MODELAGEM DE TRANSPORTE DE POLUENTES PARA A ÁREA DO LIXÃO DE POÇOS DE CALDAS, MINAS GERAIS (BRASIL).

Pollutant transport modelling of the urban waste disposal area, in Poços de Caldas city, State of Minas Gerais (Brazil).

Janaina Barrios Palma *
Lázaro Valentim Zuquete **

RESUMO – Este trabalho apresenta os resultados obtidos a partir de simulações numéricas, utilizando o programa VISUAL MODFLOW, para a área de lixão da cidade de Poços de Caldas, no Estado de Minas Gerais, Brasil. Considerando as características geológicas, geotécnicas, hidrogeológicas, climáticas e geométricas da área e dos tipos de fontes de poluentes, foram simulados 16 cenários, sendo que os resultados foram analisados frente aos dados obtidos por métodos geofísicos e trabalhos de campo. O cenário caracterizado por dispersividades longitudinais, razões entre dispersividade longitudinal e horizontal e razão entre dispersividade longitudinal e vertical diferentes, isotermas de adsorção de Langmuir e fonte contínua foi o que melhor compatibilidade apresentou com os dados obtidos pela geofísica e trabalhos de campo.

SYNOPSIS – This paper presents the results achieved from modelling by the VISUAL MODFLOW software for uncontrolled waste disposal area, in Poços de Caldas city, State of Minas Gerais, Southeastern of Brazil. Based on geology, geotechnics, hydrogeology, climatic characteristics, geometry of the area and pollutant source types, 16 scenarios were modelled. The results were compared with geophysical information and fieldwork data. The more compatible results are related with a scenario where different dispersivity parameters, Langmuir isotherms and continuous concentration source were considered.

1 - INTRODUÇÃO

Os resíduos oriundos de atividades antrópicas têm sido dispostos em diferentes locais, alguns selecionados após estudos geológico-geotécnicos, outros simplesmente depositados sem nenhum levantamento ou avaliação de adequabilidade. Em ambas as situações há preocupações com diversos tipos de problemas ambientais. Dentre eles, destaca-se a contaminação das águas superficiais e sub superficiais e dos materiais geológicos (rochas e materiais incoesolidados). Neste sentido, é fundamental conhecer o comportamento do fluxo de líquidos na área em termos de direção, velocidade, adsorção e outros parâmetros hidrodinâmicos, para prever as extensões que podem ser afetadas e como que intensidades.

* Deutoranda, Departamento de Geotecnia da Escola de Engenharia de São Carlos – EESC, USP. Email – janainapalma@hotmail.com.
** Professor, Departamento de Geotecnia da Escola de Engenharia de São Carlos – EESC, USP. Email – lazaru1@sc.usp.br.

Geotecnia nº 97 – Março 03 – pp. 63-86
A modelagem matemática do fluxo e do transporte de poluentes é uma ferramenta importante na gestão dos recursos hídricos. A sua utilização é relativamente recente, revelando sua importância na década de 70, com trabalhos como o de Dey & Morison (1979). Atualmente, os modelos numéricos dominam os estudos de modelagem de água subsuperficial devido, principalmente, aos grandes avanços na tecnologia computacional. O Internacional Groundwater Modelling Center do Holcomb Institute na Universidade de Butter em Indianapolis, Indiana, catalogou mais de quatrocentos modelos de fluxo e transporte de solutos, sendo, no mínimo, cem deles considerados eficientes.

Vários trabalhos analisam a validade da modelagem numérica, comparando seus resultados com valores obtidos pelas aplicações de modelos analíticos. Olihoorn (1999) estudou duas áreas distintas que fornecem água para a região de Amsterdã utilizando o programa MODFLOW e o modelo analítico MLAEM - Analytic Element Method Mutilayer, concluindo que ambas as técnicas têm suas vantagens, sendo a escolha do modelo específico estabelecida pelo objetivo do trabalho e características do local.

Boyce & Savidou (1997) realizaram simulações investigando o mecanismo de espalhamento da frente de contaminação em solos heterogêneos e os resultados laboratoriais foram comparados com os valores obtidos pelo modelo unidimensional semi-analítico POLLUTE (Rowe & Booker, 1983) e o programa bidimensional SUTRA (Voss, 1984). Os resultados foram semelhantes na maioria dos testes, tendo porém sido observados alguns valores discrepantes, atribuídos a heterogeneidades da escala e viscosidade do soluto.

Outra possibilidade de utilização da modelagem numérica é para análise de alternativas de remediação em áreas contaminadas. Sophocleous et al. (1996) aplicaram as modelagens numéricas para analisar o impacto ambiental proveniente de pequenos lixões e avaliar a instalação de medidas de mitigação, como cobertura final, sistema coletor de lixiviado (LCS) e "liner" de solo compactado, utilizando o modelo HELP (Hydrologic Evaluation of Landfill Performance Model) e o modelo MULTimed (Multimedia Exposure Assessment Model). Foram comparados os valores obtidos com a simulação de alternativas isoladas e conjuntamente, tendo os autores estimado que a instalação de LCS e a cobertura reduzem a produção de lixiviado em 56%.

O presente trabalho usa a modelagem numérica para avaliar o comportamento do fluxo e do transporte dos poluentes no Lixão do município de Poços de Caldas, no Estado de Minas Gerais, Brasil. A cidade de Poços de Caldas localiza-se na porção nordeste do Maciço Alcalino de Poços de Caldas, com uma população de 122.000 habitantes. O interesse por esta área é devido à sua localização na bacia do Rio das Antas, sendo esta uma opção de abastecimento de água para a população de Poços de Caldas em médio prazo, visto que há previsão de captação de água em diversos pontos da bacia. Atualmente, há estudos referentes ao projeto de uma barragem com eixo próximo ao local do lixão, como representado na Figura 1, onde, também, é possível observar a cota de inundação do lago. Devido às características geomorfológicas do local, o rebaixamento da cota de inundação ou a mudança da localização do eixo da barragem diminuiriam de forma considerável o volume de água represado, afetando sensivelmente a finalidade do reservatório e a sua potencialidade e, mesmo assim, aquele continuaria sujeito ao escoamento da água superficial e subsuperficial contaminada oriunda do lixão.

