

Sociedade Portuguesa de Geotecnia

Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica

Sociedad Española de Mecánica del Suelo e Ingeniería Geotécnica

José Delgado Rodrigues, LNEC - Lisboa

José Mateus de Brito, Cenorgeo - Lisboa

Luis de Almeida P. Bacellar, UFOP - Ouro Preto

Marcos Arroyo Álvarez de Toledo, UPC - Barcelona Marcus P. Pacheco, UERJ - Rio de Janeiro

Margareth Mascarenhas Alheiros, UFPe - Recife

Luiz Antônio Bressani, UFRGS - Porto Alegre

José Vieira de Lemos, LNEC - Lisboa

Luís Leal Lemos, FCTUC - Coimbra

Luiz Ferreira Vaz, Themag - São Paulo

Manuel Matos Fernandes, FEUP - Porto

Maria da Graça Lopes, ISEL - Lisboa

Maria de Lurdes Lopes, FEUP - Porto

Nuno Guerra, FCT-UNL - Caparica

Maria Eugênia Boscov, USP - São Paulo Maurício Ehrlich, UFRJ - Rio de Janeiro

Osni José Pejon, USP – São Carlos Oswaldo Augusto Filho, USP – São Carlos

Paulo Albuquerque, UNICAMP - Campinas

Paulo da Venda Oliveira, FCTUC - Coimbra Paulo Lopes Pinto, FCTUC - Coimbra

Pedro Guedes de Melo, Consulgeo - Lisboa Pedro Sêco e Pinto, LNEC - Lisboa Rafael Jiménez Rodríguez, UPM - Madrid

Renato Pinto da Cunha, UnB - Brasília

Roberto F. de Azevedo, UFV - Viçosa Romero César Gomes, UFOP - Ouro Preto Rubén Ángel Galindo Aires, UPM - Madrid

Tiago Miranda, U. Minho - Guimarães

Wilson Shoji Iyomasa, IPT, São Paulo

Waldemar Hachich, USP, São Paulo

Ricardo Oliveira, Coba - Lisboa Ricardo Resende, ISCTE-IUL - Lisboa

Rui M. Correia, LNEC - Lisboa Tácio M. Campos, PUC-Rio – Rio de Janeiro

Telmo Jeremias, LNEC - Lisboa

Luiz Nishiyama, UFU - Uberlândia

José F. T. Jucá, UFPe - Recife

José Neves, IST - Lisboa

José Leitão Borges, FEUP - Porto

Laura Caldeira, LNEC - Lisboa

Lindolfo Soares, USP - São Paulo

N.º 132 – novembro/noviembre 2014

EDITOR	EDITOR ASSOCIADO	EDITOR ASOCIADO						
José Couto Marques, FEUP, Portugal	Alberto Sayão, PUC-Rio, Brasil	Fernando Pardo de Santayana, CEDEX, España						
COMISSÃO EXECUTIVA / COMISIÓN EJECUTIVA								
Ana Cristina Sieira, UERJ, Brasil Madalena Barroso, LNEC, Portugal	César Sagaseta, U. Cantabria, España Paulo Cesar Maia, UENF, Brasil	José Estaire, CEDEX, España Paulo Coelho, FCTUC, Portugal						

A Revista Geotecnia foi publicada pela primeira vez em junho de 1971, com Úlpio Nascimento como fundador e José Folque como primeiro Diretor. Desde essa data tem vindo a publicar-se ininterruptamente, editando-se, em média, três números por ano. Em março de 2007 passou a ser editada conjuntamente pela SPG, ABMS e ABGE, desde março de 2011 pela SPG e ABMS e a partir de julho de 2014 pela SPG, ABMS e SEMSIG.

La Revista Geotecnia fue publicada por primera vez en junio de 1971, con Úlpio Nascimento como fundador y José Folque como primer Director. Desde esa fecha se viene publicando ininterrumpidamente, editándose, en media, tres números al año. En marzo de 2007 pasó a ser editada conjuntamente por la SPG, la ABMS y la ABGE; desde marzo de 2011 por la SPG y la ABMS; y a partir de julio de 2014 por la SPG, la ABMS y la SEMSIG.

COMISSÃO EDITORIAL/COMISIÓN EDITORIAL 2013-2014

Adriano Virgilio Damiani Bica, UFRGS - Porto Alegre Alexandre Pinto, JetSJ Geotecnia - Lisboa Alexandre Tavares, FCTUC - Coimbra Almudena da Costa García, U. Cantabria - Santander Anna Laura L. da Silva Nunes, UFRJ - Rio de Janeiro António Correia Mineiro, FCT-UNL - Caparica Antonio Lloret Morancho, UPC - Barcelona António Silva Cardoso, FEUP - Porto António Topa Gomes, FEUP - Porto António Viana da Fonseca, FEUP - Porto Armando Antão, FCT-UNL - Caparica Áurea Perucho Martínez, CEDEX - Madrid Benedito S. Bueno, USP - São Carlos Bernardo Caicedo, U. Andes - Bogotá Celso Lima, EDP Produção - Porto Cezar Augusto Burkert Bastos, FURG - Pelotas Cristina Gomes, Coba - Lisboa Dario Cardoso de Lima, UFV - Viçosa Diego Manzanal, CONICET – Buenos Aires Edezio Teixeira de Carvalho, UFMG - Belo Horizonte Eduardo Antonio Gomes Margues, UFV - Vicosa Eduardo Fortunato, LNEC - Lisboa Ely Borges Frazão - São Paulo Emanuel Maranha das Neves, IST - Lisboa Emílio Velloso Barroso, UFRJ - Rio de Janeiro Eurípedes Vargas Jr., PUC-RIO – Rio de Janeiro Faiçal Massad, USP – São Paulo Fernando A. B. Danziger, UFRJ – Rio de Janeiro Fernando Saboya, UENF – Campos do Goytacases Francis Bogossian, Geomecânica - Rio de Janeiro Frederico Garcia Sobreira, UFOP - Ouro Preto Herminia Cano Linares, CEDEX - Madrid Jaime Alberto dos Santos, IST - Lisboa Jayme de Oliveira Campos, UNESP – São Paulo Jean Vaunat, UPC – Barcelona João Paulo Bilé Serra, LNEC – Lisboa João Ribas Maranha, LNEC – Lisboa Jorge Almeida e Sousa, FCTUC - Coimbra Jorge Cañizal Berini, U. Cantabria - Santander Jorge Castro González, U. Cantabria - Santander Jorge Vasquez, EDIA - Beja Jorge Zegarra Pellane, PUCP - Lima

SPG L

A/c LNEC Av. do Brasil 101 1700-066 Lisboa, Portugal Tel.: (+351) 21 844 3859 Fax: (+351) 21 844 3021 E-mail: spg@lnec.pt http://www.spgeotecnia.pt

ABMS

Av. Prof. Almeida Prado, 532 IPT - Prédio 11 Cidade Universitária 05508-901 São Paulo-SP, Brasil Tel./Fax: (+55 11) 3768 7325 E-mail: abms@abms.com.br http://www.abms.com.br

SEMSIG

CEDEX, Laboratorio de Geotecnia C/ Alfonso XIL 3 28014 Madrid, España Tel.: (+34) 91 335 7500 Fax: (+34) 91 335 7322 E-mail: info@semsig.org http://www.semsig.org

Distribuição gratuita aos membros da SPG, da ABMS e da SEMSIG. Distribuição gratuita a los miembros de la SPG, de la ABMS y de la SEMSIG. Execução gráfica: Impressão na Cor Comum em Portugal. Ejecución gráfica: Impresa por Cor Comum en Portugal. ISSN 0379-9522 - Depósito Legal em Portugal: 214545/04

ÍNDICE

132 novembro noviembre 2014

- **3** Editorial
- 5 Caracterização e modelação numérica da rugosidade de descontinuidades rochosas
- 23 Influência da forma da superfície de cedência do solo no comportamento de um túnel. Avaliação de danos
- 41 Estudo da durabilidade de RCD e do ASIC para aplicação na camada de drenagem e recolha dos lixiviados em aterros de resíduos
- 69 Acções sobre muros de suporte em consola
- 93 Desenvolvimento de novas tecnologias para inclinômetros aplicados ao monitoramento de obras geotécnicas
- 107 Variação dos efeitos das quedas de rochas em seções rodoviárias por modificações na seção transversal e nos elementos de proteção
- 131 Método de avaliação de desempenho de barragens por meio de agrupamento de instrumentos

 – aplicação em Itaipu
- 151 Classificação de risco de barragens por índices de risco – um estudo de caso

José Couto Marques

Ana Luísa Ramos Eduardo Fortunato Ricardo Resende José Muralha

Catarina Cota Ana Vieira João R. Maranha

Gonçalo Manuel Rodrigues António José Roque A. Paula F. da Silva

Guilherme Loureiro Nuno Guerra Jorge Almeida e Sousa

Rodrigo Siqueira Penz Adriano Luís Toazza Maurício Tonello Vargas Francisco Dalla Rosa

Jorge Hernán Flórez Gálvez Luiz Antônio Bressani

Rodrigo César Pierozan Sidnei Helder Cardoso Teixeira Andrea Sell Dyminski Celso Romanel

Sandra Keila de Oliveira Baima José Nilson Bezerra Campos

Editorial José Couto Marques Editor da Revista Geotecnia

A Revista Geotecnia completa com o presente número 44 anos de atividade ininterrupta, uma efeméride que temos o grato prazer de celebrar com a publicação de três artigos de autores distinguidos no âmbito do Prémio Jovens Geotécnicos em Língua Portuguesa: Ana Luísa Ramos (Prémio 2014), Catarina Cota (Prémio 2013) e Gonçalo Manuel Rodrigues (Menção Honrosa 2013).

Assinala-se também o termo de funções da Comissão Editorial 2013-2014. A todos os seus membros é devido um caloroso agradecimento pela valiosa contribuição prestada.

La Revista Geotecnia completa con el presente número 44 años de actividad ininterrumpida, una efeméride que tenemos el grato placer de celebrar con la publicación de tres artículos de autores distinguidos en el ámbito del Premio Jóvenes Geotécnicos en Lengua Portuguesa: Ana Luísa Ramos (Premio 2014), Catarina Cota (Premio 2013) e Gonçalo Manuel Rodrigues (Mención de Honra 2013).

Destacamos también el término de las funciones de la Comisión Editorial 2013-2014. A todos sus miembros les dedicamos un caloroso agradecimiento por la valiosa contribución prestada.

José Couto Marques

CARACTERIZAÇÃO E MODELAÇÃO NUMÉRICA DA RUGOSIDADE DE DESCONTINUIDADES ROCHOSAS

Rock joint roughness characterization and numerical modelling

Ana Luísa Ramos* Eduardo Fortunato** Ricardo Resende*** José Muralha****

RESUMO – As descontinuidades dos maciços rochosos influenciam o seu comportamento mecânico e hidráulico e consequentemente as obras neles construídas. Este trabalho descreve o desenvolvimento e aplicação de uma técnica de digitalização das superfícies de descontinuidades rochosas que recorre a uma mesa digitalizadora, visando contribuir para a compreensão dos mecanismos de contacto e desgaste. As superfícies numéricas obtidas são analisadas usando parâmetros geoestatísticos que podem ser comparados com parâmetros semi-empíricos, como o JRC, permitindo quantificar a evolução da rugosidade após ensaios mecânicos de compressão ou deslizamento. Os resultados deste trabalho permitiram ainda a geração de descontinuidades que poderão ser usadas futuramente em modelos micromecânicos de partículas para simular o comportamento mecânico e hidráulico de descontinuidades.

SYNOPSIS – Rock joints influence the mechanical and hydraulic behaviour of rock masses and consequently of engineering works built on or in them. This work describes a scanning technique for the description of the roughness of rock joints, aiming at contributing to the analysis of contact and wear mechanisms. The numerical surfaces are characterized by geostatistical parameters that may be compared with empirical parameters, such as JRC, allowing the quantification of the roughness degradation after mechanical shear and compression tests. The results enabled the generation of synthetic surfaces that may be used in micromechanical models for the study of the mechanical and hydraulic behaviour of rock joints.

PALAVRAS CHAVE – Descontinuidades de maciços rochosos; digitalização de superfícies de descontinuidades rochosas, geração de superfícies.

NOTA DO EDITOR – Este artigo foi submetido à Revista Geotecnia em face da atribuição do Prémio Jovens Geotécnicos em Língua Portuguesa de 2014 ao seu primeiro autor, tendo por base a dissertação de mestrado apresentada à Faculdade de Engenharia da Universidade do Porto e desenvolvida no Laboratório Nacional de Engenharia Civil, ao abrigo do protocolo existente entre estas duas entidades.

