DIMENSIONAMENTO DE ESTRUTURAS TENDO EM CONTA A DEFORMABILIDADE DAS FUNDAÇÕES PELO MÉTODO DOS ELEMENTOS FINITOS

Structural Analysis Including Deformability of Foundations by Finite Elements

por
J. O. PEDRO*, J. M. CASTEL-BRANCO FALCÃO** e L. R. SOUSA***

RESUMO – Expõem-se métodos para introdução no cálculo de estruturas, pelo método dos elementos finitos, da influência da deformabilidade da fundação. Consideram-se diferentes tipos de matrizes de deformabilidade assim como comportamentos lineares e não lineares dos materiais da fundação.

Apresentam-se exemplos relativos ao estudo de sólidos tridimensionais e de fundações do tipo Winkler para estacas, pórticos e cascas.

SYNOPSIS – The general stiffness method for considering different support conditions in structures studied by the finite elements method is described. Full and Winkler’s type foundation deformability matrices are discussed, linear and non-linear behaviour of foundation materials being considered.

Some examples of Winkler’s type foundations, for piles, frames, shells and three-dimensional solids are presented.

INTRODUÇÃO

É habitual no projecto de estruturas considerá-las assentes em fundações não deformáveis. Contudo, só em alguns casos é lícito admitir tal hipótese: aqueles em que se impõem condições de simetria ou antisimetria ou quando

* Engenheiro Civil, Chefe da Divisão de Estudos Especiais do Serviço de Barragens, LNEC
** Engenheiro Civil, Chefe da Divisão de Estudos Geotécnicos Especiais do Serviço de Geotecnia, LNEC
*** Engenheiro Civil, Estagiário para Espec. da Divisão de Estudos Especiais do Serviço de Barragens, LNEC

GEOTECNIA 8
a rigidez da fundação é muito elevada, comparada com a da estrutura. Na maior parte dos casos, particularmente em grandes estruturas, tais como barragens, pontes, reservatórios e grandes edifícios, a deformabilidade das fundações deve ser tida em consideração. Na verdade, esta deformabilidade irá influenciar consideravelmente o comportamento da estrutura, especialmente no caso de fundações não homogêneas. Contudo, mesmo para as fundações homogêneas, a sua influência no comportamento das estruturas pode ser importante, quando os esforços transmitidos à fundação pelos vários elementos da estrutura variam de ponto para ponto particularmente quando diferem significativamente as deformabilidades da fundação e da estrutura.

Para ter em conta o efeito da deformabilidade da fundação na análise estrutural, podem adoptar-se dois métodos:

i) estudar em conjunto a estrutura e uma parte da fundação, criteriosamente estabelecida;

ii) estudar o comportamento da fundação sob a acção de cargas ou deslocamentos impostos no contacto estrutura-fundação e ter em conta este estudo na análise global da estrutura.

O primeiro método foi utilizado no estudo de equilíbrios planos e tridimensionais de estruturas (Zienkiewicz, 1971), (Pedro 1971), sendo, no entanto, necessário resolver problemas numéricos particularmente extensos no caso de análises tridimensionais. Assim, é desejável procurar soluções mais económicas para o problema usando o segundo método. Se se impuserem na superfície de contacto condições de equilíbrio e compatibilidade, este método é apenas outro processo de resolver o problema de conjunto. No entanto, como o estudo de fundações é em geral complexo, especialmente no caso tridimensional, adoptam-se com frequência hipóteses simplificativas do tipo Winkler.

Admite-se, geralmente, que o comportamento dos materiais é elástico linear. Para o estudo da estrutura esta hipótese é razoável. Contudo, no estudo da fundação, há que considerar muitas vezes comportamentos não lineares, resultantes da sua pequena resistência à tracção, de comportamentos plásticos e de efeitos de fluência (Falcão, 1971).