64
A área em questão enquadrava-se no caso das usadas para disposição de resíduos urbanos sem estudos geológicos e geotécnicos adequados, deste o ano de 1985. Em função dos estudos de viabilidade para a implantação da barragem havia necessidade, em um curto prazo, de obter um resultado que permitisse uma tomada de decisão quanto ao volume de materiais geológicos afetados pelos poluentes gerados no lixão. Desta forma, um levantamento geológico-geotécnico tradicional não seria adequado e assim foi desenvolvido um programa de investigação constituído por trabalhos de campo, sondagens com trado e ensaios geofísicos de eletroresistividade. Os trabalhos de campo e as sondagens visaram caracterizar os materiais inconsolidados e rochosos, enquanto os ensaios geofísicos de eletroresistividade foram efetuados para caracterizar a frente e as intensidades de contaminação.

Um dos primeiros trabalhos a utilizar a geofísica na análise ambiental foi o de Swartzem em 1937, que estabeleceu o limite da água salgada nas ilhas do Havai. Atualmente, as técnicas de eletroresistividade e eletromagnéticas são as mais utilizadas nos estudos de aterros sanitários devido sua característica para detectar variações no conteúdo do fluido, composição química e temperatura em subsuperfície (Elis, 1998).

Fig. 1 – Localização da área em estudo, usos e ocupações da Bacia do Rio das Antas.
2 - CARACTERÍSTICAS GERAIS DA ÁREA

2.1 - Generalidades

A área estudada tem como coordenadas geográficas de referência 46º 34' 00" de longitude Oeste e 21º 53' 00" de latitude Sul, estando situada na margem direita do córrego do Retiro dos Moinhos, a cerca de 12 km da área urbana de Poços de Caldas, próxima à rodovia que liga as cidades de Poços de Caldas e Andradina (Figura 1).

O clima da região, segundo critérios de Köppen, é do tipo Cwb, situando-se entre o grupo A, dos climas tropicais quentes, e o grupo C, dos mesotérmicos, com inverno seco e verão chuvoso. Segundo dados da prefeitura de Poços de Caldas, a precipitação média anual é de 1.700 mm e a temperatura média anual é de 18°C. A umidade relativa média anual é 76,5%, a evapotranspiração real média anual é igual a 850 mm, sendo a direção preferencial dos ventos N-NE.

Localiza-se no contexto geológico-geomorfológico do Maciço Alcalino de Poços de Caldas, na borda ocidental da Serra da Mantiqueira e em contato com os extremos orientais da Bacia Sedimentar do Paraná, formando um conjunto morfoestrutural complexo e distinto. Predomina feições de relevo como morros alongados, colinas amplas e suaves, escarpas e feições do tipo mesa. O relevo é, principalmente, resultado do abatimento da cratère vulcânica associada às condições climáticas, apresentando feições bem variadas e diversificadas quando analisadas em escalas locais.

2.2 - Substrato rochoso

As litologias que constituem a bacia hidrográfica do córrego Retiro dos Moinhos são essencialmente nefelina-sienitos e fonalitos (Figura 2).

![Mapa do substrato rochoso](image)

Fig. 2 – Mapa do substrato rochoso - posicionamento do lixão e área utilizada para a modelagem.
Os fonolitos são variados, com predominio dos egirite-fonolitos, fonolitos-porfíris e pseudoleucita-fonolitos. A textura dos fonolitos varia de afanítica a fanerítica fina ou raramente, fina a média e a coloração varia de cinza esverdeado a preto. Mineralogicamente, são constituídos por nefelina e em menor proporção por analcite e sodalite; as piroxenas ocorrem em percentagens até 20%, enquanto as anfibolas são menos frequentes.

Os nefelina-sienitos apresentam estrutura maciça, são leucocratas, constituídos predominantemente por nefelina e ortoclase, e os minerais máficos (piroxenas, biotitas e acessórios) atingem no máximo 10% do total dos minerais da rocha.

2.3 - Materiais inconsolidados

Os materiais inconsolidados encontrados na área foram classificados em quatro tipos quanto à gênese, de acordo com a proposta da Geological Society: materiais retrabalhados, reliquiares, residuais e material de aterro (Figura 3).

![Mapa de Materiais Inconsolidados](image)

Fig. 3 - Mapa de materiais inconsolidados

Os materiais retrabalhados estão associados aos talvessues dos principais canais de drenagem, sendo representados por aluvions e colúvios. O material residual é oriundo da alteração das rochas subjacentes e apresenta-se com alto grau de heterogeneidade, guardando poucas características da rocha original. Os materiais reliquiares mantém as características litológicas das rochas e podem apresentar espessura até 10 m. A camada de aterro ocorre nas áreas onde foi explorado o minério de alumínio (bauxita) até profundidades da ordem de 4 m, tendo as suas covas sido aterradas com blocos e materiais inconsolidados não aproveitados como minério ou materiais terrosos trazidos de outras áreas. A Figura 4 mostra a distribuição vertical destes materiais, no alinhamento A-B, representado na Figura 3.
Fig. 4 – Seção estratigráfica representando a distribuição vertical dos materiais inconsolidados.

2.4 - Características físico-químicas

Os ensaios realizados em amostras deformadas retiradas a cada 50 cm até à profundidade de 11 m revelaram valores de pH entre 6 e 8, da capacidade de troca catiónica inferiores a 5 cmol(+)/kg e de superfície específica menores que 50 m²/g.

2.5 - Características hidrogeológicas

Sondagens elétricas verticais (SEV), ensaios de caminhamento elétrico dipolo-dipolo e sondagens dipolares auxiliaram na elaboração do mapa de fluxo subsuperficial, na definição da espessura dos resíduos e dos materiais incondensados existentes (Elis, 1998). O mapa de fluxo subsuperficial (Figura 5) foi elaborado a partir dos dados obtidos pela geofísica e das características observadas em campo.