^{*} Mestre em Engenharia Civil. E-mail: ana.l.g.ramos@gmail.com

^{**} Investigador Principal, Laboratório Nacional de Engenharia Civil. Professor Auxiliar Convidado, Faculdade de Engenharia da Universidade do Porto. E-mail: efortunato@lnec.pt

^{***} Professor Auxiliar, Departamento de Arquitetura e Urbanismo, ISCTE-Instituto Universitário de Lisboa. E-mail: jrpre@iscte.pt

^{****} Investigador Principal, Laboratório Nacional de Engenharia Civil. E-mail: jmuralha@lnec.pt

1 – INTRODUÇÃO

O comportamento mecânico e hidráulico de um maciço rochoso é condicionado pela existência de descontinuidades, quer se trate de falhas, superfícies de estratificação, diaclases, superfícies de xistosidade, foliação ou clivagens de fratura. O estudo da resistência ao corte das descontinuidades rochosas implica a análise de diversos fatores que irão influenciar o seu comportamento, como a rugosidade das paredes das descontinuidades, as características resistentes e atríticas do material rochoso das paredes, as tensões normal e tangencial aplicadas na descontinuidade, a condição das descontinuidades ao nível do desgaste, desagregação, presença de materiais de enchimento, presença da água e respetiva pressão (Muralha 1995; Kerstiens, 1999). No caso das diaclases, em que não se verifica um deslocamento tangencial significativo ao longo da superfície de rotura, a rugosidade tem bastante influência na resistência ao deslizamento (tensão máxima de pico e tensão residual). Devido à rugosidade, o deslocamento tangencial das diaclases só pode ocorrer mediante a existência de um deslocamento normal (dilatância), ou o corte das asperezas que constituem a rugosidade, ou ainda de uma combinação de ambos, dependendo da relação entre a tensão normal e a resistência das asperezas. Aumentando a tensão normal, as asperezas serão, inicialmente, desgastadas, danificadas e, por fim, sofrerão rotura por corte.

Analisando o comportamento típico de uma diaclase verifica-se que para um dado nível de tensão normal mantida constante, se for aumentada a tensão tangencial, o deslocamento tangencial começa por aumentar a uma taxa relativamente baixa até se atingir um valor máximo ou de pico da tensão tangencial, a partir do qual o deslocamento tangencial aumenta sem variação sensível da tensão tangencial. A rugosidade tem uma enorme influência na determinação e estimativa da resistência tangencial pelo que é fundamental a escolha do critério de rotura adequado para proceder a uma correta análise do comportamento e determinação da resistência ao corte. É possível encontrar na bibliografia da especialidade vários modelos de rotura de diaclases, nomeadamente:

- Modelo de Coulomb, associado a descontinuidades planas ou pouco rugosas em que a rugosidade tem pouca expressão;
- Modelo de Patton (1966), que reproduz um comportamento bilinear em função da tensão normal e inclui um parâmetro de rugosidade na formulação para baixas tensões, considerando que não se verifica o corte das asperezas;
- Modelo de Barton (1973), que foi o primeiro investigador a explicitar a influência da rugosidade na determinação da tensão tangencial máxima, de acordo com a equação (1):

$$\tau_p = \sigma_n \cdot \tan\left(\phi_r + JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_n}\right)\right) \tag{1}$$

sendo τ_p a tensão tangencial de pico, σ_n a tensão normal, ϕ_r o ângulo de atrito residual, *JRC (Joint Roughness Coefficient)* o parâmetro que permite quantificar a rugosidade (relativamente subjetivo quando calculado através da comparação visual entre a superfície das diaclases e perfís tipo) (Barton e Choubey, 1977), *JCS (Joint Compressive Strength)* o parâmetro que permite avaliar a resistência das paredes das descontinuidades (dependente da resistência à compressão da rocha e do seu estado de alteração).

Neste trabalho analisa-se a rugosidade de diaclases através de diversos métodos, com o objetivo de proceder à sua caracterização, e de comparar os resultados obtidos. Procede-se à medição da rugosidade de 16 superfícies (8 bases e 8 topos) de 8 provetes com um *scanner* tridimensional. Faz-se a descrição e caracterização das superfícies de rugosidade das diaclases, bem como a sua reprodução e geração a partir de determinados parâmetros e técnicas, como os modelos fractais e a transformada de Fourier bidimensional. Realizam-se ainda ensaios de deslizamento entre os topos e respetivas bases e comparam-se as superfícies das diaclases, antes e após a realização dos mesmos. Um dos provetes, designado por 71, foi ensaiado para uma maior gama de tensões normais, o que permitiu estimar características mecânicas da diaclase. Além disso, esse provete foi digitalizado três vezes, após sucessivos ensaios, para se avaliar a influência destes na variação da rugosidade.

2 – MEDIÇÃO DA RUGOSIDADE

A rugosidade é uma característica de difícil quantificação e os métodos utilizados na sua medição influenciam bastante a qualidade dos resultados obtidos. Atualmente existem métodos que fornecem dados a duas e a três dimensões. Os primeiros podem ser perfilómetros mecânicos com contacto, do tipo *roller-tip* e *needle-tip*, perfilómetros a laser, que utilizam a reflexão de feixes de luz, bem como métodos recorrendo a ultrassons. Os segundos baseiam-se em conceitos como a interferometria e técnicas que recorrem a câmaras de medição a três dimensões. Em geral, estes sistemas apresentam vantagens e desvantagens relacionadas com a rapidez da medição, a precisão, o tamanho da amostra, a repetibilidade, a resolução espacial, a facilidade de medição, de análise dos dados e de utilização *in situ* (Grasselli, 2001).

Neste estudo foi utilizado um *scanner* de contacto Roland MDX-20 (Figura 1) na medição da rugosidade das diaclases, permitindo a digitalização tridimensional das descontinuidades rochosas com uma resolução de 0,05 mm no plano horizontal (direções X e Y) e de 0,025 mm na vertical (direção Z). A agulha de 0,08 mm de diâmetro, ligada a um sensor piezoelétrico, constitui uma ferramenta de alta precisão, sendo capaz de proceder ao levantamento das coordenadas de objetos cuja dimensão máxima é de 203,2×152,4 mm², em planta, e até 60,3 mm acima da mesa de suporte. Neste caso utilizou-se uma resolução em planta de 0,5 mm, segundo ambas as direções, o que permite o levantamento de uma das duas superfícies de um provete em cerca de 6 a 10 horas com um detalhe adequado, pois o tamanho do grão presente na rocha de granito em estudo é de aproximadamente 2 mm e, por isso, uma maior resolução não aumentaria significativamente a qualidade dos dados obtidos. Um programa de computador comanda a digitalização, permitindo verificar a sua qualidade, exportar os dados, nomeadamente, para serem tratados no programa *MATLAB*, e obter a caracterização tridimensional da superfície rugosa (Ramos, 2013).

Fig. 1 – Digitalização: a) scanner; b) exemplo de um provete analisado; c) imagem digital do provete.

Com este equipamento estudou-se a rugosidade de um conjunto de amostras de diaclases recolhidas numa das sondagens realizadas no âmbito do estudo de caracterização geológico-geotécnico do Aproveitamento Hidroelétrico de Foz Tua. O material rochoso é constituído por granito de grão médio e duas micas com fenocristais de feldspato de cor amarelada a cinza esbranquiçado. As fraturas apresentam inclinações a 30°, 45° e 70° medidas em relação ao eixo de sondagem, com

deposição de óxidos avermelhados e finas películas argilosas alaranjadas e esbranquiçadas. Após a realização da sondagem, procedeu-se à recolha, carotagem, corte e encabeçamento das descontinuidades, tendo o cuidado de, em todas as operações, minimizar os danos nas descontinuidades. Na Figura 2 apresentam-se alguns passos da preparação das 16 superfícies de diaclases usadas neste trabalho.

Fig. 2 – Preparação das diaclases: a) amostras; b) amostras após corte; c) encabeçamento de um provete.

No início do processo de digitalização concluiu-se que era necessário construir um quadro de *perspex* em forma de *L*, que se adaptou à estrutura do *scanner*, para garantir que em digitalizações sucessivas o provete fosse sempre colocado na mesma posição, assegurando a repetibilidade das medições e facilitando assim a interpretação dos resultados. Na Figura 3 apresentam-se para dois perfis, segundo as direções X e Y, os resultados de duas digitalizações efetuadas com e sem o quadro, bem como as diferenças respetivas. Para avaliação da adequação do processo calculou-se o erro quadrático médio dessas diferenças. Concluiu-se que os valores do erro sem e com quadro eram de $7,6\times10^{-2}$ mm² e $5,8\times10^{-4}$ mm², na direção X, e de $3,6\times10^{-3}$ mm² e de $4,2\times10^{-6}$ mm², na direção Y, respetivamente. Sendo os valores de erro com o quadro duas a três ordens de grandeza inferiores, confirmou-se a necessidade da sua utilização.

Fig. 3 – Resultados de duas leituras consecutivas de um perfil na direção X (curvas contínuas) e respetivas diferenças (barras). Provete colocado: a) sem a utilização do quadro; e b) com a utilização do quadro.

3 – ANÁLISE DA RUGOSIDADE

3.1 – Aspetos gerais

Devido à subjetividade de alguns dos métodos de determinação dos parâmetros que traduzem a rugosidade, como por exemplo o *JRC*, têm vindo a ser estabelecidas novas estratégias para determinar estes parâmetros, em particular de forma quantitativa, que permitam caracterizar e quantificar a rugosidade e gerar e reproduzir, quer perfís quer superfícies rugosas. No caso dos métodos estatísticos, recorre-se, por exemplo, à análise do valor quadrático médio de grandezas que se relacionam com a rugosidade e suas características, ou à análise da função de autocorrelação. Por outro lado, os métodos geoestatísticos permitem considerar a correlação espacial entre amostras, avaliar a sua dependência e, posteriormente estimar valores a partir de uma amostra discreta. São bastante vantajosos quando os valores da amostra são afetados pela localização e relação com os seus vizinhos e, por isso, as variáveis não apresentam um padrão de distribuição definido pela estatística clássica como a normalidade e, sobretudo, a independência dos dados, havendo lugar ao conceito de estruturação espacial. A geoestatística utiliza o variograma (Chiles e Delfiner, 1999) como uma ferramenta essencial na avaliação da dependência e correlação espacial entre dois pontos vizinhos. O variograma ou o semivariograma permitem explorar a continuidade espacial de uma função aleatória Z(i), sendo o semivariograma $\gamma(h)$ definido numericamente por:

$$\gamma(h) \cong \frac{1}{2(N-h)} \sum_{i=1}^{N-h} (Z_{i+h} - Z_i)^2$$
⁽²⁾

em que Z(i) é a variável aleatória regionalizada e *h* representa a distância entre os *N* pontos. Assim, o semivariograma representa o cálculo da semivariância (medida do grau de dependência espacial) da variável *Z*, em função da distância *h* entre pares de pontos, pelo que o seu valor deve aumentar com esta distância (Clark, 1979; Cressie, 1993).

Pelo seu lado, os modelos fractais permitem ultrapassar o problema da influência da escala de medição, que afeta alguns parâmetros estatísticos utilizados na caracterização da rugosidade. O conceito de fractal (Mandelbrot, 1977) está associado a um objeto cuja aparência é consideravelmente irregular e cujo aspeto da irregularidade se mantém qualquer que seja a distância (escala) a que está a ser observado, o que conduz à possibilidade de existirem objetos com dimensões topológicas não-inteiras. No caso da rugosidade de uma descontinuidade, a irregularidade da superfície da diaclase é mais complexa do que uma superfície plana ainda que não esteja associada diretamente a um volume, pelo que a sua dimensão se deve encontrar entre 2 (superfície) e 3 (volume). Em consequência, um perfil definido ao longo da superfície rugosa deve possuir uma dimensão fractal superior à unidade e inferior a dois. Existem diversos métodos para estimar a dimensão fractal de uma superfície ou perfil de rugosidade, nomeadamente os métodos dos divisores, da superfície dos prismas triangulares, das caixas ou das bolas, espectral e do variograma.