Neste trabalho, somente o segundo método será estudado. Apresenta-se uma formulação do método dos elementos finitos incluindo a deformabilidade da fundação na análise de estruturas e alguns exemplos de aplicação.
TEORIA DE APOIOS DEFORMÁVEIS

Considere-se uma estrutura dividida num conjunto de elementos interligados nos pontos nodais. Definam-se funções de deslocamento e admita-se um comportamento elástico linear para cada elemento. A matriz de rigidez, K_e, e os vetores S_e e R_e dos esforços aplicados e das reacções da fundação actuando nos elementos, podem então ser definidos. As forças nodais equivalentes às tensões num elemento E_e da estrutura e E'_e da fundação são dadas por

$$E_e = S_e + R_e - K_e U_e$$ \hspace{1cm} (1)

$$E'_e = K'_e U'_e$$ \hspace{1cm} (2)

em que K'_e representa a matriz de rigidez de um elemento da fundação e U_e e U'_e os deslocamentos da estrutura e da fundação, respectivamente.

Uma vez que para haver equilíbrio $E'_e = -R_e + \Sigma_e E_e = 0$ e que a compatibilidade implica $U_e = U'_e = U$, obtém-se a seguinte equação de equilíbrio

$$S = (K + K') U$$ \hspace{1cm} (3)

em que $S = \Sigma_e S_e$, $K = \Sigma_e K_e$ e $K' = \Sigma_e K'_e$ representam, respectivamente, a matriz das cargas aplicadas, a matriz de rigidez da estrutura e a matriz de rigidez da fundação.

Da equação (3) obtêm-se os deslocamentos e, a partir de (1) e (2), as forças nodais que permitem o cálculo das tensões em cada elemento.

Podem admitir-se dois tipos de matriz de rigidez de fundação, K':

i) Matrizes cheias, incluindo interacções de todos os pontos da superfície de contacto. Neste caso, a solução é obtida sem aproximações, no que se refere à interacção entre a estrutura e a fundação. Matrizes de rigidez de fundação cheias obtêm-se, facilmente, para vigas, placas e cascas ou estruturas tridimensionais assentes num meio espaço de material elástico, homogêneo e isotrópo sendo bem conhecidas as soluções baseadas na teoria da elasticidade (Timoshenko, 1951), (Lur'e, 1964). Mais geralmente, as matrizes de rigidez de fundação obtêm-se pela aplicação do método dos elementos finitos ao estudo da fundação, quando solicitada por forças unitárias aplicadas na superfície de contacto, e invertendo a matriz de deformabilidade obtida.

Um caso particular é o da fundação ser rígida e então os elementos diagonais de K' podem considerar-se relevantes em relação aos elementos de K e as correspondentes linhas e colunas são eliminadas.

Outro caso particular surge quando os valores dos deslocamentos U, impostos em certos pontos, não forem nulos. Então, aplicam-se na estrutura, suposta rigidamente apoiada, depois de submetida a deslocamentos U, forças $R = -KU$ e calculam-se os deslocamentos $(U-U)$. Esta solução é equivalente à duma estrutura rigidamente apoiada, solicitada por cargas iguais aos elementos diagonais de K' multiplicados pelos deslocamentos impostos.

Definindo uma relação linear $p = DXu$ entre as forças generalizadas e os deslocamentos em todos os pontos da superfície da fundação e admitindo para os elementos da fundação as mesmas funções de deslocamento $u = NUu_e$ estabelecidas para os elementos finitos da estrutura, a matriz de rigidez da fundação K_e pode escrever-se

$$K'_e = \int_A N^T D N \, dA$$

sendo a integração estendida à superfície do elemento de fundação. Uma vez que as funções de deslocamento são idênticas para a estrutura e para a fundação, obter-se-á uma solução compatível.