As SEVs definiram três camadas de resíduos, com resistividade entre 5.6 e 11.2 ohm.m, outra com resistividade entre 25 e 87 ohm.m, interpretada como solo saturado na base do aterro, e uma camada de alta resistividade (maior que 1450 ohm.m), interpretada como saprolito ou simento alterado. As sondagens dipolares indicaram que a base dos resíduos coincide com o topo da zona saturada. Os resultados dos ensaios de caminhamento elétrico na forma de mapas de resistividade aparente mostram claramente uma evolução da frente de contaminação entre dois ensaios com espaço de 850 dias.

A recarga estimada para a área é de 340 mm/ano, o que equivale a 20% da precipitação total, estando condicionada às características de condutividade hidráulica elevada do material incondensado e dos resíduos, à baixa declividade (menor que 2%) e às feições superficiais armazenadoras que impedem o escoamento superficial, aumentando o tempo de permanência das águas na superfície e, portanto, o volume infiltrado.

68
3 - CARACTERÍSTICAS DOS RESÍDUOS

Os resíduos urbanos e hospitalares gerados no município de Poços de Caldas são depositados neste local desde 1985, sendo atualmente depositadas 60 toneladas por dia de resíduos urbanos residenciais, 5 toneladas por dia de resíduos decorrentes dos serviços da saúde e 15 toneladas por dia de material proveniente das indústrias comuns e do comércio. A área ocupa 33.000 m², com volume aproximado de 250.000 m³ e espessura média de 7,5 m.

Os resíduos estão sendo recobertos por uma camada de poucos centímetros de material argiloso compactado. Porém, nenhum procedimento de controle à poluição foi instalado, como um “liner” ou um sistema coletor de lixiviado e gás. As Figuras 6 e 7 apresentam aspectos das condições do local e do talude do lixão, respectivamente.

4 - MODELAGEM NUMÉRICA

4.1 – Considerações gerais

Existem diversos programas para auxiliar no processo de modelagem numérica de fluxo e transporte de poluentes. Neste trabalho foi utilizado o modelo “USGS Modular 3D Finite Difference Groundwater Flow Model”, conhecido como MODFLOW (McDonald and Harbaugh, 1988), e o “Modular 3D Finite Difference Mass Transport Model”, designado por MT3D (Zheng, 1992). As principais vantagens observadas nestes programas são: a rapidez e a facilidade para simular diferentes cenários, após a definição do modelo conceptual; a boa interação com o usuário; a atualização constante do programa; o desenvolvimento de programas compatíveis, como o MODPATH e o WINPEST; a interface gráfica com programas como VISUALGROUNDWATER, GROUNDWATER VISTAS; a interação com programas gerais como PEST e UCODE; finalmente, a disponibilidade de ferramentas próprias para calibração, como o MODINV (Olthof, 1999; Winston, 1999).
Fig. 6 – Vista geral da área.

Fig. 7 – Detalhe do talude, podendo observar-se a proximidade dos resíduos em relação à drenagem.
A maioria dos programas admite apenas tensores de dispersão hidrodinâmica para meios porosos isotrópicos. O programa MODFLOW, objetivando considerar uma situação mais próxima da natural, utiliza os valores de dispersão na forma proposta por Burnett & Frind (1987), permitindo simular com parâmetros de dispersividades transversais, verticais e horizontais (Dxx, Dyy, Dzz, Dxy, Dxz e Dyz). Estes parâmetros são considerados no programa na forma de dispersividade longitudinal e razão entre as dispersividades longitudinal e as horizontais e verticais. Como não há dados precisos para os materiais geológicos da área, foram simuladas situações considerando valores das relações de dispersividade obtidos por relações empíricas.

A principal limitação do programa é considerar apenas o fluxo em zona saturada. No caso específico do Lixão de Poços de Caldas, a base dos resíduos está em contato direto com a zona saturada. Desta forma, o programa pode ser utilizado independentemente desta deficiência. O fluxograma da Figura 8 representa as etapas envolvidas na elaboração do modelo conceptual, sendo os resultados da modelagem apresentados na forma de mapas, gráficos e tabelas.

Fig. 8 – Fluxograma das etapas desenvolvidas no estudo de modelagem.

Para desenvolver a simulação foi admitida uma área de 1230 m de comprimento por 540 m de largura, como pode ser observado na Figura 2. Tais dimensões foram estipuladas no sentido de:

1. avaliar a extensão longitudinal atingida pela frente de contaminação;
2. na menor dimensão, evitar incluir no modelo áreas de alta declividade que afetariam os resultados, sem todavia terem real importância no fluxo dos poluentes a partir da área dos resíduos.

Para a discretização das células, inicialmente, gerou-se uma malha horizontal regular de 82 colunas por 36 linhas, gerando células de 15x15 m em planta e cuja dimensão vertical tem o o valor da espessura de cada camada; para tanto o pacote de materiais geológicos foi dividido em três camadas (Figura 9). Esta separação é função, principalmente, dos valores da condutividade hidráulica dos materiais inconsolidados, como pode ser observado na Tabela 1. O tempo adotado para a discretização temporal foi de 0 até 7300 dias (20 anos), com intervalos de 1825 dias.

71
Fig. 9 – Representação da geometria das camadas do modelo.

Tabela 1 – Camadas de materiais inconsolidados e rochosos adotadas para a modelagem.

<table>
<thead>
<tr>
<th>Dados Utilizados</th>
<th>Camadas</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Base**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais</td>
<td>Residual</td>
<td>Residual</td>
<td>Reliquiar</td>
<td>Rocha</td>
<td></td>
</tr>
<tr>
<td>Conduzividade hidráulica (m/s)</td>
<td>1,2x10⁻⁷</td>
<td>10⁻⁷</td>
<td>10⁻⁷</td>
<td>5,4x10⁻⁷</td>
<td></td>
</tr>
<tr>
<td>Porosidade total</td>
<td>0,38</td>
<td>0,36</td>
<td>0,3</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Porosidade efetiva</td>
<td>0,3</td>
<td>0,25</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Precipitação (mm/ano)</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recarga (mm/ano)</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidade de campo</td>
<td>0,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armazenabilidade (Storage)</td>
<td>0,0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentração constante (mg/l)</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso específico seco (kN/m³)</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Dados obtidos do trabalho de Carlström Filho et al. (1978).
** Dados não utilizados na modelagem.

