos cálculos é tomada como o valor representativo da resposta em apreciação.

Após a discretização espacial pelo método dos elementos finitos do problema de equilíbrio dinâmico linear com amortecimento de natureza histerética, obtém-se a equação:

\[M\ddot q(t) + (iC + K)q(t) = -M\ddot q_{r}(t) \]

(1)

Nesta equação \(M \), \(C \) e \(K \) representam, respectivamente, as matrizes de massa, de amortecimento histerético linear e de rigidez correspondentes aos graus de liberdade considerados na discretização. Por sua vez, os vectores \(\ddot q(t) \) e \(q(t) \) significam, respectivamente, as acelerações impostas na fronteira aos graus de liberdade e as respostas expressas em termos de deslocamentos relativos a \(q_{r}(t) \). A equação equivalente a (1) no domínio da frequência escreve-se na forma
\[(-\omega^2 M + iC + K)q(\omega) = -M\ddot{q}(\omega) \]

(2)

Esta equação corresponde ao denominado método de resposta complexa. Nela, os vetores \(\ddot{q}(\omega) \) e \(q(\omega) \) representam as transformadas de Fourier dos vetores \(\ddot{q}(t) \) e \(q(t) \). A matriz de amortecimento \(C \) resulta do processo de espalhamento topológico próprio do método dos elementos finitos das matrizes elementares de amortecimento \(C^e \):

\[C^e = 2\beta^e K^e \]

(3)

O coeficiente \(\beta^e \) significa a fração do amortecimento crítico histerético, isto é, o coeficiente de amortecimento histerético.

Apesar de, através do método iterativo acima descrito, ser possível simular alguns aspectos do comportamento não linear do material, a utilização do método linear equivalente introduz uma limitação importante resultante do seu caráter elástico: não possibilita a determinação de deformações residuais. Por tal motivo no contexto da análise de liquefação (Seed et al., 1975) introduziram o conceito de número equivalente de ciclos uniformes para converter histórias irregulares de tensão num conjunto de ciclos sinusoidais de efeito equivalente. O número equivalente de ciclos uniformes é calculado em duas fases:

(i) determinação do número de picos instantâneos da história de tensão de corte entre dois níveis pré-determinados - por exemplo entre múltiplos de 5% do valor máximo do módulo da tensão de corte;

(ii) conversão da história irregular de tensão num número equivalente de ciclos uniformes correspondentes a 65% desse valor máximo, através dum curva de ponderação proposta no trabalho citado.

3 - ABORDAGEM ESTOCÁSTICA

Admitem-se como hipóteses de base que o movimento excitador, bem como as respostas dinâmicas, são processos de banda estreita, possuam caráter gaussiano e estacionário. As duas últimas hipóteses permitem que a variabilidade temporal de qualquer variável seja representada pelo respectiva função de densidade espectral de potência. A função de densidade espectral de potência da aceleração de entrada é designada por \(S_{\alpha\alpha}(\omega) \). Por sua vez, a função de densidade de uma resposta, designada genericamente por \(r \), será representada por \(S_{\alpha r}(\omega) \).

De acordo com a teoria dos processos estocásticos designando por \(H_{\alpha\alpha} \) a função de transformação complexa entre o movimento excitador e a resposta \(r \) tem-se a seguinte relação entre \(S_{\alpha\alpha}(\omega) \) e \(S_{\alpha r}(\omega) \):

\[S_{\alpha r}(\omega) = H_{\alpha\alpha}^* S_{\alpha\alpha} H_{\alpha r}^T \]

(4)

Dada a hipótese sobre a largura de banda dos processos envolvidos é utilizada a distribuição assintótica de Cramér para estimar o valor de pico da resposta \(r \) a partir dos momentos espectrais de ordem 0 e 2 da função de densidade espectral de potência \(S_{\alpha r}(\omega) \), respectivamente, \(\lambda_1 \) e \(\lambda_2 \), definidos pelas equações
\[\lambda_0 = \int_0^\infty S_\mu(\omega) \, d\omega \]

\[\lambda_2 = \int_0^\infty \omega^2 S_\mu(\omega) \, d\omega \]

(5a)

(5b)

