ARMAZENAMENTO EM CAVERNAS
- PROBLEMA DA INTERACÇÃO ENTRE OS
PRODUTOS ARMAZENADOS E O MACIÇO
ROCHOSONO*

Storage in Caverns — The Problem of Interaction Between
stored Products and Rock Mass

por
MANUEL ROCHA**

RESUMO — São apresentadas as interações mais relevantes entre os produtos armazenados em
cavernas e os maciços rochosos, e feita a sua apreciação, à luz das comunicações apresentadas
ao Simpósio Rockstore 77.

SYNOPSIS — The most important actions between the products stored in caverns and the rock
masses are presented and examined in the light of the papers submitted at the Rockstore 77
Symposium.

1. Um dos problemas de natureza geral que se levanta no armazenamento
subterrâneo é o da interacção entre os produtos armazenados e os maciços
rochosos. O problema foi objecto de uma das sessões do Simpósio Rockstore 77,
que teve lugar em Estocolmo, em 5-8 de Setembro de 1977. Na presente nota
são apresentados os comentários com que o autor abriu essa sessão, a que
presidiu. As comunicações que são referidas constam no Anexo 1.

As interacções mais relevantes a considerar são as seguintes:

a) As variações da temperatura do maciço rochoso, abaixo ou acima da
sua temperatura inicial, devidas à temperatura do produto armazenado;
essas variações de temperatura modificam o estado de tensão do
maciço, podendo provocar a sua rotação por tracção ou compressão

* Manuscrito recebido em Dezembro de 1979. A discussão do trabalho está aberta durante um período
de três meses.

** Presidente do Conselho Superior dos Laboratórios de Engenharia Civil. Professor de Mecânica
das Rochas, Instituto Superior Técnico.

GEOTECNIA 28
93
e podem ainda determinar o congelamento da água intersticial ou a sua vaporização;

b) Os efeitos de pressão elevada do produto armazenado, isto é, modificações do estado de tensão do maciço e das condições de percolação do fluido intersticial, em especial da água, donde pode resultar a difusão do produto no maciço e mesmo a sua saída pela superfície deste;

c) Deterioração da rocha, devida à natureza química do produto armazenado, e à sua temperatura e pressão;

d) Deterioração dos materiais do sistema de suporte do maciço rochoso, isto é, de betão projectado ou moldado e do aço de ancoragens ou combotas, devido ao produto armazenado;

e) Alteração do produto, devido à natureza química quer da rocha quer da água intersticial.

Os problemas postos pela interacção revestem-se de importância fundamental no projecto de cavernas para armazenamento. Trata-se de problemas que implicam fenómenos físicos e químicos de natureza muito complexa, a maior parte dos quais só agora começa a ser estudada — sobretudo em consequência da actual expansão do armazenamento subterrâneo — não sendo pois de estranhar que se disponha de informação muito limitada. Deve no entanto ser frizada a contribuição muito valiosa dada pelos 17 trabalhos apresentados à sessão em consideração para o progresso da compreensão desses fenómenos e para a difusão dos conhecimentos e da experiência disponíveis.

2. Do primeiro tipo de interacção referido, isto é, as variações de temperatura, começamos por considerar os problemas respeitantes ao armazenamento a baixa temperatura, o qual é tratado com maior desenvolvimento nos quatro trabalhos da autoria de Kjell Christenson, Wolfgang Dreyer, Ulf Lindblom e Urban Jacobson.

Os trabalhos permitem concluir que para o armazenamento de líquidos a baixa temperatura se dispõe hoje de tecnologia que permite soluções satisfatórias para temperaturas até cerca de −50º C, nomeadamente para o armazenamento do gás de petróleo liquefeito, a −40º C. Para temperaturas inferiores, a abertura e a extensão das fracturas do maciço acentua-se, quer das diaclases do maciço quer de fracturas de origem térmica, de tal modo que o líquido penetra mais rapidamente no maciço podendo entrar em contacto com rocha.
a temperatura que determina a sua vaporização, com consequente expansão e propagação da fractura. Deste modo se pode desenvolver um sistema de fracturas que, por um lado, permite a fuga de gás e, por outro lado, conduz a uma inaceitável taxa de vaporização, em virtude de ter sido facilitada a transmissão de calor do maciço ao líquido. É esta a explicação dada para o acidente ocorrido na Suécia com armazenamento de etileno a cerca de \(-100^\circ\) C. Para o armazenamento do gás natural líquido à temperatura de \(-162^\circ\) C, à pressão normal, prevê-se que a dificuldade se acentue, frisando vários autores a importância econômica de ser encontrada solução para o armazenamento subterrâneo deste gás.