4.2 - Calibração

Os valores utilizados na calibração foram obtidos a partir do trabalho de Eliz (1998), que apresenta a delimitação da frente de contaminação em valores de resistividade elétrica. Para correlacionar estes valores com a concentração de sólidos totais dissolvidos (TDS) foi utilizada a proposta de Meju (2000):

\[
\text{TDS} = -54.4 + 7.04 \sigma_w
\]

sendo \(\sigma_w \) a conduzividade elétrica da solução aquosa em mS/m (\(\sigma_w = 1000/\text{resistividade} \)) e o TDS em mg/l. A opção por esta expressão deriva da grande quantidade de dados utilizados como base da correlação e por considerar valores obtidos, também, em lixões localizados em território brasileiro. As Figuras 10(a) e 10(b) apresentam os valores utilizados na calibração, equivalentes aos tempos de 3650 e 4500 dias, respectivamente, e para a profundidade de 10 m.
Fig. 10 – Delimitação da frente de contaminação a partir de ensaios geofísicos para a profundidade de 10 m: (a) tempo de 3650 dias e (b) tempo de 4500 dias (Elis, 1998).

Além das informações utilizadas para a calibração, outros resultados geofísicos foram úteis para o conhecimento da geometria da pluma e a análise dos resultados das simulações, para a seleção daquelas que mais se aproximam da condição natural. Estes resultados não apresentam continuidade temporal, mas delimitam a pluma em termos espaciais, aparecendo na forma de mapas em diversas profundidades (Figura 11) e como caminhamentos longitudinais (Figura 12) e ortogonais (Figura 13).

Fig. 11 – Frente de contaminação a partir de ensaios geofísicos em diversas profundidades: (a) 10 m, (b) 20 m e (c) 30 m, para o tempo de 4380 dias (Elis, 1998).
Fig. 12 – Frente de contaminação a partir de ensaios geofísicos, perfil no sentido leste – oeste (parte tracejada da linha E-W na Figura 15) no domínio do lixão (Elis, 1998).

Fig. 13 – Frente de contaminação a partir de ensaios geofísicos, perfil no sentido norte-sul (parte tracejada da linha E-W na Figura 15) no domínio do lixão (Elis, 1998).

4.3 - Considerações sobre as condições simuladas

Os mecanismos que afetam o transporte dos poluentes são a advecção, a dispersão hidrodinâmica, a sorção, o descaimento de primeira ordem e outras reações geoquímicas específicas. Freeze & Cherry (1979) definem a advecção como o componente do movimento do poluente atribuído ao transporte pela água em movimento, onde a taxa de poluente está diretamente relacionada com a velocidade de água no meio poroso. Durante a evolução da frente de poluição a advecção tende a ser o mecanismo de transporte mais importante. A dispersão hidrodinâmica causa um espalhamento longitudinal e transversal à direção de fluxo principal, gerando uma diluição gradual da frente de poluição. O processo de sorção refere-se à relação adsorção e desorção dos solutos; e as isotermas de adsorção podem ser lineares ou não lineares (isotermas de Freundlich e Langmuir).

Neste trabalho foram testadas várias situações considerando de diferentes formas os mecanismos citados, com o objetivo de analisar as diferentes possibilidades das condições naturais. Apenas o mecanismo de advecção foi considerado igual em todas as simulações, sendo o cálculo da velocidade feito pela interpolação simples por parte proposta por Pollock (1988), que é o processo utilizado como base pelo MODFLOW.
4.4 - Definição dos cenários

Para equacionar os diferentes cenários para a simulação e obtenção das distâncias e intensidades atingidas pelas frentes de contaminação, considerou-se a área do Lixão constante (33.000 m²) e os aspectos geológico-geotécnicos seguidamente mencionados.

1. Distribuição espacial dos materiais geológicos obtida a partir de trabalhos de campo, com observações diretas e de sondagens.

2. As características físicas dos materiais geológicos que constituem cada camada (massa específica dos sólidos, porosidade efetiva, mineralologia) foram obtidas em ensaios laboratoriais utilizando amostras deformadas e indeformadas.

3. As características hidráulicas dos materiais geológicos foram obtidas a partir de ensaios "in situ" e em laboratório.

4. Características climáticas e de relação com os materiais geológicos (precipitação, evapotranspiração, recarga): o valor de precipitação adotado é o valor médio anual para a região, enquanto a evapotranspiração foi obtida a partir da equação de Penman para as condições específicas da área do lixão; os valores de recarga foram estimados a partir das condições hidráulicas da camada 1, das condições de declividade, da superfície da área e dos tipos de chuvas mais frequentes.

5. As características de dispersividade dos materiais geológicos e suas anisotropias (dispersividades longitudinais e razões transversais e verticais) foram obtidas a partir de relações entre as características espaciais dos materiais incondicionados, as extensões da área (escala) e as características geológico-geotécnicas dos diferentes materiais. Os valores adotados foram considerados a partir de ensaios laboratoriais de diferentes materiais e correlações, conforme as propostas de Burnett & Fride (1987).

6. Adotou-se um coeficiente de difusão molecular efetivo médio, obtido a partir do cálculo do coeficiente de difusão molecular para diferentes composições químicas e das características de porosidade dos materiais geológicos.