A distribuição assintótica de Crâmer do maior máximo instantâneo \(u \) da resposta \(r \) durante um intervalo de tempo de duração \(T \) é dada por

\[F_u(u) = \exp \left[-\frac{T}{2\pi \sqrt{\lambda_0}} \exp \left(-\frac{u^2}{2\lambda_0} \right) \right] \]

(6)

O percentil de ordem 100\(p \) da resposta é assim dado por

\[u_p = \sqrt{2\lambda_0} \left(\ln \left(\frac{T}{2\pi \sqrt{\lambda_0}} \right) - \ln(-\ln p) \right) \]

(7)

Nesta distribuição o valor médio é próximo do valor mediano - obtido fazendo \(p = 1/2 \) na equação (7). Por sua vez o número médio de passagens ascendentes, isto é com declive positivo, pelo valor \(u \) da resposta \(r \) é, no âmbito da distribuição assintótica de Crâmer, expresso pela equação:

\[E[n^*_u] = \frac{T}{2\pi \sqrt{\lambda_0}} \exp \left(-\frac{u^2}{2\lambda_0} \right) \]

(8)

Esta equação permite estimar o número equivalente de ciclos uniformes (Seed et al., 1975) mediante a determinação do número de picos da resposta em tensão de corte situados entre os valores \(r_1 \) e \(r_2 \).

Designando por \(r \) a fração do valor máximo da resposta \(r_{\text{max}} \) correspondente a um dado valor \(u \), isto é, \(r = \frac{r}{r_{\text{max}}} \), tem-se que o número esperado do número de passagens ascendentes por \(r = \frac{r}{r_{\text{max}}} \), \(E[n^*_{r_{\text{max}}}] \) é, de acordo com a equação (8)

\[E[n^*_{r_{\text{max}}}] = \frac{T}{2\pi \sqrt{\lambda_0}} \exp \left(-\frac{(\frac{r}{r_{\text{max}}})^2}{2\lambda_0} \right) \]

A diferença entre o número esperado de passagens ascendentes por dois valores da resposta \(r \), \(r_1 \) e \(r_2 \), permite estimar o número de máximos instantâneos situados entre as frações \(r_1 \) e \(r_2 \):

\[n_{r_1/r_2} = E[n^*_{r_1/r_{\text{max}}}] - E[n^*_{r_2/r_{\text{max}}}] \]

(9)

54
O valor médio assim obtido constitui a contrapartida estocástica da operação de contagem de picos instantâneos na resposta determinística temporal entre os níveis f_1 e f_{max} descrita em (Seed et al., 1975).

Na aplicação destes procedimentos a um programa de elementos finitos optou-se por elaborar uma versão estocástica do programa DINAPLANO (Serra e Caldeira, 1996). Neste programa a resolução do equilíbrio dinâmico plano é efectuada no espaço de coordenadas modais correspondentes a um número reduzido e pré-determinado de configurações modais.

4 - EXEMPLO DE APLICAÇÃO

De modo a ilustrar a utilidade do método acima descrito, apresenta-se a aplicação do programa DINAPLANO na análise sísmica dum local real com estratificação horizontal a sub-horizontal. Procede-se à comparação entre os resultados médios calculados entre diversas análises determinísticas - realizadas tradicionalmente no domínio do tempo com consideração dum acelerograma imposto na base do modelo - e os resultados correspondentes dum única análise estocástica.

4.1 - Descrição do local e do modelo de elementos finitos utilizado

A sequência estratigráfica do local resulta da deposição aluvionar de areias com granulometria extensa ou granulometria grosseira. A descrição dos materiais constituintes dos diversos estratos, bem como as respectivas profundidades e as constantes assumidas para o modelo são apresentadas na Tabela 1. Nesta Tabela, os números entre parêntesis representam a chave interpretativa das curvas de degradação do módulo de distorção elástico secante e do coeficiente de amortecimento histerésico linear em função da deformação nominal de corte. Estas curvas são, por sua vez, representadas na Figura 1.