Os trabalhos de Kjell Christensen e de Ulf Lindblom apresentam duas soluções, ainda não experimentadas, de natureza muito diferente, pois enquanto o primeiro aconselha o revestimento da caverna por isolamento térmico e ainda uma barreira ao vapor, o segundo refere investigações destinadas a desenvolver uma cortina envolvendo a caverna, constituída por material líquido que preenche as fracturas do maciço, cortina essa que separaria o líquido armazenado da zona do maciço cuja água dos poros se encontrare solidificada.

Afigura-se com muito interesse que os intervenientes nesta sessão se pronunciem sobre a seguinte questão: qual a experiência sobre o armazenamento de líquidos a temperaturas inferiores a \(-50^\circ\) C, em especial sobre as soluções usadas ou que haja a intenção de usar para resolver o problema de a fracturação do maciço?

Outra questão cuja discussão se propõe é esta: qual a geometria e outras características da fracturação que têm sido observada e qual a consequente repercussão no projecto do suporte?

O armazenamento de gases e líquidos a elevada temperatura é discutido em quatro trabalhos, da autoria de I. A. Milne, D. A. Howells, Sten Bjurstrom, e de C. F. Lee and T. W. Klym. O armazenamento de resíduos nucleares, que é objecto de uma sessão especial do Simpósio, põe problemas análogos no respeitante à elevação de temperatura imposta ao maciço rochoso.

As temperaturas elevadas determinam gradientes térmicos no maciço rochoso donde resulta estado de tensão de compressão que se sobrepõe ao estado de tensão após escavação da caverna, podendo resultar roturas da rocha por compressão e/ou escoceamentos em fracturas do maciço. Conclui-se que as tensões térmicas podem exigir severa limitação da temperatura do produto armazenado.
A previsão das tensões têrmicas levanta dois problemas: a determinação do campo de temperaturas do maciço e o cálculo do consequente campo de tensões.

Os trabalhos mostram que a determinação do campo de temperaturas mesmo em regime variável não apresenta dificuldade, uma vez conhecidos os parâmetros têrmicos. Quanto à determinação destes parâmetros, conclui-se que a condutibilidade térmica e a capacidade calorífica podem ser determinadas em laboratório mas subsiste a seguinte questão: são conhecidos de maneira satisfatória os valores do coeficiente de transferência de calor entre o líquido ou o gás armazenado e a parede da caverna?

O cálculo das tensões a partir do conhecimento das temperaturas também não levanta dificuldades quando se admite que o comportamento é elástico. Crê-se que esta hipótese é em regra amplamente satisfatória, exceto numa camada na vizinhança da parede da caverna, em virtude, por um lado, da perturbação do maciço rochoso devida à escavação e, por outro lado, à possibilidade de ocorrerem escorregamentos ao longo de fraturas desfavoravelmente orientadas. Com a finalidade de evitar a queda de material da camada conturbada é necessário executar uma obra de suporte. A espessura dessa camada crescerá com a temperatura alcançada, especialmente no caso de variação cíclica que pode originar fadiga no maciço.

Uma questão que é oportuno levantar é a seguinte: qual a experiência sobre o aumento da espessura da camada conturbada de material que pode cair devido a tensões têrmicas, dependendo esse aumento das condições de temperatura?

Como é de prever que seja reduzida a informação disponível sobre esta questão será oportuno discutir, indo ao encontro da sugestão apresentada por D.A. Howells, o interesse da realização de ensaios in situ para averiguação do comportamento dos maciços rochosos sob regimes de temperatura típicos, em especial da fadiga devida a ciclos de temperatura, assim como as técnicas a utilizar.

Também terá interesse medir os deslocamentos do maciço rochoso que ocorrem em torno das cavernas, donde a seguinte questão: qual a informação de que hoje se dispõe e quais as técnicas adequadas à medição desses deslocamentos, dadas as variações de temperatura do maciço?

No respeitante à detecção da queda de blocos afigura-se com interesse a utilização de método sísmico, tal como é proposto no trabalho de Ruben Tegholm.
Notá-se que a maior parte das considerações e questões postas relativamente a armazenamento de produtos a elevada temperatura também são aplicáveis ao caso de baixas temperaturas.

Os casos de armazenamento sob pressão tratados dizem respeito a gases sob pressão, nomeadamente ar, a gases liquefeitos, como o gás de petróleo liquefeito, a líquidos, em especial a água, superaquecida, isto é, mantidos sob pressão a temperatura superior à de ebulição.

O problema dos riscos de disseminação do produto no maciço é amplamente tratado nos trabalhos, verificando-se acordo quanto aos seguintes pontos que pela sua importância importa destacar:

- o armazenamento deve ser feito a profundidade suficientemente grande, em relação à superfície de lençol freático, de tal modo que a pressão da água intersticial ao atingir a superfície da caverna seja superior à pressão do produto armazenado, com certa margem de segurança;

- necessidade de a abertura da caverna ser executada de tal modo que o abaixamento da superfície do lençol freático não exceda certos limites, pois que uma vez verificada a drenagem de um maciço rochoso é difícil assegurar a sua posterior saturação, correndo-se o risco de o ar retido nos interstícios facilitar a posterior circulação do produto armazenado através do maciço rochoso; para garantir tal condição pode ser necessário injetar água no maciço durante a construção.