7. Características de adsorção dos diferentes materiais geológicos considerando os possíveis constituintes inorgânicos oriundos dos resíduos urbanos. Foram selecionados os íons de potássio e cádmio (K⁺ e Cd²⁺) por representarem os dois grupos mais comuns de íons, os alcalinos e os metálicos. No sentido de adotar os mecanismos de adsorção, dois aspectos gerais foram considerados, a saber:

 A – quanto a isotermas, optou-se por considerar a linear e a de Langmuir: em vista das concentrações de poluentes não serem elevadas, a isoterma linear poderia gerar resultados interessantes para a análise, e a isoterma de Langmuir por ser a que melhor representa as características de adsorção dos materiais geológicos em condições naturais;

 B – os coeficientes considerados para as isotermas foram baseados em três aspectos:

 i – gerados a partir de “Batch tests” para diferentes materiais geológicos e íons;

 ii – os valores para a isoterma de Langmuir consideraram dois grupos de poluentes inorgânicos comuns nos resíduos urbanos, os alcalinos e os metálicos; os coeficientes para o potássio e para o cádmio foram adotados como representantes dos dois grupos;

 iii – para a isoterma linear adotou-se um valor intermédio, considerando os valores extremos do potássio e do cádmio.

8. Características referentes à dinâmica da concentração de poluentes nas fontes: no sentido de prever os comportamentos dos poluentes na área, três condições básicas de fontes foram consideradas:

 A – consideração do Lixão como uma fonte de poluentes contínua e com concentração constante, mas com a carga total de poluentes a ser transportada dependendo da
interação da fonte com o meio aquoso; desta forma, a carga total percolada não está definida “a priori” sendo controlada pelas condições do meio em termos das características hidráulicas e climáticas;

B – adoção de uma fonte que condiciona um volume de líquido e uma carga pré-definida de poluentes, ou seja, a injeção de poluentes no meio aquoso é constante ao longo de um período de tempo; e neste caso relacionado a taxa de recarga a partir da pluviossidade e das condições de infiltração;

C – consideração do Lixão como fonte com concentração variável com o tempo e crescente com uma taxa pré-definida; neste caso, deve-se considerar parte das condições anteriores, a saber:

i – a concentração cresce linearmente com o tempo, mas a carga total depende da interação com o meio aquoso;

ii – a concentração cresce linearmente, mas sempre associada a um volume de líquido constante com o tempo, representado pela recarga.

Estas condições permitem definir cenários que representam a variabilidade dos materiais geológicos anisotrópicos, os parâmetros de dispersividade e de adsorção dos materiais geológicos, considerando as condições de concentrações dos poluentes. A partir destes itens, os cenários foram definidos de acordo com a sequência da Figura 14.

![Fig. 14 - Seqüência utilizada para a definição dos cenários.](image)

No total foram propostos 16 cenários visando representar três tipos de fontes, duas diferentes condições de dispersividade e duas de adsorção para três diferentes condições de composição química.

4.5 – Cenários básicos

A partir das características hidráulicas dos materiais geológicos e de pontos de calibração, foram simuladas as condições de fluxo das águas na zona saturada. A Figura 15 representa as linhas de equipotenciais em planta para a camada 1. Na Figura 16 observa-se um perfil na direção E-W, na posição central da área (posição de 325 m, representada na Figura 15), onde se observam as linhas equipotenciais e os vetores, indicando as direções de fluxo e as
magnitudes. Nota-se mudanças de magnitude em relação com as diferentes camadas de materiais geológicos, de acordo com as características hidráulicas.

Os resultados obtidos pela simulação foram comparados com os dados observados em campo e forneceram boa compatibilidade. Estes resultados foram adotados como o componente advecção para os outros cenários, associados à dispersividade e à adsorção.

Fig. 15 - Linhas equipotenciais, direções de fluxo e posições da linha base (NS) e (EW) consideradas para os perfis (parte tracejada indica local dos caminhamentos de geofísica).

Fig. 16 - Seção longitudinal subparalela ao fluxo com a magnitude de fluxo em relação às camadas 1, 2 e 3 (coincidentes com E-W).

Cenário 1 - Considerou-se fonte com concentração constante e que a carga total dos poluentes é função da interação entre a fonte e o meio aquoso, e o transporte dos poluentes por advecção e dispersividade. Os valores de dispersividade longitudinal adotados foram de 0,1 m para a primeira e segunda camada e de 0,05 m para a camada 3. A razão entre dispersividade horizontal e longitudinal considerada para as duas camadas superiores foi de 0,1 e de 0,01 para a camada 3.

Cenário 2 - Simulou-se fonte com concentrações variáveis, crescentes, em cinco níveis, conforme a Tabela 2. Admitiu-se que o transporte dos poluentes ocorre por advecção e
dispersão. Como no cenário 1, a carga total de poluentes é função da interação do meio aquoso com a fonte. Os parâmetros de dispersividade foram iguais ao cenário 1.

<table>
<thead>
<tr>
<th>Nível</th>
<th>Tempo (dias)</th>
<th>Concentração (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 – 365</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>365 – 1825</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>1825 – 3650</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>3650 – 4380</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>4380 – 7300</td>
<td>800</td>
</tr>
</tbody>
</table>

Cenário 3 - Os parâmetros de dispersividade, neste caso, buscam refletir uma heterogeneidade vertical mais acentuada do que no cenário 1. Considerou-se que o valor de dispersividade longitudinal da camada 2 é de 1 m e a razão entre as dispersividades vertical e longitudinal para a camada 3 é de 0,001.

Cenário 4 - Considerou as condições de fonte e de dispersão semelhantes às do cenário 1, porém foram acrescentadas as condições de adsorção, com a isoterma linear e valor de K_d igual a 0,0015 m²/kg.

Cenário 5 - Quanto à fonte e à dispersividade as condições são semelhantes às do cenário 1. Porém, as de adsorção são controladas pela isoterma de Langmuir, que representa mais adequadamente as condições dos materiais geológicos com o tempo. Os parâmetros da isoterma de Langmuir admitidos são valores médios considerando uma composição química ampla, representando o total de sólidos dissolvidos, com α de 0,00004016 m²/kg e β de 0,002848 kg/kg.

Cenário 6 - Todas as condições simuladas são iguais às do cenário 5, com exceção dos parâmetros da isoterma de Langmuir que são relativos ao íon K⁺ (α de 0,000007 m²/kg e β de 0,001111 kg/kg). A adoção destes parâmetros pretende representar as condições mais desfavoráveis de adsorção, visando o comportamento dos alcalinos e alcalinos terrosos.