No caso de fundações de comportamento não linear a equação (3) pode resolver-se iterativamente, ou por um método incremental, ou ainda por combinação de ambos: (i) alterando a matriz de rigidez da fundação K' em cada iteração ou incremento; (ii) mantendo constante a matriz $(K + K')$, mas alterando a matriz de forças S por aplicação de forças ou deslocamentos na estrutura até que as condições de equilíbrio ou compatibilidade sejam, respectivamente, satisfeitas.

ALGUNS EXEMPLOS DE APLICAÇÃO

A Figura 1 representa uma estaca solicitada por uma carga horizontal, que se supõe uniformemente distribuída na sua secção transversal. O sólido de revo-
Lução formado pela estaca e pelo solo foi estudado como equilíbrio tridimensional (Rogedo e Pedro 1971).

Admitiu-se que o solo tem comportamento linear e elástico, quando solicitado à compressão, e resistência nula à tração. Para considerar a resistência à tração dividiu-se o módulo de deformabilidade do solo por 2. (Kananyan, 1968).

Na Fig. 1 apresentam-se também os deslocamentos horizontais do eixo da estaca e os diagramas de momentos flexores, calculados pelo método precedente, comparados com os obtidos pela análise clássica de viga sobre fundação de Winkler.

Para obtenção destes valores usou-se uma solução para este problema baseada na equação (4) que permite estudar vigas assentes em solos com coeficientes de reação variáveis.

A mesma estaca foi estudada como uma viga assente em fundação tipo Winkler admitindo que o solo não resiste à tração e tem comportamento não linear à compressão, utilizando um método incremental de elasticidade variável. Os coeficientes de reação iniciais, deslocamentos horizontais e verticais, momentos e forças axiais, para diversos níveis da carga estão representados na Fig. 2.

Analisou-se também utilizando o método de Winkler a estrutura porticada de uma estação de metropolitano (Fig. 3), admitindo comportamentos linear e não linear do solo. Compararam-se os valores das reações e momentos flexores obtidos por este método com os obtidos por outros métodos (Fusco e Mazilli, 1970).

A Fig. 4 mostra alguns resultados obtidos na análise, por elementos finitos de casca, de uma barragem abóbada apoiada sobre fundação elástica. Admitiu-se que eram iguais o módulo de elasticidade da rocha e do betão e utilizaram-se os coeficientes de Vogt e a técnica do rectângulo equivalente para definir a deformabilidade da fundação. Os deslocamentos na consola central e as tensões principais a montante e jusante da abóbada, que se calcularam, concordam com os valores observados em modelo (Rocha, 1965).

CONCLUSÃO

Discutem-se os métodos gerais para ter em consideração a influência da deformabilidade das fundações no dimensionamento de estruturas com especial relevo para as soluções tipo Winkler.

Consideraram-se as hipóteses de comportamentos lineares e não lineares para o solo e para a rocha.
Fig. 1 – Estaca carregada por uma carga horizontal
Fig. 2 – Estaca num solo com comportamento não linear e sem resistência à tracção
Fig. 3 — Pórtico em fundação deformável

Apresentam-se alguns exemplos respeitantes a estacas, pórticos, e cascas que mostram que os deslocamentos e tensões em estruturas elasticamente apoiadas, calculadas com soluções do tipo Winkler, são suficientemente aproximados para serem utilizados em projecto.

REFERÊNCIAS BIBLIOGRÁFICAS

Fig. 4 – Barragem arco em fundação elástica

CONSOA CENTRAL DESLOCAMENTOS RADIAIS

197[m]
175
145
105
75
40
25
0
5
10(cm)

Elementos finitos.

Modelo tridimensional (LNEC)

MALHA DE ELEMENTOS FINITOS

Fundação elástica \(E_b = E_c \) (Coeficientes de Vogt)

\(E_c \) Módulo de elasticidade do batô concrete

\(E_b \) Módulo de elasticidade da rocha rock

TENSÕES PRINCIPAIS

JUZANTE MONTANTE

model (LNEC)

50kg/cm²

Tracção

Compressão