Num dos dois trabalhos de B. Aberg, os quais apresentam resultados de investigações que constituem uma notável contribuição para a compreensão dos fenômenos de percolação em torno de uma abertura, é tirada a conclusão de que para evitar a penetração de um gás nas fracturas, é necessário que na vizinhança do tecto da caverna o gradiente hidráulico no maciço rochoso seja superior à unidade, mostrando o autor que tal condição só se verificará para profundidades muito superiores às correspondentes aos critérios habituais. Por
isso, é aconselhado que durante a exploração seja injectada água sob pressão no maciço, a certa distância do tecto, com vista a ser respeitada a condição de o gradiente hidráulico ser maior do que um. Outra via referida para respeitar esta condição consiste em tratar com injeções a camada do maciço em torno da caverna, de modo a aumentar o gradiente hidráulico na camada.

Dadas as implicações da condição que se acaba de referir, afigura-se com interesse propor para debate a seguinte questão: nas cavernas em serviço nas quais o gradiente hidráulico é inferior à unidade mas em que é respeitado a condição de a pressão ser inferior à pressão intersticial tem-se verificado migração do gás para o maciço rochoso? Mesmo que não se tenha verificado, justifica-se passar a exigir esse gradiente hidráulico?

Quando não se conseguir, de maneira econômica, a estanqueidade do maciço, nomeadamente quando o lençol freático se encontrar a grande profundidade, uma solução a considerar é o revestimento da caverna com material impermeável, tal como o revestimento plástico proposto no trabalho de J. Tabary.

No armazenamento de gases liquefeitos e de líquidos superaquecidos, se a pressão da água do maciço for inferior à pressão exigida dar-se-á a vaporização do líquido armazenado e a sua difusão pelo maciço rochoso. Além disso, no caso de líquidos superaquecidos é de prever que se corra o risco de a água intersticial se vaporizar o que poderá causar grandes perturbações ao maciço. Interessa saber se Mr. S. Bjurstrom, autor do trabalho já atrás referido, analisou tal possibilidade.

No caso de armazenamento de ar em que a pressão é mantida por meio de coluna de água o ar dissolve-se na água, tanto mais que a temperatura é em regra elevada. Daí resulta, quando a pressão da água diminuir, o que é designado no trabalho de I. A. Milne e co-autores por “efeito champanhe”. Põe-se a seguinte questão: não será de considerar a solução do ar na água das fraturas do maciço, donde resultaria também um “efeito champanhe” que poderia perturbar o maciço, quando por qualquer razão diminua a pressão na caverna?

Quanto ao armazenamento de petróleo à pressão atmosférica e de um modo geral de líquidos com peso específico inferior ao da água, eles não se difundirão no maciço desde que o nível de líquido na caverna se encontre a baixo nível freático. No entanto, tal como é estudado num dos trabalhos de B. Aberg, o líquido pode penetrar no maciço até uma dada distância da superfície da caverna quando a diferença desses níveis for inferior a certo limite.
No trabalho de E. Reinius são tratados problemas respeitantes à circulação de água para cavernas à pressão atmosférica.

Quanto ao efeito da pressão da caverna no estado de tensão no maciço, ela determinará estado de tracção mas, uma vez respeitada a condição de essa pressão ser inferior à pressão da água das fraturas imposta pelo lençol freáctico, o estado de tensão de compressão do maciço compensará as tracções, a não ser que a tensão inicial horizontal do maciço seja apreciavelmente inferior à vertical. Apesar de tal não ser comum, o risco de ocorrer fratura vertical do maciço que se estenda até à superfície do terreno exige cuidada avaliação da tensão horizontal do maciço. Daqui a questão: são conhecidos casos de fraturação do maciço devido a baixo valor da tensão horizontal?

4. Uma interacção de natureza diferente das anteriormente consideradas é a que conduz à deterioração da própria rocha. Assim, variações de temperatura e de humidade podem determinar microfracturação, a qual será acentuada pela ocorrência de minerais expansivos. Também pode verificar-se acção química do produto armazenado sobre a rocha, acção que pode ser muito ampliada pela microfracturação. Dadas as severas condições de temperatura, pressão e acidez química dos produtos armazenados que reagem em muitas cavernas, é de estranhar que o problema da deterioração das rochas não tivesse sido tratado em maior número de trabalhos. Na verdade, ele é somente discutido, aliás de maneira bastante completa, no trabalho de P. Mailhê, G. Gomes and R. Perami, e referido brevemente em um ou dois outros trabalhos. Esta limitada atenção é possivelmente devida ao foco de até hoje o nível de exigência de qualidade da rocha ter sido muito elevado, mas é de esperar que progressivamente se vá procurando reduzir essa exigência.