3.2 - Caracterização da rugosidade

Neste trabalho utilizaram-se diversos métodos para caracterizar a rugosidade. Em primeiro lugar procedeu-se à determinação da dimensão fractal das superfícies das diaclases considerando toda a superfície da diaclase e não apenas um ou vários perfis de rugosidade, o que deverá conduzir a resultados mais credíveis do que aqueles cuja aplicação está associada unicamente a perfis a uma dimensão. Para este efeito, procedeu-se à aplicação do *RTPM (Revised Triangular Prism Method)* (De Santis *et al.*, 1997) que permite a determinação direta da dimensão fractal (*D*) a partir da medição da área real da superfície definida para várias discretizações (várias resoluções da malha de pontos), calculada com base no somatório das áreas de todos os prismas que constituem a superfície, determinadas a partir das cotas dos vértices dos prismas, em relação a um plano de elevação. Considerando todos os provetes, o valor de D_4 (dimensão fractal calculada pelas áreas) variou entre 2,253 e 2,440.

Procedeu-se em seguida à determinação da dimensão fractal a partir da avaliação do variograma, D_{v2} (Gneiting *et al.*, 2010). Aplicando os conhecimentos relacionados com os métodos geoestatísticos em geral, e o variograma em particular, foi estabelecida uma relação entre uma estimativa da dimensão fractal e o semivariograma. O método desenvolvido é semelhante, num aspeto, ao de Mandelbrot (1983), que determinava a dimensão fractal de uma superfície da diaclase procedendo à soma da dimensão fractal de um determinado perfil rugoso (1<D<2) com a unidade, obtendo assim

uma dimensão fractal entre 2 e 3. Contudo, este último método não é totalmente rigoroso pois a dimensão fractal não é igual qualquer que seja o perfil, dependendo, também, da direção que é considerada e, por isso, ignora questões como a anisotropia e a heterogeneidade. Assim, procedeu-se à determinação da dimensão fractal das superfícies calculando a média da dimensão fractal, D_{v2} , de todos os perfis segundo a direção do deslizamento, tendo-se obtido valores entre 2,239 e 2,331.

Concluiu-se que o método relacionado com a estimativa das áreas conduziu a uma maior dispersão de valores da dimensão fractal no conjunto de provetes ensaiados do que o método do variograma. No caso do provete 71, sobre o qual, como foi já referido, se realizaram estudos mais pormenorizados (ver secção 4), obtiveram-se valores, na base e no topo, de 2,381 e 2,391 e de 2,291 e 2,315, com o método das áreas e do semivariograma, respetivamente.

Analisando a relação entre o valor de *JRC* (valor médio) e a dimensão fractal (tomada na base dos provetes), D_{v2} , concluiu-se que o coeficiente de determinação dessa relação é relativamente baixo ($R^2=0,75$). É de notar que o valor de *JRC* é determinado visualmente, não sendo possível fazer uma classificação pormenorizada e inequívoca das asperezas, como a que resulta da aplicação do método numérico da dimensão fractal à avaliação da rugosidade.

Seguidamente determinou-se o índice de rugosidade da superfície, R_A , que se define como a relação entre a área real da superfície da descontinuidade e a área nominal, isto é, a projeção da superfície no plano médio. Os valores de R_A mais elevados estão, assim, associados a superfícies mais rugosas. O valor da área real pode ser determinado a partir do método aplicado para determinar a dimensão fractal. Neste caso, utilizando uma discretização de 0,5 mm obtiveram-se valores de R_A entre 1,035 e 1,077. No caso do provete 71, obtiveram-se valores de R_A de 1,041 e 1,039, para a base e para o topo, respetivamente. Comparando R_A e a dimensão fractal, concluiu-se que não foi possível obter uma correlação entre estas duas grandezas (Ramos, 2013).

O valor quadrático médio da inclinação entre dois pontos consecutivos, Z_2 , tendo por referência um plano médio, é também um indicador da rugosidade e permite considerar a inclinação da superfície das descontinuidades. Este parâmetro está relacionado com a distribuição no espaço e, por isso, com a textura da topografia da superfície rugosa. De acordo com Xia *et al.* (2003), os parâmetros característicos da textura da superfície rugosa estão estreitamente relacionados com a componente das irregularidades de um perfil de rugosidade. O parâmetro estatístico Z_2 foi calculado para todas as superfícies digitalizadas, de acordo com a equação (3):

$$Z_2 \cong \left(\frac{1}{(n-1)m} \sum_{j=1}^m \sum_{i=1}^{n-1} \left(\frac{z_{i+1,j} - z_{i,j}}{\Delta x}\right)^2\right)^{\frac{1}{2}}$$
(3)

em que *n* e *m* são o número de pontos que definem o perfil de rugosidade em cada uma das direções, *z* é a cota desses pontos e Δx a distância entre pontos. Os valores de Z_2 variaram de forma importante com o valor de Δx , ou seja, a escala da medição. Para Δx igual a 0,5 mm, maior resolução possível, Z_2 variou entre 0,21 e 0,32 e para Δx igual a 24 mm, Z_2 variou entre 0,04 e 0,12. O provete 71 apresentou, na base e no topo, um valor de 0,22, para Δx igual a 0,5 mm, e 0,05 e 0,04, para Δx igual a 24 mm, respetivamente.

A partir das digitalizações determinaram-se as frequências das distâncias em relação ao plano médio de todos os pontos em análise. Na Figura 4 apresentam-se os resultados obtidos para a base e topo dos provetes 69 e 71, por serem os que apresentaram maiores e menores amplitudes, respetivamente. Comparando a base e o topo dos provetes, concluiu-se que estes provetes são dos que apresentam, respetivamente, menores e maiores diferenças entre as amplitudes do topo e da base. Numa primeira abordagem, sem considerar a deformabilidade das superfícies em contacto (quantificada pelo *JCS*), seria possível afirmar que, hipoteticamente, o deslocamento normal de

fecho será menor para o caso do provete 69, já que a abertura será, também, menor, ao contrário do que acontecerá no provete 71.

Fig. 4 – Histogramas da base e topo: a) provete 69; b) provete 71.

No caso de um perfil rugoso, a correlação entre pontos ao longo de um perfil (correlograma) permite saber se é possível determinar ou estimar a cota (z) de um determinado ponto a partir dos valores dos pontos que o precedem, ou a partir de que distância é que não existe relação entre as cotas. Neste trabalho testaram-se os valores de distância entre pontos de 0,5, 1,0, 2,5 e 5,0 mm. Concluiu-se que o coeficiente de correlação diminui à medida que a distância aumenta, ainda que se mantenha uma forte correlação (R^2 >0,90) mesmo para distâncias entre pontos de 5 mm. Contudo, a dispersão é bastante visível para a distância 5 mm, o que pode comprometer a estimativa da cota de pontos para distâncias desta ordem ou superiores. A título de exemplo, apresentam-se na Figura 5 os resultados obtidos para um perfil da base do provete 71.

Procedeu-se também ao cálculo desta correlação para as superfícies. Neste caso, consideraram-se os perfís na direção do deslizamento, e concluiu-se igualmente que a dispersão vai aumentando à medida que a distância aumenta, tendo-se obtido valores do coeficiente de correlação de 0,994, 0,985, 0,948 e 0,872 para a base do provete 71.

A função de autocorrelação, *ACF*, que corresponde à função de autocovariância normalizada, bem como os semivariogramas permitem avaliar a dependência entre os valores da cota dos pontos que compõem os perfis de rugosidade, espaçados de uma certa distância, segundo uma determinada direção. Na Figura 6 apresentam-se as funções de autocorrelação e os semivariogramas obtidos para todos os provetes.

Foi calculada a distância em que a correlação é igual a 95, 90, 85 e 0%, e obtiveram-se valores (em mm) entre 0,84 e 1,61 no primeiro caso, 1,48 e 3,09 no segundo, 2,13 e 4,04 no terceiro e 15,19

Fig. 5 - Correlogramas de um perfil para distância entre pontos (mm): a) 0,5; b) 1,0; c) 2,5; d) 5,0.

e 25,19 no quarto, respetivamente (Figura 6a). A partir dos resultados da função *ACF* apresentados para todas as superficies é possível concluir que a análise deve ser realizada considerando apenas os primeiros valores, isto é, até aproximadamente 40 mm, cerca de um terço do comprimento dos provetes. Contudo, verifica-se que para valores superiores a 40 mm a função *ACF* apresenta uma certa periodicidade que pode estar associada ao facto de a superfície rugosa ser mais ou menos ondulada. Analisando a Figura 7 verifica-se que a base do provete 69 (Figura 7a) é bastante mais ondulada que o topo do provete 74 (Figura 7b), cuja periodicidade, evidenciada na figura, é bastante reduzida. As funções de autocorrelação têm um andamento semelhante em todos os provetes, podendo assim constituir um parâmetro de caracterização médio para este conjunto de superfícies de rugosidade (Ramos, 2013).

Em relação aos provetes em análise, apresenta-se na Figura 8 os resultados dos correlogramas, funções de autocorrelação e semivariogramas obtidos para o topo e base de cada provete. Em relação aos provetes em análise, os semivariogramas calculados para os topos são semelhantes aos das respetivas bases, como seria de esperar. No entanto, existem diferenças significativas entre os diversos provetes, ao contrário do que se verificou com a função de autocorrelação. Os semivariogramas dispersam para distâncias próximas de 60 mm e alguns provetes apresentam um pequeno patamar. Comparando as diversas técnicas de correlação, conclui-se que os valores determinados para o limite de correlação são bastante distintos entre si, sendo o valor alcançado através do semivariograma sempre significativamente mais alto.

Fig. 6 – Análise da rugosidade: a) funções de autocorrelação; b) semivariograma.

Fig. 7 – Funções de autocorrelação: a) provete 69; b) provete 74.

Fig. 8 - Comparação dos valores de limite de correlação determinados pelos diversos métodos.

3.3 - Reprodução e geração de superfícies de rugosidade

3.3.1 – Transformada de Fourier – reprodução e geração

A geração de uma superfície rugosa pode ser realizada a partir da aplicação da transformada de Fourier, e da sua inversa, a duas dimensões, usando o algoritmo *FFT2* do *MATLAB*. Considerando a dimensão correta dos provetes e, neste caso, como exemplo, a base do provete 67, definiu-se uma matriz com a mesma dimensão do provete analisado e constituída apenas pelas ondas com as dez frequências mais baixas em ambas as direções. Esta superfície está representada na Figura 9a, que evidencia a inexistência das asperezas da rugosidade fina. Quando se procede à geração usando as 30 primeiras ondas, a superfície gerada é mais rugosa em comparação com a anterior, sendo que na Figura 9b já são visíveis as asperezas. A partir dos valores de *z* das superfícies geradas é possível calcular a sua dimensão fractal tal como foi feito para as superfícies reais, e verificar a evolução da sua redução em relação à superfície real, quando não se consideram as frequências mais altas.

Fig. 9 – Superficie gerada pelo algoritmo FFT2 com a soma das primeiras: a) 10 ondas; b) 30 ondas.

A reprodução exata de uma superfície rugosa associada a uma matriz de ordenadas z com dimensão $[n \times m]$ a partir do algoritmo *FFT2* pode ser obtida caso se considere a soma de todas as frequências evidenciadas no espectro. Pela análise dos resultados verifica-se que a partir de cerca

de 20% do comprimento das diaclases não existe correlação e que na reprodução a partir da transformada de Fourier, as frequências superiores a este valor não precisam de ser consideradas, tal como se pode verificar no espectro de frequências apresentado na Figura 10.

Fig. 10 - Espectro de frequências aplicando o algoritmo FFT2.

Aplicando estes conceitos, além de reproduzir descontinuidades conhecidas, é possível gerar novas superfícies, mantendo as amplitudes das diversas ondas semelhantes às superfícies naturais, e alterando apenas as fases que tomam valores aleatórios dentro do seu limite de variação (- π a π). As superfícies obtidas a partir da distribuição de amplitudes de um provete mostraram-se um pouco mais rugosas (Figura 11) do que a superfície original, apresentando um valor mais elevado da dimensão fractal. No método do semivariograma o valor de $D_{\nu 2}$ artificial é próximo de 2,330 (o valor da superfície original é 2,272). No caso do método das áreas, o valor de D_A é cerca de 2,440 (o valor original é 2,302). Já a variância da superfície artificial é igual à da superfície real.

Fig. 11 – Geração de uma superfície rugosa aleatória aplicando a transformada de Fourier bidimensional (FFT2) com base numa distribuição de amplitudes real.