Cenário 7 - As condições simuladas são iguais às do cenário 5, porém os parâmetros da isoterma de adsorção de Langmuir são os obtidos para o Cd²⁺ (α de 0,000058 m²/kg e β de 0,005 kg/kg), que representa os componentes inorgânicos metálicos, com valores mais elevados de adsorção do que para o K⁺.

Cenário 8 - Representa uma fonte onde a carga total de poluente está associada a um volume de líquido constante (recarga). Os outros parâmetros são iguais aos considerados no cenário 1.

Cenário 9 - Visa representar uma variação da concentração ao longo do tempo conforme sequência da Tabela 2, porém sempre relacionando a um volume constante de líquidos equivalente à recarga. Os demais parâmetros são iguais aos do cenário 2.

Cenário 10 - As condições de fonte são semelhantes às do cenário 8, porém os parâmetros de dispersividade representam um meio geológico com heterogeneidade vertical mais intensa como a do cenário 3.
Cenário 11 - As características das fontes são semelhantes às do cenário 8, enquanto as condições de dispersividade e adsorção são iguais às do cenário 4.

Cenário 12 - Fonte semelhante ao cenário 8, enquanto os parâmetros de dispersividade e adsorção são iguais aos do cenário 5.

Cenário 13 - Representa uma condição de fonte igual à do cenário 8 e condições de dispersividade e adsorção iguais às do cenário 6.

Cenário 14 - Neste cenário considerou-se as condições de fonte iguais às do cenário 8, enquanto as características de dispersividade e adsorção são iguais às do cenário 7.

Cenário 15 - Neste cenário combinou-se as condições de fonte do cenário 2 e os parâmetros utilizados para a simulação do cenário 6.

Cenário 16 - Neste cenário combinou-se as condições de fonte do cenário 2 e os parâmetros utilizados para a simulação do cenário 7.

5 - RESULTADOS E ANÁLISES

Os resultados obtidos a partir das simulações são apresentados na forma de documentos bidimensionais com isolinhas (mapas) para a profundidade equivalente a metade da espessura da camada e seções ortogonais, com a disposição em profundidade dos materiais geológicos, isolinhas e vetores. Os resultados são apresentados de tal maneira que permitem avaliar o comportamento dos poluentes frente às diferentes características simuladas, em termos espaciais e temporais.

Os comprimentos e as larguras máximos atingidos pela frente de contaminação foram obtidos para as isolinhas mínimas de 20, 5 e 0,2 mg/l, para as camadas 1, 2 e 3, respectivamente (Tabela 3). Estas isolinhas foram consideradas a partir dos mapas de isóvalores das frentes obtidos para a posição referente a metade da espessura de cada camada em relação a cada pixel. As análises elaboradas considerando os resultados e as condições de simulação foram desenvolvidas sob dois aspectos: geral e específico. Quanto ao gerial alguns pontos foram considerados como referenciais:

1. a distribuição espacial das isolinhas obtidas a partir da eletroresistividade;
2. a distribuição na porção interior ao limites externos da fonte de poluição (lixão);
3. a relação entre as geometrias das camadas e da frente de poluição.

Quanto ao aspecto específico, as análises consideram os seguintes pontos:

1. dimensões específicas das isolinhas mínimas;
2. concentrações máximas para cada camada e geometria das isolinhas de máxima;
3. comparação entre os cenários que consideram parte dos parâmetros iguais.

Em termos gerais, as análises permitiram concluir que:

- para as 16 condições simuladas as concentrações na camada 3 foram significativas a partir do tempo 4380 dias;
- a geometria das camadas utilizadas na simulação influenciou a distribuição espacial da frente de contaminação para todas as condições simuladas;
- as dimensões (comprimento e largura) para as frentes de contaminação considerando as isolinhas mínimas, são bastante variáveis com desvio padrão significativo em relação às médias; tais observações refletem as diferentes condições de dispersividade, adsonação e tipo de fonte simulada.

Baseando-se nas formas de distribuição espacial e temporal obtidas pela eletroresistividade em termos de concentração/resistividade aparente, as simulações dos

<table>
<thead>
<tr>
<th>Tabela 3 – Valores máximos (em metros) do comprimento e da largura das frentes para a isolinha mínima de 20 e 5 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carninha (*)</td>
</tr>
<tr>
<td>Isolinha</td>
</tr>
<tr>
<td>Tempo (dias)</td>
</tr>
<tr>
<td>Carnheiro 1</td>
</tr>
<tr>
<td>Largura 200,000</td>
</tr>
<tr>
<td>Carnheiro 2</td>
</tr>
<tr>
<td>Largura 180,523</td>
</tr>
<tr>
<td>Carnheiro 3</td>
</tr>
<tr>
<td>Largura 205,977</td>
</tr>
<tr>
<td>Carnheiro 4</td>
</tr>
<tr>
<td>Largura 181,395</td>
</tr>
<tr>
<td>Carnheiro 5</td>
</tr>
<tr>
<td>Largura 201,345</td>
</tr>
<tr>
<td>Carnheiro 6</td>
</tr>
<tr>
<td>Largura 217,234</td>
</tr>
<tr>
<td>Carnheiro 7</td>
</tr>
<tr>
<td>Largura 192,575</td>
</tr>
<tr>
<td>Carnheiro 8</td>
</tr>
<tr>
<td>Largura 206,867</td>
</tr>
<tr>
<td>Carnheiro 9</td>
</tr>
<tr>
<td>Largura 161,905</td>
</tr>
<tr>
<td>Carnheiro 10</td>
</tr>
<tr>
<td>Largura 204,587</td>
</tr>
<tr>
<td>Carnheiro 11</td>
</tr>
<tr>
<td>Largura 249,882</td>
</tr>
<tr>
<td>Carnheiro 12</td>
</tr>
<tr>
<td>Largura 286,588</td>
</tr>
<tr>
<td>Largura 289,559</td>
</tr>
<tr>
<td>Carnheiro 14</td>
</tr>
<tr>
<td>Largura 314,932</td>
</tr>
<tr>
<td>Carnheiro 15</td>
</tr>
<tr>
<td>Largura 292,134</td>
</tr>
<tr>
<td>Carnheiro 16</td>
</tr>
<tr>
<td>Largura 691,25</td>
</tr>
<tr>
<td>Média</td>
</tr>
<tr>
<td>Padrão</td>
</tr>
<tr>
<td>Desvio</td>
</tr>
</tbody>
</table>

(*) a terceira camada foi atingida com valores superiores a 0,2 mg/l apenas no primeiro e segundo cenários
cenários 5, 6 e 7 são as que apresentam resultados mais compatíveis com os obtidos pelo trabalho de eletroresistividade, ou seja, quando aspectos de adsorção são considerados.