No trabalho de Mailhê et al. são apresentados resultados com muito interesse de ensaios de choque térmico em laboratório e de reactividade perante a água, os quais mostram que a resultante microfracturação varia muito com o tipo de rocha. A conclusão que se pode tirar é a necessidade de, para cada caso, a rocha ser submetida a ensaios que simulem as condições de variação de temperatura, e eventualmente de humidade, em presença de material a armazenar. No estado actual dos conhecimentos esses ensaios não permitem um julgamento definitivo sobre a aceitabilidade de uma dada rocha mas servem pelo menos para o confronto de rochas de locais alternativos de localização da caverna. Progressivamente se irá reunindo informação sobre o comporta-
mento no laboratório e “in situ” que permitirá melhorar a previsão do comportamento.

Relativamente a este assunto interessante que os intervenientes referiram casos que conhecem de modificações físico-químicas verificadas na rocha de cavernas de armazenamento.

Quando foram atrás referidos os efeitos de temperaturas elevadas foi sugerido que fosse discutida a realização de ensaios “in situ” para averiguação da fracturação da rocha provocada por ciclos de temperatura. Esses ensaios podem ser aproveitados, como é também proposto no trabalho em consideração, para apreciação da deterioração da própria rocha.

5. Ainda outro tipo de deterioração é a dos materiais do sistema de suporte da caverna.

No respeitante a betão, projectado ou moldado, o problema é tratado desenvolvidamente no trabalho de Juri Martna. Os resultados apresentados evidenciam que temperaturas elevadas podem ter grande influência sobre a resistência do betão, conforme a natureza do cimento e de aditivos, concluindo-se ser necessário estudar cada caso.

Também se verificam por vezes condições propícias à deterioração do aço de ancoragens e cambotas.

Interessa que os intervenientes referiram casos de deterioração de suportes que conhecem.

6. Finalmente, o trabalho de S. Bjurstrom, já referido, refere o último tipo de interacção mencionado: a alteração do produto armazenado em contacto com o maciço. Nesse trabalho é discutido o problema das variações químicas de água quente resultantes da dissolução de minerais de rocha, em especial a repercussão na acção corrosiva da água sobre o equipamento da caverna e na precipitação de carbonatos e outros elementos nas tubagens. É ainda mencionada a possibilidade de trocas entre a água das fracturas do maciço e a água armazenada.
ANEXO 1

Lista das comunicações referidas
(constantes do volume 2 dos Anais do Simpósio)

ABERG, B., (Sweden) – Prevention of gas leakage from unlined reservoirs in rock, p. 399

ABERG, B., (Sweden) – Model tests on oil storage in unlined rock caverns, p. 517

BERGH-CHRISTENSEN, J., (Norway) – Geo-planning of unlined compressed-air surge chamber for 24 atmospheres working pressure, p. 431

BJURSTROM, S., (Sweden) – Transport and storage of hot water in unlined rock openings, p. 433

CHRISTENSEN, K., (Sweden) – LNG-storage in insulated rock caverns, p. 459

DREYER, W. E., (Federal Republic of Germany) – Cold and cryogenic storage of petroleum products, p. 467

HOWELLS, D. A., (England) – Effects of pressure and temperature changes in a compressed-air storage cavern, p. 481

JACOBSSON, U., (Sweden) – Storage for liquified gases in unlined, refrigerated rock caverns, p. 449

LEE, C. F. e KLYM, T. W., (Canada) – Stability of heated caverns in a high horizontal stress field, p. 441

LINDBLOM, U. E.; JANELID, I. e FORSELLES, T. af, (Sweden) – Tightness test of an underground cavern for LPG, p. 415

LINDBLOM, U. E., (Sweden) – Experimental and analytical research related to LNG storage in rock caverns, p. 478

MAILHE, P.; COMES, G. e PERAMI, R., (France) – Geological and geotechnical process for the siting of a hydro pneumatic pumped storage plant in Brittany (France), p. 495

MARTNA, J., (Sweden) – Concrete for use in rock caverns for storing water, p. 501

MILNE, I. A.; GIRAINTI, A. J. e LESSARD, R. D., (USA) – Compressed-air storage in hard rock for use in power applications, p. 423

REINHUS, E., (Sweden) – Groundwater flow to rock caverns, p. 343

TABARY, J., (France) – Monitored impermeability for petroleum storage and other underground works, p. 507

TEGRHOLM, R. V., (Sweden) – A warning system for detecting and recording loose block falls in large rock caverns for oil and water storage, p. 513