3.3.2 – Dimensão fractal – geração

Além da geração aplicando o conceito da transformada de Fourier é também possível gerar novas superfícies, como a apresentada na Figura 12, a partir do valor da dimensão fractal e variância das superfícies reais através do *diamond square algorithm* (Liu *et al.*, 2004). Neste método a rugosidade é representada, inicialmente, pala matriz T vazia preenchendo-se, em primeiro lugar, os valores dos cantos, a partir da geração de números aleatórios com um valor médio e uma dispersão conhecidos. De seguida, procede-se ao cálculo do ponto central, a partir dos valores dos quatro pontos dos cantos. O ponto médio é calculado a partir da média dos valores dos cantos adicionando-lhe uma determinada quantidade aleatória, procedendo-se, de seguida, ao cálculo dos pontos médios das fronteiras a partir da média dos pontos dos cantos e do ponto médio calculado na fase anterior, sendo-lhes adicionada, também, uma quantidade aleatória. Este processo prossegue até todos os elementos da matriz estarem preenchidos. A dimensão fractal D é introduzida no algoritmo através do expoente de Hurst, H, que varia entre 0 e 1, e é fulcral no cálculo da quantidade aleatória adicionada em cada ponto, tal como mostra a equação (4).

$$\sigma_n^2 = \frac{\sigma_0^2}{(2^{2H})^n} \left(1 - \frac{2^{2H}}{4} \right) \tag{4}$$

 σ_n^2 - variância da distribuição N(0, $\sigma_n^2/2$), que permite a geração da referida quantidade aleatória.

Fig. 12 – Geração com D=2,35 e s₂=1,65 mm².

A quantidade aleatória adicionada a cada ponto calculado vai diminuindo ao longo das iterações do processo. A partir da geração conclui-se que a dimensão fractal tem mais influência nos resultados ao nível da rugosidade do que a variância. A influência da variância está mais relacionada com a amplitude e a ondulação da rugosidade.

Após a geração verifica-se que os valores obtidos a partir dos dois métodos de medição da dimensão fractal são diferentes, sendo que a superfície gerada artificialmente apresenta, na maior parte dos casos, uma rugosidade um pouco superior à da superfície original, de acordo com o método das áreas (D_A >2,35). De acordo com o método do semivariograma, os valores são próximos de 2,35, o valor pretendido, ainda que a amplitude de variação seja bastante menor neste método.

4 – ENSAIOS DE DESLIZAMENTO

O equipamento do Laboratório de Mecânica das Rochas do LNEC no qual se realizaram os ensaios (Figura 13) é constituído por uma caixa de corte, dispondo de uma caixa de 200×200 mm², onde as duas metades que constituem a descontinuidade (previamente encabeçadas com argamassa de cimento) foram fixadas.

Para a caracterização da resistência e deformabilidade das descontinuidades rochosas realizaram-se ensaios de carga normal, com três ciclos de carga-descarga, até atingir a tensão normal máxima prevista para os ensaios seguintes. Seguiu-se o ensaio de deslizamento, com aplicação de uma tensão normal pré-definida seguida da aplicação de uma tensão tangencial crescente. Além destes ensaios, foram também realizados ensaios de deslizamento sem a aplicação de tensão normal, para além da correspondente ao peso do topo do provete.

Fig. 13 - Aspeto do equipamento utilizado nos ensaios de deslizamento.

Nestes ensaios, os deslocamentos tangenciais foram provocados manualmente, sendo a dilatância determinada a partir do declive das curvas que relacionam o deslocamento normal com o deslocamento tangencial, representadas na Figura 14. Através da evolução da dilatância ao longo dos ensaios é possível analisar o desgaste da superfície rugosa causado pelos ensaios de deslizamento com aplicação de tensão normal.

Fig. 14 – Resultados dos ensaios de deslizamento sem aplicação de tensão normal.

Os ensaios de deslizamento com tensão normal de 0,4 MPa, realizados sobre os 8 provetes, permitiram determinar valores de rigidez tangencial que variaram entre 0,7 e 1,7 MPa/mm (média de 1,0 MPa/mm), para valores da tensão tangencial de cerca de 0,3 a 0,4 MPa (média de 0,37 MPa).

Sobre o provete 71 realizaram-se 4 ensaios (Figura 15), com tensões normais de 0,4, 0,8, 1,6 e 3,2 MPa, que, de acordo com o critério de Coulomb, conduziram a valores do ângulo de atrito de 35,6°, coesão aparente de 0,11 MPa e ângulo de dilatância de cerca de 7 a 8° (Ramos, 2013).

Fig. 15 – Resultados dos ensaios de deslizamento do provete 71.

Após a realização dos ensaios de deslizamento sob tensão normal, é expectável uma redução da dimensão fractal (D_A) , do parâmetro R_A e do parâmetro estatístico Z_2 , já que ocorre um desgaste da superfície rugosa e, por isso, o desaparecimento de algumas asperezas, diminuindo, assim, a área real, relacionada com D_A e R_A , e o declive, relacionado com Z_2 . Numa análise geral, os resultados obtidos evidenciaram esta hipótese, ainda que, no caso de alguns provetes, a redução não tenha sido significativa. No que se refere à dimensão fractal, considerando o método das áreas ou o do semivariograma, a diminuição média foi de cerca de 0,7% e 0,6%, respetivamente. O parâmetro R_A teve uma diminuição média de 0,8%, e o parâmetro Z_2 diminuiu, em média, 2,8%.

Assim, conclui-se que o ensaio com a tensão de 0,4 MPa provocou pouco desgaste na superfície rugosa, pelo que, visualmente, as diferenças são quase imperceptíveis, apenas se notando um pequeno desgaste nas zonas de contacto cuja área não atinge 5% da área nominal da diaclase. Na Figura 16 apresentam-se as curvas de nível da mesma superfície de uma diaclase antes e após o primeiro deslizamento à tensão normal de 0,4 MPa e ainda das diferenças entre estas duas digitalizações. Esta figura, em que apenas nas diferenças se nota uma zona muito limitada com diferenças da ordem de 2 mm, evidencia o reduzido desgaste ocorrido.

Mesmo no caso do provete 71 (Figura 16), apesar de os deslizamentos terem sido realizados até à tensão de 3,2 MPa, como se trata de uma superfície pouco rugosa, os resultados ficaram aquém do esperado já que a diferença ao nível da dimensão fractal ou dos restantes parâmetros foi reduzida.

Fig. 16 – Superfícies do provete 71 antes do ensaio de deslizamento a 0,4 MPa (primeira digitalização) e depois do ensaio (segunda digitalização), e a correspondente diferença.

5 – CONSIDERAÇÕES FINAIS

A rugosidade, conjuntamente com a resistência mecânica do material das paredes, é um dos parâmetros que mais influencia a resistência tangencial das diaclases rochosas. No entanto, é simultaneamente uma das propriedades mais difíceis de caracterizar, pela sua complexidade e variabilidade, bem como pela dificuldade da sua medição. Neste trabalho desenvolveu-se um método de medição de superfícies de diaclases robusto e com um nível da precisão e resolução espacial adequados ao estudo das características geométricas de descontinuidades. Este trabalho permite não só compreender de forma mais aprofundada o comportamento destas superfícies à escala da rugosidade, raramente estudadas a este nível, mas também suportar a modelação destas superfícies em modelos micromecânicos, como por exemplo o método dos elementos discretos de partículas.

A digitalização das faces das diaclases permitiu a obtenção de descrições numéricas precisas das suas topologias, apresentando inúmeras possibilidades, desde o estudo do ajustamento da base e do topo, caracterização estatística e geoestatística das superfícies ou a degradação da rugosidade após ensaios de corte. Neste trabalho apresenta-se principalmente o cálculo de diversos parâmetros estatísticos e modelos fractais, bem como a geração de novas superfícies artificiais a partir de

superfícies existentes. Em relação aos parâmetros estatísticos escolhidos, conclui-se que o Z_2 , apesar de privilegiar a direção de aplicação da tensão tangencial nos ensaios de deslizamento, permite obter um valor único que caracteriza a rugosidade e que está sobretudo associado ao declive da superfície, sendo possível perceber se esta é mais ou menos ondulada. Ao contrário do parâmetro Z_2 , a dimensão fractal da superfície, D, calculada por diversos métodos que são comparados, considera as características tridimensionais da descontinuidade e permite perceber se uma superfície é mais ou menos rugosa. Salienta-se ainda o caráter particular dos ensaios de deslizamento sem aplicação de carga normal, pois permitem comparar a dilatância e, consequentemente, o desgaste da superfície rugosa. Além deste facto, é também importante referir o carácter inovador da geração de superfícies de descontinuidade baseada na distribuição de amplitudes no domínio das frequências, que abre caminho para novos estudos no domínio da evolução da rugosidade durante os deslizamentos.

6 - AGRADECIMENTOS

Os autores agradecem à EDP a possibilidade de estudar as diaclases do Aproveitamento Hidroeléctrico de Foz Tua e ao laboratório FabLab EDP pelo uso do *scanner* tridimensional Roland MDX-20.

7 – REFERÊNCIAS BIBLIOGRÁFICAS

- Barton, N. (1973). *Review of a new shear-strength criterion for rock joints*. Engineering Geology, Elsevier Scientific Publishing Company, Amsterdam, Vol. 7, pp. 287-332.
- Barton, N.; Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics, Springer, Vienna, vol. 10, pp. 1-54.
- Chiles, J. P.; Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley-Interscience.
- Clark, I. (1979). Practical geostatistics. Applied Science Publishers.
- Cressie, N. (1993). Statistics for spatial data. Wiley Interscience.
- De Santis, A.; Fedi, M.; Quarta, T. (1997). A revisitation of the TPSM for estimating the fractal dimension of fractal surfaces. Annali di Geofisica, Vol. XL, August 1997.
- Gneiting, T.; Sevcikova, H.; Percival, D.B. (2010). Estimators of fractal dimension: assessing the roughness of time series and spatial data. University of Washington, Department of Statistics, Technical Report no. 577.
- Grasselli, G. (2001). Shear Strength of Rock Joints Based on Quantified Surface Description. PhD Thesis, École Polytechnique Fédérale de Lausanne.
- Kerstiens, C.M.D. (1999). A generic UDEC model for rock joint shear tests, including roughness characterisation. MSc Thesis, Faculty of Civil Engineering and Geoscience, TU Delft.
- Liu, H., Bodvarsson, G.; Lu, S.; Molz, F. (2004). A correct and generalized successive random additions algorithm for simulating fractional levy motions. Mathematical Geology, 04/2004, vol. 36, pp.361-378.
- Mandelbrot, B.B. (1977). The fractal geometry of Nature. W.H. Freeman, New York.
- Mandelbrot, B.B. (1983). Fractals. Form, chance and dimension. W.H. Freeman, S. Francisco.

- Muralha, J. (1995). Abordagem probabilística do comportamento mecânico de descontinuidades de maciços rochosos. Dissertação de Doutoramento, Instituto Superior Técnico.
- Patton, F.D. (1966). Multiple modes of shear failure. PhD Thesis, Universidade de Urbana, Illinois.
- Ramos, A. (2013). Caraterização e modelação numérica da rugosidade de descontinuidades rochosas. Dissertação de Mestrado, Faculdade de Engenharia da Universidade do Porto.
- Xia, C.C.; Yue, Z.Q.; Tham, L.G.; Lee, C.F.; Sun, Z.Q. (2003). *Quantifying topography and closure deformation of rock joints*. Int. J. Rock Mech. & Min. Sci., Elsevier, Vol. 40, Issue 2, pp.197-220.

INFLUÊNCIA DA FORMA DA SUPERFÍCIE DE CEDÊNCIA DO SOLO NO COMPORTAMENTO DE UM TÚNEL. AVALIAÇÃO DE DANOS

Influence of the ground yield surface shape on tunnel behaviour. Building damage assessment

Catarina Cota* Ana Vieira** João R. Maranha***

RESUMO – Com o aumento da densidade populacional o espaço disponível para construção tem-se tornado mais limitado. Esta limitação tem levado a uma exploração crescente do subsolo, onde a solução em túnel se torna cada vez mais atractiva devido às suas inúmeras vantagens. O recurso crescente a este tipo de solução está suportado, em grande parte, pelos desenvolvimentos verificados nas últimas décadas nos métodos numéricos, que permitem estudos de modelação e avaliação da segurança estrutural de obras complexas do ponto de vista do seu faseamento construtivo, da sua geometria e da interacção solo-estutura. Esta complexidade passa também por uma reprodução adequada do comportamento dos solos onde estas estruturas se inserem. Neste trabalho pretende-se ilustrar a importância da forma da superfície de cedência do modelo de comportamento do solo na estimativa das deformações provocadas pela construção de um túnel mediante alterações em relação à forma estabelecida no modelo Cam-clay Modificado (MCCM). O modelo é aplicado ao caso de um túnel executado numa argila sobreconsolidada da cidade de Lisboa. Note-se que o MCCM sobrestima a resistência deste tipo de solo para certas trajectórias de tensão. Pretende-se também compreender que impacto essas alterações no modelo têm na avaliação de danos em estruturas à superfície.