Tabela 1 - Parâmetros constitutivos dos materiais dos diversos estratos

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa volêmica (kg/m³)</th>
<th>G_{max} (MPa)</th>
<th>Coeficiente de Poisson</th>
<th>Profundidade (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areia grossa</td>
<td>2000</td>
<td>56</td>
<td>0.32</td>
<td>0-9</td>
</tr>
<tr>
<td>Areia grossa</td>
<td>2000</td>
<td>87</td>
<td>0.32</td>
<td>9-19</td>
</tr>
<tr>
<td>Areia (3)</td>
<td>2000</td>
<td>111</td>
<td>0.32</td>
<td>19-29</td>
</tr>
<tr>
<td>Areia (4)</td>
<td>2000</td>
<td>136</td>
<td>0.38</td>
<td>29-35</td>
</tr>
<tr>
<td>Semi-espaço</td>
<td>2200</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

O modelo de elementos finitos consta de vinte e dois elementos isoparamétricos de 8 nós formando uma coluna entre o sub-estrato rochoso e a superfície, sendo nove elementos considerados até uma profundidade de 9 m e os restantes utilizados para modelar o remanescente das formações aluvionares até ao contacto com o sub-estrato rochoso.

Com exceção do elemento mais profundo - correspondente ao contacto com o sub-estrato rochoso - as condições de fronteira nos nós exteriores de cada elemento correspondem ao

55
impedimento de movimento na direção vertical. Por sua vez, nos nós de contacto com o subestrato rochoso é imposta uma condição de fronteira consistente (Schunab et al., 1972) a qual toma em consideração a dissipação energética por efeito radiativo no semi-espaco. Na formulação do processo de radiação de natureza viscosa no semi-espaco considerou-se um coeficiente de amortecimento de 10%.

Figura 1 - Curvas de degradação da razão adimensional \(G/G_{\text{max}} \) e do coeficiente de amortecimento histerético \(\beta \) em função da amplitude da deformação cíclica \(\gamma \).

4.2 - Excitação sísmica

O movimento sísmico considerado consta de aceleração horizontal imposta no contacto alvulino-subestrato rochoso definida pela função de densidade espectral apresentada na Figura 2. Foram gerados três acelerogramas estocionários com duração de 30 s através da sobreposição de sequências harmônicas de fase aleatória com distribuição uniforme. Para cada acelerograma foi estimado o respectivo espectro de potência coerente através do estimador proposto por Newland, (1985).

As amplitudes das harmônicas foram ajustadas iterativamente de modo a obter concordância entre o espectro de resposta do acelerograma e o espectro de resposta definido a partir do espectro de potência. Assinala-se a boa aproximação entre o espectro de potência definidor do movimento e o espectro de potência correspondente à média quadrática do espectro de Fourier de amplitudes de cada acelerograma.
Figura 2- Movimento excitador horizontal: comparação entre a densidade espectral de potência e a correspondente estimativa baseada na média quadrática das transformadas de Fourier dos acelerogramas artificiais.

4.3 - Comparações das respostas obtidas através de dois métodos

A eficiência do procedimento estocástico é avaliada pela comparação entre a média de cada resposta nos diversos cálculos determinísticos e a correspondente resposta obtida no cálculo estocástico.

O processo iterativo desenvolveu-se até que a diferença entre os parâmetros constitutivos \(\alpha \) e \(\beta \) atribuídos aos diversos elementos não excedesse 5%. Para a obtenção desta aproximação foram suficientes quatro iterações. A natureza iterativa da resolução potencia que pequenas discrepâncias entre o valor duma característica intermediária no cálculo estocástico ou no cálculo determinístico sejam ampliadas ao longo das sucessivas correções. Deste modo, a boa concordância geral entre os resultados médios determinísticos e os estocásticos obtidos na última iteração reflecte a adequabilidade da abordagem estocástica enquanto alternativa para a abordagem determinística. A comparação referida é efectuada de seguida relativamente a diversos aspectos considerados como parâmetros do modelo bem como relativamente a respostas dinâmicas do modelo.

4.3.1-Perfis do módulo de distorção secante \(G \) e do coeficiente de amortecimento histerético \(\beta \)

Este aspecto é crucial na comparação efectuada, dado que na ausência de boa aproximação entre os dois tipos de modelos da rigidez e do amortecimento após convergência, qualquer comparação posterior seria desprovida de significado. Na Figura 3 representam-se os perfis em profundidade de \(G \) e de \(\beta \) correspondentes à obtenção de convergência. Registra-se a descontinuidade introduzida pela transição entre estratos sucessivos como referido na Tabela 1.
Figura 3 - Comparação entre perfis de G e de β obtidos após convergência nas análises determinísticas - perfil médio entre cálculos - e estocástica.