Considerando que via eletroresistividade a concentração no interior da fonte é constante, verificou-se que as simulações que consideraram a fonte associada a um volume de líquido constante (cenários 8 a 16) não reflectem resultados compatíveis com as condições da eletroresistividade. Observa-se que as maiores concentrações estão associadas à porção mais a jusante da área de disposição dos resíduos, gerando uma distribuição para montante e outra para jusante, o que não é compatível com o registro da eletroresistividade, o tipo de fonte e as condições de advecção.

Verifica-se que o desvio padrão diminui em relação à média com o aumento do tempo, quando se consideram as simulações com o mesmo tipo de fonte. Porém, é mais sensível a diminuição para a camada 1, e menor para a camada 3. Os resultados das simulações dos cenários 1, 4, 5 e 7 foram apresentados mais detalhadamente por representarem situações mais específicas que permitem comparações devido às variações dos parâmetros de transporte.

Observa-se que a distribuição da contaminação em área a partir do topo da segunda camada é muito irregular, formando ilhas de concentração com valores diferentes. Esta condição, também, é verificada nos estudos de geoofísica, como pode ser observado nas Figuras 12 e 13.

Cenário 1 - Como este cenário representa uma condição na qual não se considera o efeito da adsorção, a percolação é rápida e os níveis de contaminação são elevados, observando-se que para o tempo de 7300 dias a terceira camada é atingida pelos poluentes em concentração superiores a 120 ppm (Figura 17). Os comprimentos e larguras atingidos pela frente são apresentados na Tabela 3.

![Fig. 17 - Cenário 1 - seção longitudinal ao comprimento do Lixão representando a distribuição da frente de contaminação no tempo de 4380 dias (posição do perfil mostrado na Figura 15).](image)

Cenário 2 - Para este caso as condições de adsorção também não foram consideradas e a camada 3 é atingida por concentrações de ordem de 120 ppm para o tempo de 7300 dias. O comprimento e a largura para as isolinhas minimas (20.0, 5.0 e 0.2 mg/l) para as camadas 1, 2 e 3 são (em metros) 684 e 275, 691 e 288 e 370 e 177, respectivamente. Em relação à profundidade, para o tempo de 7300 dias as concentrações não diferem muito dos valores do cenário 1, mas há diferenças significativas para os tempos menores.

81
Em relação ao cenário 1, observa-se que a frente, para a mesma concentração, avança a distâncias menores. Porém, quando a fonte atinge valores iguais ou maiores que 600 ppm existe uma rápida compensação que é compatível com a teoria, quando se considera longos períodos de tempo. As Figuras 18 e 19 ilustram os perfis com a evolução da frente de contaminação referentes aos tempos de 1825 e 7300 dias, respectivamente.

Fig. 18 – Cenário 2 - seção longitudinal ao comprimento do Lixão representando a distribuição da pluma de contaminação no tempo de 1825 dias (posição do perfil mostrado na Figura 15).

Fig. 19 – Cenário 2 - seção longitudinal ao comprimento do Lixão representando a distribuição da pluma de contaminação no tempo de 7300 dias (posição do perfil mostrado na Figura 15).

Cenário 3 - As diferenças deste cenário para o cenário 1 devem-se às razões de dispersividade, o que se refletiu nas concentrações que atingiram as camadas 2 e 3, de ordem superior a 100%. Os valores dos comprimentos e larguras da isolinha da camada 1 são similares aos do cenário 1, para todos os tempos, enquanto que para a camada 2 são inferiores. A diminuição da dispersividade vertical afeta fortemente a contaminação da camada 3, atingindo valores máximos de 50 ppm para o tempo de 7300 dias.
Cenário 4 - Neste cenário considerou-se a isoterma de adsorção linear e os resultados refletem o quanto irreal é a consideração desta isoterma, visto que a frente de contaminação, com base nas isolinhas mínimas, não atinge valores significativos nem para o tempo de 7300 dias, para as três camadas. Neste cenário o contaminante não chega à camada 3 com valores significativos, sendo o máximo de 20 ppm em 7300 dias. A distribuição da frente pode ser observada na Figura 20.

![Diagrama de Tempo de 7300 dias](image)

Fig. 20 – Exemplo de perfis ortogonais resultantes do cenário 4.

Cenário 5 - Desde o tempo de 1825 dias a concentração no topo da camada 3 é superior a 20 ppm e atinge 80 ppm para 7300 dias. Para a camada 2 as concentrações variam de 150 a 200 ppm, para os tempos de 1825 a 7300 dias, respectivamente. As larguras e comprimentos para as isolinhas mínimas, para o tempo de 7300 dias, apresentam boa compatibilidade geral com a Figura 10. Além da compatibilidade dos níveis de contaminação, também se verificou uma boa correlação quanto à distribuição espacial e à forma de distribuição dos contaminantes no tempo.

Cenário 6 - As concentrações para a camada 2 são menores neste caso até 4380 dias, porém para 7300 dias a concentração é maior no cenário 5 (145 ppm) do que no cenário 6 (105 ppm). Na camada 3 a concentração varia de 20 para 50 ppm para os tempos de 1825 e 3650 dias, respectivamente. Ressalta-se que a partir de 3650 dias não ocorre avanço da frente para a camada 3, mantendo-se até 7300 dias a concentração de 50 ppm.