SYNOPSIS – With the increasing growth of the population density in urban areas, space for construction is becoming more and more scarce and underground construction is an alternative increasingly used due to its advantages. This increased use has been heavily supported in the last decades by major developments in modeling and structural safety assessment of complex underground works, as regards its construction stages, geometry and soil-structure interaction. Some of these developments are due to the use of numerical methods. The aim of this work is to assess the influence of the soil model's yield surface shape on the ground deformation evaluation resulting from tunnel excavation in overconsolidated Lisbon clay, by means of an improvement in the Modified Cam-clay model (MCCM) which consists in changing the shape of the soil's yield surface. The effect of these changes on surface buildings damage assessment is performed.

PALAVRAS CHAVE - Túneis superficiais, modelação elastoplástica, danos em edifícios.

NOTA DO EDITOR – Este artigo foi submetido à Revista Geotecnia em face da atribuição do Prémio Jovens Geotécnicos em Língua Portuguesa de 2013 à sua primeira autora, tendo por base a dissertação de mestrado apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa e desenvolvida no Laboratório Nacional de Engenharia Civil, ao abrigo do protocolo existente entre estas duas entidades.

^{*} JetSJ, Geotecnia, Lisboa, Portugal. E-mail: ccota@jetsj.pt

^{**} Departamento de Geotecnia, Laboratório Nacional de Engenharia Civil, Lisboa, Portugal. E-mail: avieira@lnec.pt

^{***} Departamento de Geotecnia, Laboratório Nacional de Engenharia Civil, Lisboa, Portugal. E-mail: jmaranha@lnec.pt

1 – INTRODUÇÃO

O presente trabalho dedica-se à análise da influência da forma da superfície de cedência do modelo constitutivo utilizado para reproduzir o comportamento do solo, no comportamento de túneis executados em formações argilosas sobreconsolidadas. Pretende-se analisar, para este tipo de terreno, as consequências da execução destas obras sobre as estruturas situadas à superfície, através da estimativa dos danos causados, com recurso a análises numéricas em estado plano de deformação com o programa FLAC (Itasca, 2005).

A abertura de um túnel traduz-se na eliminação das tensões instaladas na sua superfície e, consequentemente, na deformação do maciço em torno da abertura. Para o caso de túneis a profundidades relativamente reduzidas, estas deformações manifestam-se à superfície através de bacias de subsidência (Figura 1), podendo afectar as estruturas localizadas na sua área de influência. Os movimentos à superfície e o modo como estes afectam e interagem com as estruturas em áreas urbanas devem ser adequadamente avaliados de modo a que se possam alcançar níveis de segurança satisfatórios.

Fig. 1 – Geometria da superfície de subsidência (Uriel e Sagaseta, 1989).

Os movimentos devidos à escavação de túneis dependem do tipo de terreno, do método construtivo utilizado e da distância de colocação do suporte relativamente à frente de escavação. Nas análises numéricas em estado plano de deformação recorre-se frequentemente ao método convergência-confinamento (Panet e Guenot, 1982), que permite simular o faseamento construtivo e aproximar o carácter tridimensional dos movimentos do terreno. No entanto, as análises bidimensionais têm sido alvo de alguma atenção devido à dificuldade em estimar a distribuição dos assentamentos à superfície (curva de subsidência) (e.g. Potts e Zdravkovic, 2001; Burland *et al.*, 2001; Puzrin *et al.*, 2012), aproximada muitas vezes de modo empírico aos dados de campo pela equação de Gauss:

$$S_{v}(x) = S_{v,max}e^{-\frac{x^{2}}{2i^{2}}}$$
(1)

onde $S_v \in S_{v,max}$ representam o assentamento a uma distância x do eixo de simetria do túnel, e o assentamento máximo (sobre o eixo de simetria do túnel), respectivamente. O parâmetro *i* representa a distância do ponto de inflexão da curva ao eixo de simetria do túnel (Fig. 2), no qual a curva apresenta o seu maior declive (ou maior índice de deflexão). Para este último parâmetro, O'Reilly e New (1982) propuseram a equação (2) para a sua estimativa:

$$i = Kz_0 \tag{2}$$

onde *K* é um parâmetro que depende do tipo de solo (para solos argilosos é comum o valor 0,5) e z_0 a profundidade do eixo do túnel.

Em relação aos movimentos horizontais, e de acordo com O'Reilly e New (1982), é comum admitir que os movimentos do solo são dirigidos para o centro do túnel. Assim, os deslocamentos horizontais na direcção transversal, S_h , podem ser expressos através da equação (3):

$$S_{hx}(x) = -\frac{xS_{v}(x)}{z_{0}}$$
(3)

A Figura 2 mostra que o deslocamento horizontal é nulo sobre o eixo de simetria e o seu valor máximo ocorre no ponto de inflexão da curva, *i*. É igualmente representado na figura o perfil das extensões horizontais, ε_{hx} , obtido derivando o deslocamento horizontal em ordem a *x*:

$$\varepsilon_{hx}(x) = \frac{S_{\nu}(x)}{z_0} \left(\frac{x^2}{i^2} - 1\right) \tag{4}$$

Da equação (4) resulta que, na zona compreendida pelos pontos de inflexão, a extensão horizontal é de compressão e a curva de assentamentos é do tipo côncava (*sagging*). Na restante região a extensão é de tracção e a curva é do tipo convexa (*hogging*).

Fig. 2 – Curvas de assentamento vertical, deslocamento e extensão horizontal na direcção transversal (Franzius, 2003).

Apesar dos assentamentos à superfície constituirem a forma mais directa de descrever os movimentos do solo resultantes da abertura de um túnel, por vezes os túneis em meio urbano são escavados nas proximidades de outros túneis, de fundações profundas e/ou outras estruturas enterradas. Deste modo, é também importante estimar os assentamentos a diferentes profundidades e compreender como estes se relacionam com os assentamentos à superfície.

Os dados referentes aos perfis de assentamentos sub-superficiais são menos abundantes que os perfis de assentamentos à superficie. Mair *et al.* (1993) assumiram que, à semelhança dos primeiros, os perfis de assentamento em profundidade são também caracterizados por uma função de distribuição normal ou gaussiana, conforme ilustrado na Figura 3. Através da figura é possível observar que os assentamentos aumentam em profundidade e a abcissa do ponto de inflexão, *i*, diminui, obtendo-se curvas mais estreitas e com maior magnitude.

Fig. 3 – Perfil de assentamentos superficiais e sub-superficiais (Mair et al., 1993).

Os movimentos impostos pela construção de túneis são susceptíveis de induzir danos nas estruturas localizadas na sua área de influência. Na avaliação de danos no edificado provocados por obras de escavação é comum recorrer a uma análise faseada, tal como a proposta por Mair (1996). Esta análise divide-se em três fases e considera, inicialmente, métodos rápidos e simplificados, sendo posteriormente refinada, caso os resultados obtidos não cumpram certos critérios estabelecidos, como o assentamento máximo e a rotação máxima que caracterizam os movimentos das fundações. Dependendo da categoria de danos obtida poderá ser necessário continuar a análise considerando a presença do edifício, modelado de forma detalhada e se possível recorrendo a análise tridimensional, avaliando assim adequadamente a interacção solo-estrutura. De acordo com esta análise, a estimativa dos danos nas fases preliminares recorre-se das curvas de subsidências e de extensões horizontais à superfície, no local de implantação de um determinado edifício, sem a presença deste (as designadas distribuições em campo livre ou greenfield), e também a uma análise simplificada da presença do edifício, modelado através de uma viga simples, tomando em conta a interacção solo-estrutura com a introdução da rigidez relativa modificada. É assim determinante uma previsão adequada da resposta do terreno face à solicitação imposta pela escavação para a categoria de danos susceptível de ser imposta ao edifício. Deve então ser utilizado um modelo constitutivo capaz de reproduzir adequadamente a reposta do terreno.

Neste trabalho procura-se evidenciar a importância da consideração de uma lei constitutiva adequada para solos sobreconsolidados na resposta do terreno face à escavação de um túnel e na subsequente estimativa da classe de danos. Inicialmente descreve-se a formulação de um modelo elásto-plástico incremental, baseado no modelo de estados críticos com duas alterações propostas na sua formulação original: uma alteração na zona super-crítica, para melhor aproximar a resistência dos solos sobreconsolidados quando submetidos a trajectórias nesta zona do espaço de tensões, e uma alteração para estados de tensão sem simetria axial (superfície não circular no plano deviatórico). Numa primeira fase é descrita a formulação do modelo ilustrando-se, de seguida, as respostas obtidas pelo modelo para um ensaio triaxial convencional e um ensaio em estado de deformação plana (sem simetria axial) e, numa fase seguinte, a influência destas alterações nas deformações à superfície de um túnel executado numa formação argilosa ocorrente na cidade de Lisboa (*Argilas dos Prazeres*). A consequência destas alterações na estimativa de danos em edifícios é por fim avaliada.

2 – MODELO DE ESTADOS CRÍTICOS COM CORREÇÃO DA FORMA DA SUPERFÍCIE DE CEDÊNCIA

Maranha (1997) propôs uma alteração da forma da superfície de cedência do MCCM, baseada no facto de este modelo sobreestimar a resistência do solo na zona super-crítica no caso de solos argilosos sobreconsolidados. Através de uma alteração de coordenadas, a superfície de cedência corrigida passou a ser definida como (Fig. 4):

$$f(\sigma_{ij}) = (\overline{q} - \overline{p})^2 + L(\overline{q} - \frac{\overline{p}_c}{2})\overline{p} = 0$$
⁽⁵⁾

em que $\bar{q} = q/M$ (sendo q a tensão deviatórica e M a inclinação da linha de estados críticos), $\bar{p} = p + p_i$ (sendo p a tensão média efectiva), $\bar{p_c} = p_c + p_b$, sendo p_i o valor da resistência à tracção no eixo hidrostático. Quando $\bar{q} < \bar{p}$, ou seja, quando o estado de tensão está abaixo da linha de estados críticos, o parâmetro L assume o valor 2, caso contrário é função de μ . Por sua vez, μ é um parâmetro de achatamento que varia entre 0 e 1. Se for igual a 1 a superfície de cedência será idêntica à do MCCM, e se tomar o valor 0, então a superfície de cedência na zona super-crítica será igual à própria linha de estados críticos.

A alteração da forma da superfície de cedência inclui também uma translação p_i , tanto da superfície de cedência como da linha de estados críticos ao longo do eixo p, o que permite a modelação de uma parcela de coesão (Maranha, 1997).

A Figura 4 mostra a zona corrigida da elipse na zona super-crítica. O parâmetro μ é definido como a relação *e/c*. Impondo que a elipse tenha uma tangente horizontal no ponto *C* e uma tangente vertical no ponto *O*, é possível obter a seguinte relação entre *L* e μ :

$$L = \frac{4\mu}{1+\mu} \tag{6}$$

Para estados de tensão de compressão triaxial a função de cedência é definida por um valor do ângulo de Lode, $\theta = \pi/6$ (Figura 5). Para estados de tensão generalizados foi igualmente proposta uma alteração da superfície de cedência, uma vez que os valores da resistência ao corte são sobreestimados para a forma circular, sobretudo quando a trajectória de tensões é de extensão triaxial. Assim, no espaço tridimensional, a função de cedência passa a ser definida por:

$$\overline{q} = \frac{q}{M(\theta)} = \frac{q}{M_c g(\theta)} \tag{7}$$

onde M_c é a inclinação da linha de estados críticos num meridiano de compressão triaxial $(q = M_c p)$ e $g(\theta)$ a função que descreve a forma da secção deviatórica. Para o caso mais simples, correspondente a $g(\theta) = 1$, a função descreve um círculo no plano deviatórico, como acontece com o MCCM.

Fig. 4 – Modelo de estados críticos com a superfície de cedência corrigida para uma elipse achatada na zona super-crítica (Maranha, 1997).

Fig. 5 – Secção de William e Warnke no plano triaxial.