4.3.2 - Frequências próprias condicionantes

Na resolução do problema no espaço modal consideraram-se dez modos de vibração. Como seria de antevéer face aos resultados apresentados na Figura 3 as frequências próprias e os factores de participação modal associados aos modos predominantes são idênticos (cf. Figura 4).

Figura 4 - Modelo de elementos finitos: comparação entre frequências próprias e factores de participação modal após convergência de propriedades.
4.3.3 - Acelerações máximas

Na Figura 5 representam-se os perfis de aceleração máxima. Constata-se uma boa aproximação entre os dois conjuntos de resultados. A diferença máxima ocorre na transição entre o substrato rochoso e a alvaião, não excedendo 10%. É de realçar que devido à consideração da condição de fronteira consistente deu-se uma redução aproximada na amplitude do movimento excitador de 13% e de 24%, respectivamente, na média das acelerogramas e na amplitude estimada do movimento definido estocasticamente.

4.3.4 - Movimento superficial

A comparação das respostas superficiais é efectuada através de espectros de potência e de espectros de resposta. No que respeita à análise estocástica as respostas são directamente caracterizáveis pela respectiva densidade espectral de potência. Por sua vez, com base numa análise determinística, é somente possível obter uma estimativa da densidade espectral de potência compatível com a variação da resposta em apreço no tempo. A estimativa da função de densidade espectral de potência compatível com cada acelerograma é efectuada por recurso ao estimador atrás referido (Newland, 1985).

A Figura 6 da comparação entre as funções densidade espectral de potência assim obtidas.

Figura 5 - Perfil de aceleração horizontal máxima.
Figura 6 - Movimento superficial: densidade espectral de potência e estimativa da densidade espectral de potência relativa aos cálculos determinísticos.

Realça-se a boa concordância entre as duas funções, a qual se verifica igualmente no que se refere aos espectros de resposta, como se ilustra na Figura 7.

Figura 7 - Espectros de resposta de aceleração do movimento superficial: espectro médio e espectro obtido estocasticamente.

Os resultados comparados até ao momento constituem aspectos cruciais numa análise de site do ponto de vista da Engenharia Sismica. Para além destes, existem outros resultados que poderão revestir-se de interesse no âmbito da Geotecnia, mais concretamente o valor de pico da
tensão de corte - para uma avaliação da susceptibilidade de liquefação - e o número equivalente de ciclos uniformes de tensão - para estimativa de deformações residuais por recurso a ensaios cíclicos em laboratório.

4.3.5 - Perfil do valor máximo da tensão de corte

Na Figura 8 procede-se à comparação entre os perfis dos valores máximos da tensão de corte em planos horizontais obtidos através de ambas as abordagens.Constata-se uma boa concordância entre os resultados.

4.3.6 - Número equivalente de ciclos uniformes

Na Figura 9 ilustra-se a comparação entre o perfil médio entre cálculos determinísticos do número equivalente de ciclos uniformes e o correspondente perfil obtido no cálculo estocástico. É patente que este último apresenta valores ligeiramente superiores. Este desvio pode dever-se ao reduzido número de acelerogramas considerados o qual possibilita uma dispersão significativa entre os resultados determinísticos.

Figura 8 - Perfil de valores máximos de tensão de corte.

5 - CONCLUSÕES

Considera-se que a abordagem estocástica apresentada constitui uma via alternativa para a aplicação do método linear equivalente. Apresentaram-se estimativas de qualidade boa a muito boa relativamente a aspectos chave na denominada análise sísmica de sítio do ponto de vista da Engenharia Sismica e da Geotecnia. Os resultados obtidos são válidos no âmbito das hipóteses
de base referidas no texto: (i) a não linearidade do solo deverá ser de expressão reduzida, (ii) a excitação sísmica deve possuir caráter Gaussiano e apresentar estacionariedade temporal. (iii) o processo de excitação bem como os processos resposta deverão ser classificáveis como processos de banda estreita.

AGRADECIMENTOS

Agradece-se o financiamento parcial do trabalho agora apresentado através do FEDER e do programa PRAXIS XXI da JNICT.

![Diagrama](#)

Figura 9 - Número equivalente de ciclos uniformes: comparação entre o perfil médio determinístico e o perfil estocástico em profundidade.

REFERÊNCIAS BIBLIOGRÁFICAS

62