Cenário 7 - Em relação ao cenário 6, as maiores variações ocorrem para a camada 2 em termos de concentração máxima até 4380 dias, assim como para o comprimento da isolinha mínima para 7300 dias.

Os cenários 8 a 16 apresentam resultados que não são considerados compatíveis com a geofísica, devido aos seguintes aspectos:
1 – a forma da concentração máxima na camada 1 difere acentuadamente da obtida pela geofísica;

83
2 - as concentrações máximas para as três camadas estão abaixo dos valores obtidos pela geofísica.

Observa-se que os valores de comprimentos e larguras relativos aos cenários 8 a 16 das isolinhas de 20 e 5 mg/l são bem menores que os dos cenários 1 a 7, principalmente para as camadas 2 e 3.

Cenário 8 - Para as mesmas condições do cenário 1, mas com fonte com volume total constante, os resultados diferem daquele cenário na forma de distribuição das isolinhas e nos valores das concentrações para as três camadas. Para a camada 3 a concentração atinge 70 ppm para o tempo de 7300 dias, sendo o valor máximo no topo da camada 1 de 370 ppm, também para 7300 dias, valores inferiores a 50% dos obtidos no cenário 1.

Cenário 9 - Quando comparado com o cenário 2, que utiliza os mesmos parâmetros com exceção do tipo de fonte, verifica-se de uma maneira geral uma atenuação das concentrações, principalmente na camada 3, assim como no comprimento das frentes para as isolinhas minimas. Até 4380 dias as concentrações que atingem as três camadas são inferiores às concentrações observadas no cenário 2. Para o tempo de 7300 dias há um aumento considerável, atingindo 50% dos valores atingidos no mesmo cenário.

Cenário 10 - Em relação ao cenário 3, a principal diferença reflete-se nas dimensões atingidas para as isolinhas mínimas nos diferentes períodos, conseqüentemente na forma geral das frentes e nas concentrações na camada 2.

Cenário 11 - De maneira geral, as características que diferem do cenário 4 estão relacionadas com as concentrações que atingem as camadas 2 e 3. Os comprimentos e larguras da frente para a camada 1 são muito próximos e menores que as demais simulações.

Cenário 12 - Com base nas condições resultantes da simulação, verifica-se que somente após 20 anos (7300 dias) a frente atinge significativamente a camada 3.

Cenário 13 - Os resultados dos cenários 12 e 13 são muito semelhantes, principalmente no que se refere às concentrações máximas para os tempos maiores, sendo porém mais elevadas as dimensões da frente para o cenário 13. Tais resultados refletem as condições dos parâmetros de adsorção considerados em proporções diferentes para α e β.

Cenário 14 - Com base nas informações sobre as concentrações e suas distribuições temporais e espaciais verifica-se que as concentrações para a camada 2 sofreram um aumento com um gradiente ascendente com o tempo.

Cenário 15 - As distribuições espacial, temporal e das concentrações mostram que a principal característica é o rápido aumento no perímetro da frente de contaminação na camada 2, com o acréscimo de contaminante nos tempos de 4380 dias e, principalmente, de 7300 dias.

Cenário 16 - Com base nas informações sobre as concentrações e suas distribuições temporal e espacial, verifica-se que as concentrações para a camada 2 sofreram um aumento com um gradiente crescente com o tempo. A área atingida é semelhante ao cenário 15, embora com níveis de concentração menores.
Quando se analisa o resultado dos cenários 13, 14, 15 e 16 verifica-se que as dimensões das frentes de contaminação para as isolinhas de 20, 5 e 0,2 mg/l são muito próximas. Porém, as concentrações máximas para as camadas diferem significativamente. Como os parâmetros são iguais a razão do fato é o tipo de fonte.

Analizando o comportamento das frentes de contaminação resultantes das simulações dos cenários 1, 5 e 7, verifica-se que não há diferenças significativas nas direções longitudinal e ortogonal para a camada 1, embora para as camadas 2 e 3 existam diferenças que refletem os aspectos de dispersividade e adsorção. As semelhanças ocorridas na camada 1 são fruto das condições de fluxo (advecção) e da direção predominante. As diferenças entre os resultados dos cenários 1, 5 e 7 e do cenário 4 são função dos aspectos de adsorção referentes à utilização das isotermas de Langmuir e Linear, respectivamente.

Ao comparar os resultados das simulações dos cenários 1, 4, 5 e 7 verifica-se que os dois últimos apresentam semelhanças com os dados obtidos para a geofísica, resumidos nas Figuras 11, 12 e 13, tanto na forma geométrica (volumétrica) da frente como no que respeita aos valores da concentração.

Nos resultados dos cenários 5 e 7 observa-se a influência das características de adsorção, mais acentuada para os tempos menores (até 4380 dias), mas que tende a dissipar-se para os tempos maiores (7300 dias).

6 - CONCLUSÕES

O programa aplicado apresenta como vantagem específica a facilidade de entrada de dados e o ambiente de trabalho, e como limitações a saída de resultados em área, e limitações de uso para áreas extensas e geometria heterogênea. As condições para definição das direções de fluxo e equipotenciais dependem da homogeneização e do intenso conhecimento do comportamento da zona saturada, visto que exige um contínuo processo de análise de “input/output”.

As diferenças de resultados das simulações dos cenários 5, 6 e 7 não são de grande significado e os resultados obtidos apresentam boa concordância, condição esperada teoricamente, visto que os parâmetros hidráulicos de adsorção e de dispersividade longitudinal foram obtidos por padrões técnicos. Porém, as razões de dispersividade foram adotadas a partir das características geológico-geoelétricas dos materiais geológicos e a fonte a partir das condições de disposição dos resíduos. No entanto, comparações entre os perfis e os mapas de geofísica obtidos em diferentes profundidades indicam que o cenário 5 apresenta o melhor ajuste em profundidade.

AGRADECIMENTOS

Os autores agradecem o apoio financeiro da Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES) e da Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP Nº Processo 00/03027-7), imprescindíveis à realização deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

85

Hahn, J. Analysis of remedial alternatives of the Nanji landfill, Korea. Environmental Geology, 28 (1), Springer-Verlag, 1996.