Na formulação estabelecida por William e Warnke (1975), citado por Vieira (2006), esta função descreve um arco elíptico, tal que $g'(\pi/6) = g'(-\pi/6) = 0$, isto é, a linha não tem vértices. Obtém-se assim uma transição suave entre e $g(-\pi/6) = k$ e $g(\pi/6) = 1$, onde *k* é a relação entre o valor da linha de estados críticos num meridiano de extensão e um meridiano de compressão ($k = M_d/M_d$). A dependência de θ é dada por:

$$g(\theta) = \frac{2(1-k^2)\cos(\theta + \frac{\pi}{6}) + (2k-1)\sqrt{4(1-k^2)\cos^2(\theta + \frac{\pi}{6}) + 5k^2 - 4k}}{4(1-k^2)\cos^2(\theta + \frac{\pi}{6}) + (2k-1)^2}$$
(8)

onde o ângulo de Lode é definido pela equação:

$$\theta = \frac{1}{3} \sin^{-1} \left[\frac{27 \det(s_{ij})}{2q^3} \right]$$
(9)

Por vezes k pode ser dado pelo modelo de Mohr-Coulomb, de acordo com:

$$k = \frac{3 - \sin(\phi)}{3 + \sin(\phi)} \tag{10}$$

A formulação de William e Warnke é convexa na gama k = 1/2 (correspondente a $\phi = 90^{\circ}$) a k = 1 (quando $\phi = 0^{\circ}$) (Figura 5).

No caso do modelo de estados críticos com a superfície corrigida, o gradiente da função de cedência é agora dado pela expressão (Maranha, 1997):

$$\frac{\partial f}{\partial \sigma_{ij}} = A s_{ik} s_{kj} + B s_{ij} + C \delta_{ij}$$
(11)

com:

$$A = -\frac{9g'(\theta)\left[2(\overline{q} - \overline{p}) + L\overline{p}\right]}{2M_c g^2(\theta)q^2\cos\left(3\theta\right)}$$
(12)

$$B = \frac{3[2(\overline{q} - \overline{p}) + L\overline{p}]}{2M_c g(\theta)q} \left[1 + \frac{27g'(\theta)det(s_{ij})}{2g(\theta)q^3\cos(3\theta)} \right]$$
(13)

$$C = \frac{1}{3} \left[2(\overline{p} - \overline{q}) + L\left(\overline{q} - \frac{\overline{p}_c}{2}\right) \right] + \frac{g'(\theta) \left[2(\overline{q} - \overline{p}) + L\overline{p} \right]}{M_c g^2(\theta) \cos(3\theta)}$$
(14)

onde σ_{ij} é o tensor da tensões, s_{ij} parte deviatórica do tensor das tensões e δ_{ij} é o delta de Kronecker (tensor identidade).

Duas situações ocorrem quando as expressões dadas para o gradiente se tornam singulares. Uma é quando o estado de tensão é isotrópico, isto é, q = 0, caso em que A, B e C tomam os seguintes valores:

$$A = B = 0 \Longrightarrow C = \frac{1}{3} \left[2(\overline{p} - \overline{q}) + L\left(\overline{q} - \frac{\overline{p}_c}{2}\right) \right]$$
(15)

A outra situação irregular ocorre quando o estado de tensão está num plano triaxial de compressão ou extensão ($\theta = \pm \pi/6$), casos em que *A* e *C* assumem os mesmos valores do caso de tensão isotrópica e *B* é agora dado por:

$$B = \frac{3}{2qM_c g(\theta)} \left[2(\overline{q} - \overline{p}) + L\overline{p} \right]$$
(16)

29

A Figura 6 ilustra um exemplo de superfície de cedência corrigida para os parâmetros indicados (Maranha, 1997):

Fig. 6 – Função de cedência do modelo de estados críticos com correcção da elipse na zona super-crítica e dependência do ângulo de Lode (Maranha, 1997).

Como primeiro teste ao modelo de estados críticos com a superfície de cedência corrigida na zona super-crítica considerou-se um carregamento triaxial não drenado num elemento com dimensões unitárias, submetido a uma taxa de deformação axial constante, $\varepsilon_a = 10^{-5}s^{-1}$, após um estado de consolidação isotrópica, caracterizado por p' = 200kPa. O carregamento foi imposto ao elemento de solo fazendo-se variar o parâmetro de achatamento, μ , entre 0,05 e 1,0.

Os parâmetros do solo usados no modelo foram os utilizados no estudo do túnel e estão definidos no Quadro 1 da secção 3, onde $\lambda \in \kappa$ são as constantes de compressibilidade do MCCM, v_{0} , o volume específico inicial e γ_{sat} o peso volúmico saturado do solo.

Os resultados obtidos permitiram definir as trajectórias de tensão não drenadas no plano p'-q que se apresentam na Figura 7a), onde se mostra igualmente a superfície de cedência inicial para $\mu = 1,0$ e a correspondente linha de estados críticos. Os resultados da evolução da deformação axial, ε_a , em função da tensão deviatórica, q, são mostrados na Figura 7b).

A análise dos resultados evidencia que o parâmetro de achatamento, μ , altera significativamente as trajectórias de tensão, sendo atingida a superfície de cedência para valores sucessivamente menores da tensão distorcional com a diminuição de μ . Para $\mu = 0,05$, a superfície de cedência é alcançada para uma tensão deviatórica cerca de 30% inferior à correspondente a $\mu = 1,0$, ou seja, adoptando o MCCM sem alterações. Uma vez alcançada a superfície de cedência, verifica-se também um aumento da deformação axial, ε_a , para a mesma tensão deviatórica, q, com a diminuição dos valores de μ .

O modelo foi também testado para um carregamento sem simetria axial, em estado plano de deformação (biaxial), em condições não drenadas e para o mesmo solo, com o intuito de analisar adicionalmente a influência da forma da superfície de cedência no plano deviatórico. À semelhança do exemplo anterior, aplicou-se uma taxa de deformação axial constante $\varepsilon_a = 10^{-5}s^{-1}$ e fez-se variar o parâmetro k entre 0,55 e 1,0 para $\mu \approx 0,072$ (Vieira, 2006).

Na Figura 8(a) estão representadas as trajectórias de tensão no plano p' - q e as respectivas linhas de estados críticos projectadas no mesmo plano. Inicialmente, a trajectória de tensões corresponde a uma trajectória de corte puro ($\theta = 0$), uma vez que o solo está apenas sujeito a variações da tensão deviatórica. É possível observar que o valor da tensão de cedência (estado de

Fig. 7 – Influência do parâmetro de achatamento µ num carregamento triaxial.

tensão onde a trajectória encontra a superfície) diminui substancialmente à medida que k decresce. Por exemplo, para k = 0,55, a tensão deviatórica de cedência toma o valor q = 267kPa, enquanto que para k = 1,0 tem-se q = 425kPa. A redução do valor de k conduz também a uma diminuição da inclinação da LEC para estados de tensão distintos da compressão triaxial, como se pode ver na mesma figura.

A evolução da deformação axial, ε_a , em função da tensão deviatórica, q, é apresentada na Figura 8(b). Do mesmo modo, também neste caso é evidente o aumento significativo da deformação axial com a diminuição do parâmetro k, uma vez atingida a superfície de cedência.

Fig. 8 – Influência do parâmetro k num carregamento sem simetria axial.

3 – ANÁLISES NUMÉRICAS PARA AVALIAÇÃO DAS DEFORMAÇÕES RESULTANTES DA EXECUÇÃO DE UM TÚNEL NUMA ARGILA EM LISBOA

3.1 - Condições iniciais

Através de análises numéricas não drenadas em estado plano de deformação foi estudada a influência das alterações introduzidas no modelo sobre o comportamento do terreno em torno de um túnel. Assim, fez-se variar as constantes do modelo constitutivo que controlam a forma da superfície, μ e k. Fez-se também variar o coeficiente de desconfinamento, λ , relativo ao método construtivo empregue, e o parâmetro que define as condições iniciais no terreno, o coeficiente de impulso em repouso, K_0 . Considerou-se a posição do nível freático à superfície. Assumiu-se p'_c constante em profundidade e igual a 1300kPa. No presente artigo apresentam-se apenas alguns destes resultados, nomeadamente a situação com mais deformações, de forma a evidenciar a influência de μ e k, o estudo completo pode ser encontrado em Cota (2013).

Na definição do problema foi gerada uma malha para um túnel com secção circular, com 10m de diâmetro e altura de recobrimento de 15m (Figura 9). A malha é constituída por 63×52 elementos. Como referido, as análises numéricas foram realizadas considerando um tipo de formação argilosa ocorrente na cidade de Lisboa: as *Argilas dos Prazeres*. Este solo pertence ao Miocénico inferior e é considerado um solo duro a rijo com grau de sobreconsolidação superior a 5. Na Figura 10, onde se mostra o substrato geológico de Lisboa, pode-se identificar a formação geológica referida através da abreviatura MI. Os parâmetros do solo utilizados no modelo, na sua forma não modificada, foram obtidos através de ensaios edométricos disponíveis na bibliografia (Quadro 1) (Marques, 1998).

		 		 	_
} }}}	+++++	 +++		 	-
199999999999999999999999999999999999999	+++++				-
					-
					-
					-
					_
		111	1 1 1		- 1
					-
	+++++	+++			-
Variable and a second s					-
30000005+++++++++++++++++++++++++++++++	++++-	 +++	+ + + -		-
					_
					-
					_
					- 1
	+++++				-
	+++++	+++	+++		-
					_
					-
*************************************	+++++	 +++			-
					_
	+++++	 + + + - + + +	+++		-

Fig. 9 – Malha de elementos finitos após a escavação.

Fig. 10 – Mapa do substrato geólogico de Lisboa (Lopes, 2001).

Argilas dos Prazeres				
γ_{sat} (kN/m ³)	20			
М	1,05			
ν_0	1,62			
k	0,024			
λ	0,122			

Quadro 1 – Parâmetros do solo.

3.2 - Resultados das análises numéricas em estado plano de deformação

A sequência de construção do túnel foi simulada através do método da convergência-confinamento. A malha criada incorpora a abertura correspondente à secção do túnel, sendo que na fronteira do mesmo é aplicado o estado de tensão equivalente ao do maciço em repouso. Inicialmente é estabelecido o estado de tensão inicial e, de forma a simular a escavação, as tensões aplicadas na fronteira do túnel são reduzidas até ao nível equivalente ao grau de desconfinamento, λ . A fase seguinte compreende a colocação da estrutura de suporte e subsequente alívio do restante nível de tensões resultantes do processo de escavação. O modelo escolhido para a estrutura de suporte é específico para a reprodução do comportamento de suportes provisórios de betão projectado com comportamento elástico e linear. Foram adoptadas as seguintes características para o módulo de elasticidade e coeficiente de Poisson, respectivamente, E = 10GPa, v = 0.2, e espessura de 0.2m.

Tal como referido mostram-se neste trabalho situações onde ocorreram zonas mais extensas em cedência plástica em torno do túnel. Assim, nas Figuras 11(a) e 11(b), apresentam-se as curvas de subsidência para o maior valor do coeficiente de desconfinamento analisado, $\lambda = 0,6$, e para k = 0,55e 1,0, respectivamente. As diferentes curvas correspondem a vários valores de μ . Uma análise aos gráficos permite concluir que a diminuição de μ e k, particularmente para k = 0,55, conduz a um aumento significativo dos assentamentos e a uma diminuição dos valores de i (curvas mais estreitas).

Fig. 11 – Curvas de subsidência: influência da variação de k e μ para $\lambda = 0.6$ e $K_0 = 0.8$.

Nas Figuras. 12(a) e 12(b) estão representados os contornos de deformação distorcional em redor da abertura do túnel para as análises numéricas indicadas. É possível verificar significativas zonas em cedência plástica (zonas de maior distorção) e para o menor valor de μ uma maior extensão destas.

Fig. 12 – Deformação distorcional em redor da abertura do túnel para a análise numérica com os parâmetros $\lambda = 0.6$, $K_0 = 0.8$, k = 0.55.

3.3 - Comparação dos resultados numéricos com soluções empíricas

Como referido anteriormente, a curva de assentamentos pode ser aproximada pela equação (1). Em solos saturados com permeabilidade reduzida, em que é razoável admitir um comportamento não drenado como resposta inicial ao carregamento é possível escrever a equação de Gauss em função do volume de solo perdido para o interior da escavação, V_L , para um dado diâmetro D (Miranda, 2011):

$$S_{\nu}(x) = \sqrt{\frac{\pi}{2}} \frac{V_L D^2}{4i} e^{-\frac{x^2}{2i^2}}$$
(17)

Com base nas curvas de subsidência obtidas nas análises numéricas foram calculados os valores de V_L , obtendo-se valores num intervalo de 0,90% a 1,98%. Estes valores são relativamente altos para túneis abertos em solos do Miocénico de Lisboa, no entanto, como se notou anteriormente correspondem à situação mais desfavorável de todas as analisadas. Porém, são valores que se encontram frequentemente na bibliografia. Por exemplo, Mair (1996) referiu valores de 1% a 2% para argilas rijas em túneis escavados pelo método NATM.

Em algumas das soluções numéricas obtiveram-se valores de *i* (distância do ponto de inflexão da curva de subsidência ao eixo do túnel) próximos de 20*m*. Estes valores representam aproximadamente o dobro dos que se obteriam com a solução empírica definida pela equação (2), (para $z_0 = 20m$ resultaria i = 10m). O valor de *i* que mais se aproxima deste valor empírico pertence à análise de cálculo mais gravosa, com $\lambda = 0.6$, $K_0 = 0.8$, k = 0.55 e $\mu = 0.05$, e toma o valor i = 12.91m.

Procurou-se igualmente comparar a forma das curvas de subsidência obtidas nas análises numéricas com soluções empíricas resultantes da compilação de dados de campo. Assim, na Figura 13(a) está representada a curva de subsidência da análise numérica indicada com alteração da forma da superfície de cedência e na Figura 13(b), a curva de subsidência para o mesmo valor de λ e K_0 , mas sem alteração do modelo (k = 1,0 e $\mu = 1,0$). Em cada uma das figuras estão ainda representadas as curvas para a solução empírica. Estas curvas foram obtidas através da equação (17) com *i*=10*m* e igualando o volume de solo perdido, V_L ao referente às respectivas análises numéricas. Nos valores das análises numéricas foi descontado o valor minímo do assentamento que se deve à extensão finita da malha.

A análise da comparação acima referida permite constatar que relativamente ao assentamento máximo, a diferença entre os resultados empíricos e os numéricos sem alteração da superfície de cedência é de 37%. Pelo contrário, quando a superfície de cedência é alterada, essa diferença diminui para 19%. Quanto ao valor da abcissa do ponto de inflexão, este é mais próximo do *i*

empírico quando a curva contempla alterações e tem-se i = 12,91m. No modelo sem alterações i aumenta para 15,43m. Uma conclusão a extrair será que a diminuição das constantes μ e k conduz, em princípio, a um resultado mais realista e próximo da solução empírica, isto é, dos resultados de campo.

Fig. 13 – Comparação de soluções numéricas com $\lambda = 0.6$ e $K_0 = 0.8$ com a solução empírica dada pela curva de Gauss com i = 10m.

4 - ESTIMATIVA DE DANOS DE ACORDO COM UMA ANÁLISE TRIFASEADA

Nesta secção pretende-se compreender de que forma as alterações introduzidas no modelo podem ou não alterar a classificação de classe de danos estruturais. Como se referiu, para estimar a classe de danos num edifício resultante de uma escavação na sua área de influência, é comum recorrer a uma análise trifaseada, como esquematizado na Figura. 14. Na primeira fase excluem-se os casos em que a curva de subsidência apresenta assentamentos inferiores a 10mm. Numa segunda fase o edifício é simulado através de uma viga elástica, assumindo-se que a mesma é infinitamente flexível e se adapta à curva de assentamentos. Os parâmetros que permitem aceder à classificação do dano, o índice de deflexão e extensão horizontal são, em seguida, calculados. Consoante o dano obtido diferentes medidas deverão ser adoptadas numa terceira fase da análise.

Considere-se, então, um edificio com comprimento L = 30m e excentricidade e = 0m relativamente ao eixo do túnel (Figura 15). Significa que o edificio está localizado sobre a zona côncava da curva de assentamentos e essa localização poderá também abranger a zona convexa da curva, uma vez que a abcissa do ponto de inflexão, *i*, não é constante nas análises numéricas efectuadas. No entanto, mesmo para o valor mais baixo do ponto de inflexão (obtido para a análise com $\lambda = 0,6, K_0 = 0.8, k = 0.55$ e $\mu = 0.05$), *i* = 12,91*m*, o edificio fica quase totalmente inserido na zona da curva com concavidade voltada para cima. Assim, são considerados apenas os assentamentos e extensões na zona côncava da curva.

A classificação de danos é obtida através do gráfico apresentado na Figura 16. Este gráfico foi obtido com recurso às equações definidas no trabalho de Burland e Wroth (1974) para uma viga isotrópica com E/G = 2,6, L/H = 1,0 e linha neutra no centro da secção. Assim, para uma dada extensão horizontal (obtida directamente das análises numéricas) e índice de deflexão, DR (calcu-

Fig. 14 – Esquematização da análise trifaseada para avaliação dos danos (Franzius, 2003).

Fig. 15 – Geometria do problema e definição do índice de deflexão, DR, para a zona côncava e convexa.

lado como se exemplifica na Figura 15), é possível calcular o dano associado. Na Figura 16 está representada a avaliação obtida para $K_0 = 0.8$, k = 0.55, $\lambda = 0.5$ e 0,6, e diferentes valores de μ . Também é possível observar a classificação para k = 1,0 e $\mu = 1,0$, ou seja, sem a alteração do modelo. Para o caso mais gravoso, com $\lambda = 0.6$, a alteração da forma da superfície de cedência traduziu-se num aumento do grau de dano para valores mais baixos de μ . Já para $\lambda = 0.5$, o dano mantém-se na categoria 3, mesmo com a alteração da superfície de cedência.

Para uma avaliação mais correcta de danos em edifícios, como é sabido, é necessário ter em conta a interacção solo-estrutura. Assim, recorre-se ao método proposto por Potts e Addenbrooke (1997), que incorpora essa interacção através de parâmetros correctivos da forma da bacia de subsidência em função da rigidez relativa axial e à flexão de uma viga elástica representativa da estrutura, e que podem ser incluídos na análise faseada. Para o solo foi considerada a rigidez axial à profundidade de 20 m, E= 24096 kPa (valor que corresponde à rigidez para 0,01% num ensaio triaxial a metade da profundidade do eixo do túnel). Na Figura 17 estão classificados os danos para os casos 1.1 a 1.6. Os casos 1.1 a 1.4 correspondem a edifícios de betão armado com diferentes geometrias e tipologias (Cota, 2013), e os cálculos 1.5 e 1.6 têm o objectivo de representar edifícios com rigidez mais reduzida. Cada caso consiste em duas situações distintas, A e B. A situação A
corresponde ao modelo com alterações da superfície de cedência ($\lambda = 0,6, K_0 = 0,8, k = 0.55$ e $\mu = 0,05$). A situação B corresponde ao modelo sem alterações ($\lambda = 0,6, K_0 = 0,8, k = 1,0$ e $\mu = 1,0$).

É possível concluir que mesmo com a alteração da forma da superfície de cedência os danos são na maioria irrelevantes ou muito ligeiros para os cálculos 1.1 a 1.4. Com a redução da rigidez relativa verifica-se um aumento de dano da categoria 1 para 3, correspondente a um dano médio. Assim, para uma rigidez muito baixa, em princípio, será necessário proceder a uma avaliação detalhada. Mais uma vez a alteração da forma da superfície de cedência é susceptível de introduzir alterações na classificação de danos.

Fig. 16 - Classificação dos danos considerando apenas a geometria do edifício.

Fig. 17 - Classificação de danos com introdução da rigidez relativa.

5 – CONSIDERAÇÕES FINAIS

Neste trabalho foram apresentados alguns dos resultados constantes de um estudo recente onde foi analisada a influência da forma da superfície de cedência do modelo de estados críticos no padrão de deformação do terreno resultante da escavação de um túnel. Assim, foram realizados uma série de estudos em estado plano de deformação e condições não drenadas, conduzidos através do programa de diferenças finitas FLAC, para um túnel superficial com secção circular. Os parâmetros utilizados no modelo constitutivo foram baseados num solo argiloso sobreconsolidado ocorrente na cidade de Lisboa: as Argilas dos Prazeres. Trata-se de um solo do Miocénico inferior com grau OCR superior a 5. O método construtivo empregue foi o método sequencial ou NATM.

Relativamente às análises numéricas apresentou-se, em primeiro lugar, as soluções para o modelo sem a correcção da forma da superfície de cedência e posteriormente estudou-se a influência do parâmetro que define a forma da superfície de cedência na zona super-crítica, μ , e do parâmetro que controla a sua geometria no plano deviatórico, k. Dado que estes parâmetros não foram obtidos experimentalmente, fizeram-se variar entre os seus valores limite. Entre estes valores limite admitiu-se também a variação do coeficiente de impulso em repouso, K_{θ} (0,8, 1,0 e 1,2), e do coeficiente de desconfinamento, que está relacionado com o método construtivo empregue, designadamente com o comprimento de escavação não suportado, λ (0,5 e 0,6).

Os resultados apresentados evidenciaram uma influência significativa nas deformações à superfície, quando se utiliza o modelo com correcções na forma da superfície de cedência, que se reflectiu posteriormente numa estimativa de danos em edifícios mais gravosa. A forma da bacia de subsidência obtida nas análises numéricas com alteração da superfície de cedência, revelaram uma melhor aproximação à forma frequentemente observada em obras.

De futuro seria de maior interesse que as constantes μ e *k*, associadas às alterações propostas fossem devidamente suportadas experimentalmente, sendo para tal necessário o recurso, por exemplo, a ensaios de corte torsional.

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- Burland, J.B.; Standing, J.R.; Jardine, F.M. (Eds.) (2001). *Building response to tunnelling*. CIRIA /Thomas Telford, London.
- Burland, J.B.; Wroth, C.P. (1974). Settlement of buildings and associated damage. Proc. of the Conference on Settlement Structures, Cambridge. British Geotechnical Society, pp. 611-654.
- Cota, C. (2013). Influência da forma da superfície de cedência do terreno no comportamento de um túnel e suas consequências na avaliação de danos nas estruturas à superfície. Dissertação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.
- Franzius, J.N. (2003). *Behaviour of buildings due to tunnel induced subsidence*. PhD thesis, Department of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, London.
- Itasca (2005). *FLAC Fast Lagrangean Analysis of Continua, Version 5.0.* User's Manual. Minneapolis, Minnesota: Itasca Consulting Group.
- Lopes, I. (2001). Avaliação das condições geológicas e geotécnicas para a caracterização do risco sísmico. Aplicação à colina do Castelo de S. Jorge. Dissertação, Faculdade de Ciências, Universidade de Lisboa.
- Mair, R.J.; Taylor, R.N.; Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clay. Géotechnique, vol. 44, n°2, pp.189-199.
- Mair, R.J. (1996). *Settlement effects of bored tunnels*. Proc. Int. Symp. on Geotechnical Aspects of Underground Construction in Soft Ground, London. Balkema, Rotterdam, pp. 43-53.

- Maranha, J.R. (1997). Analysis of embankment dams: computational aspects. PhD thesis, University of Wales.
- Marques, F. (1998). Análise do comportamento de um túnel aberto nas formações miocénicas de Lisboa. Tese de Doutoramento, Faculdade de Ciências e Tecnologia, Univ. de Coimbra.
- Miranda, L. (2011). *Influência da variabilidade geotécnica na subsidência devida à escavação de túneis urbanos*. Dissertação, Instituto Superior Técnico, Universidade Técnica de Lisboa.
- O'Reilly, M.P.; New, B.M. (1982). Settlements above tunnels in the United Kingdom their magnitude and prediction. Proc. of Tunnelling'82 Symposium. The Institution of Mining and Metallurgy, London, pp. 173-181.
- Panet, M.; Guenot, A. (1982). Analysis of convergence behind the face of a tunnel. Proc. Tunnelling'82 Symp.. The Institution of Mining and Metallurgy, London. pp. 197-204.
- Potts, D.M.; Addenbrooke, T.I. (1997). A structure's influence on tunnelling-induced ground movements. Proc. Inst. Civil Engineers Geotechnical Engineering, vol. 125, pp. 109-125.
- Potts, D.M.; Zdravkovic, L. (2001). *Finite element analysis in geotechnical engineering: application*. Vol. 2. Thomas Telford, London.
- Puzrin, A.M.; Burland, J.B.; Standing J.R. (2012). Simple approach to predicting ground displacements caused by tunnelling in undrained anisotropic elastic soil. Geotechnique, Vol. 62, pp. 341-352.
- Uriel, A.O.; Sagaseta, C. (1989). Selection of design parameters for underground construction. General report: discussion Section 9, Proc. 12th Int. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro, vol. 4, pp. 2521-2551.
- Vieira, A. (2006). Estudo do comportamento diferido no tempo de túneis em argilas sobreconsolidadas. Tese de doutoramento, Fac. Ciências e Tecnologia, Univ. de Coimbra.

ESTUDO DA DURABILIDADE DE RCD E DO ASIC PARA APLICAÇÃO NA CAMADA DE DRENAGEM E RECOLHA DOS LIXIVIADOS EM ATERROS DE RESÍDUOS

Durability study of C&DW and ISAC for application in the leachate collection and drainage layer of waste landfills

Gonçalo Manuel Rodrigues* António José Roque** A. Paula F. da Silva***

RESUMO – A valorização de resíduos em obras de engenharia civil representa uma importante vantagem ambiental e económica. Neste contexto, contribui-se com a avaliação da viabilidade técnica da aplicação de um agregado reciclado de betão britado – AB_{RCD} , resultante do processamento de resíduos de construção e demolição – RCD, e de um agregado siderúrgico inerte para a construção – ASIC, processado a partir de escórias de aciaria de forno de arco elétrico – FAE, na construção da camada de drenagem e recolha dos lixiviados existente nos aterros de resíduos. No artigo apresentam-se e analisam-se os resultados do estudo da durabilidade dos dois agregados reciclados em contacto com água e com um lixiviado recolhido num aterro de resíduos sólidos urbanos. Nesta avaliação foi relevante o comportamento observado com dois agregados naturais, o basalto – BAS e o calcário – CAL. Conclui-se que, nas condições de ensaio adotadas e numa perspetiva de durabilidade, os dois materiais apresentam comportamento que perspetiva a sua reciclagem na construção da referida camada, bem como em obras geotécnicas e infraestruturas de transporte em geral.

SYNOPSIS – The valorisation of waste as civil engineering works represents an important environmental and economic advantage. In this context, it is intended to evaluate the technical feasibility of applying a crushed concrete recycled aggregate – CC_{CDW} , processed from construction and demolition waste – C&DW, and an inert steel aggregate for construction – ISAC, processed from electric arc furnace – EAF steel slag, in the construction of the landfill leachate collection and removal system. This paper presents and discusses the results of the durability study of both recycled aggregates in contact with water and a leachate collected in a municipal solid waste landfill. The behaviour observed with two natural aggregates, basalt – BAS and limestone – CAL was relevant in this evaluation. The paper concludes that, under the test conditions adopted and in a perspective of durability, the behaviour of the two materials is adequate for their recycling in the leachate collection and removal system, as well in geotechnical works and transport infrastructures in general.

PALAVRAS CHAVE - Escórias de aciaria, resíduos de construção e demolição, durabilidade.

NOTA DO EDITOR – Este artigo foi submetido à Revista Geotecnia em face da atribuição do Prémio Jovens Geotécnicos em Língua Portuguesa de 2013 - Menção Honrosa ao seu primeiro autor, tendo por base a dissertação de mestrado apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa e desenvolvida no Laboratório Nacional de Engenharia Civil, ao abrigo do protocolo existente entre estas duas entidades.

^{*} Engenheiro Geólogo, Mestre em Engenharia Geológica (Geotecnia). E-mail: gms rodrigues@hotmail.com

^{**} Investigador Principal, Departamento de Geotecnia, Laboratório Nacional de Engenharia Civil. E-mail: aroque@lnec.pt

^{***} Professora Auxiliar, Departamento Ciências da Terra – Centro de Investigação em Ciência e Engenharia Geológica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. E-mail: apfs@fct.unl.pt

1 – INTRODUÇÃO

O grande volume de resíduos produzidos nas diversas atividades domésticas, agrícolas, comerciais e industriais, aliado à falta de medidas direcionadas para a sua valorização, contribuíram, em certa medida, para o atual estado de degradação do ambiente. No sentido de inverter este panorama, um número crescente de países tem vindo a contemplar nas suas disposições legais políticas direcionadas para promover um desenvolvimento sustentável e incentivar a reciclagem de resíduos, designadamente através dos agregados reciclados, quando estes apresentam comportamento adequado para as obras de engenharia civil, pelo menos equivalente ao assegurado pelos agregados naturais que substituam.

A Diretiva 75/442/CEE do Conselho, de 15 de julho de 1975 (Diretiva 75/442/CEE, 1975), foi um marco em matéria de gestão integrada de resíduos, numa perspetiva da sua reciclagem futura, ao aproximar as diferentes legislações nacionais dos vários estados-membros que à data integravam a União Europeia e ao ter, como objetivos, a proteção do ambiente e da saúde pública, a promoção da recuperação dos resíduos e a utilização dos materiais reciclados (Freire, 2011).

Em Portugal, o quadro jurídico da gestão de resíduos foi pela primeira vez estabelecido em 1985, por meio da publicação do decreto-lei – DL, nº 488/85, de 25 de novembro (DL 488/85, 1985), que lançou as bases para um sistema de registo obrigatório de resíduos e para a definição de competências e responsabilidades no domínio da gestão dos mesmos. Por esta via, pretendia-se implementar uma estratégia que promovesse a redução do volume de resíduos produzidos, acompanhada do desenvolvimento de processos tecnológicos que permitissem, em primeira instância, a sua reciclagem (Rodrigues, 2012).

O enquadramento legal mais recente no país em matéria de gestão integrada de resíduos, o DL nº 178/2006, de 5 de setembro (DL 178/2006, 2006), alterado e republicado pelo DL nº 73/2011, de 17 de junho (DL 73/2011, 2011), passou a estabelecer o regime geral aplicável à prevenção, produção e gestão de resíduos - RGPPGR. De entre as alterações introduzidas ao regime geral da gestão de resíduos - RGGR, previsto no diploma inicial, salienta-se a prioridade do reforço da prevenção da produção de resíduos e do fomento da sua reutilização e reciclagem com vista a prolongar o seu uso na economia antes de os devolver, em condições adequadas, ao meio natural, e a importância de promover o pleno aproveitamento do novo mercado organizado de resíduos como forma de consolidar a sua valorização e de estimular o aproveitamento de resíduos específicos com elevado potencial de valorização. Para a concretização destes objetivos foram, entre outros, estabelecidos requisitos para que substâncias ou objetos resultantes de um processo produtivo possam ser considerados subprodutos e não resíduos, e critérios para que determinados resíduos deixem de ter o estatuto de resíduo; foi prevista a utilização de pelo menos 5% de materiais reciclados em empreitadas de obras públicas; e o âmbito do mercado organizado de resíduos foi alargado aos subprodutos, aos materiais reciclados e aos resíduos perigosos, conferindo-lhe uma maior versatilidade e facilitando e potenciando a valorização de outros tipos de resíduos.

A reciclagem de resíduos em obras de engenharia civil deve ser previamente avaliada mediante a realização de um estudo que contemple a determinação das suas propriedades ambientais e de engenharia. Caso o seu potencial poluente não coloque em risco o ambiente e a saúde pública, e as suas propriedades de engenharia garantam um desempenho adequado daquelas obras ao longo do seu tempo de vida útil, é de privilegiar a utilização daqueles materiais alternativos em detrimento dos materiais naturais, num quadro de uma política de construção e de gestão de recursos sustentável.

A durabilidade dos agregados reciclados, à semelhança dos agregados naturais, é fundamental ao adequado funcionamento das obras de engenharia civil que os incorporem. Verificou-se, porém, que na bibliografia consultada não foram referenciados estudos sobre esta temática, facto que se justifica por a utilização dos agregados reciclados ainda ser uma aplicação relativamente recente, contrariamente à dos agregados naturais, cuja utilização e comportamento em obras de engenharia civil se encontram extensamente estudados e documentados. Entendeu-se, por isso, que seria do maior interesse proceder ao estudo da durabilidade dos agregados reciclados, para os quais se perspetiva uma crescente utilização futura nas obras de engenharia civil, designadamente por necessidade de cumprimento das metas de reutilização, reciclagem e outras formas de valorização material de resíduos, até 2020 (DL 73/2011, 2011).

Neste artigo apresenta-se o estudo da durabilidade de um agregado reciclado de betão britado $-AB_{RCD}$, resultante do processamento de resíduos de construção e demolição -RCD, e de um agregado siderúrgico inerte para a construção -ASIC (designação comercial do produto em Portugal), resultante do processamento de escórias de aciaria de forno de arco elétrico -FAEprocessada, com vista à utilização de ambos na construção da camada de drenagem e recolha dos lixiviados existente no sistema de proteção basal ativo dos aterros de resíduos, bem como em obras geotécnicas e em infraestruturas de transporte. No país produzem-se, anualmente, cerca de 7,5×10⁶ toneladas – ton, de RCD (Roque, 2010) e 250×10³ ton de ASIC (Roque *et al.*, 2010).

O estudo da durabilidade do AB_{RCD} e do ASIC foi efetuado com recurso ao ensaio de desgaste em meio aquoso – DMA, previsto no "Suggested method for determination of the slake-durability index" da *International Society for Rock Mechanics* – ISRM (ISRM, 1977), tendo-se utilizado dois meios aquosos: água, da rede de abastecimento público, e um lixiviado, recolhido num aterro de resíduos sólidos urbanos – RSU. A utilização da água, o meio aquoso habitualmente utilizado nos ensaios de DMA, teve como propósito: a) servir de referência aos resultados obtidos com o lixiviado e aos valores existentes na bibliografia sobre agregados naturais; e b) avaliar a durabilidade do AB_{RCD} e do ASIC neste meio, por ser o fluido mais corrente nas obras geotécnicas, designadamente na camada de drenagem do sistema de selagem final dos aterros de resíduos, e nas infraestruturas de transporte. A utilização do lixiviado justifica-se, por um lado, pelo elevado volume de material que pode ser utilizado na construção da camada de drenagem e recolha dos lixiviados e, por outro, por os aterros de resíduos continuarem a ser construídos ou ampliados no país.

Em complemento aos ensaios de DMA, procedeu-se, antes e após a sua realização, à análise petrográfica (macro- e microscópica) e à caracterização física (massa volúmica real $-M_{_{VR}}$, massa volúmica aparente $-M_{_{VA}}$, porosidade efetiva $-P_{_{er}}$, e teor máximo em água de absorção $-w_{_{max}}$) dos dois agregados reciclados.

O mesmo programa experimental realizado com os agregados reciclados foi aplicado a dois agregados naturais, um de basalto – BAS, e outro de calcário – CAL, com o objetivo dos resultados obtidos servirem de referência aos obtidos com os agregados reciclados. A relevância desta comparação assenta na já referida inexistência de estudos na bibliografia consultada sobre a durabilidade dos agregados reciclados selecionados e de estes existirem para aqueles dois agregados naturais.

Ao exposto, acresce, que de acordo com o DL nº 183/2009 (2009), de 10 de agosto, o material a aplicar na construção da camada de drenagem e recolha dos lixiviados deve ser isento de material calcário face à possível dissolução do carbonato de cálcio (CaCO₃). Deste modo, complementarmente ao objetivo principal acima descrito, também se avaliou a durabilidade do CAL em presença do lixiviado.

Após se descreverem os quatros materiais selecionados para a realização do estudo e os métodos utilizados na sua amostragem e na realização dos ensaios, apresentam-se os resultados obtidos e respetivas análises. Por último, expõem-se as principais conclusões resultantes do estudo desenvolvido.

2 – LEGISLAÇÃO E REGULAMENTAÇÃO TÉCNICA PARA A RECICLAGEM DOS RCD E DAS ESCÓRIAS DE ACIARIA DE FAE

No caso dos RCD, foi publicado em Portugal um diploma, o DL nº 46/2008, de 12 de março (DL 46/2008, 2008), que passou a estabelecer o "(...) regime das operações de gestão de resíduos resultantes de obras, de demolições de edificios ou de derrocadas (...) compreendendo a sua prevenção e reutilização e as suas operações de recolha, transporte, armazenamento, triagem, tratamento, valorização e eliminação" (Freire, 2011), e com o qual se procurou adotar uma abordagem que garantisse a sustentabilidade ambiental da atividade da construção civil numa lógica de ciclo de vida, definindo-se as metodologias e práticas a adotar nas fases de projeto e de execução da obra segundo princípios subjacentes à hierarquia da gestão de resíduos (Fortunato *et al.*, 2009). Segundo Mimoso (2007, *in* Lourenço, 2007), o interesse em legislar sobre esta matéria devia-se à necessida-de de definir uma política pública dirigida para a gestão do fluxo de RCD que permitisse criar instrumentos de acompanhamento dos volumes gerados desde a sua origem até ao seu destino final; incentivasse a triagem e valorização dos resíduos em detrimento do seu abandono ilegal ou da deposição em aterro; e clarificasse a atividade de transporte mediante a definição de regras a cumprir por parte das empresas responsáveis por esta atividade e a distinção entre a sua missão e a de um operador de gestão de resíduos.

No que respeita à escória de aciaria de FAE, não existe qualquer tipo de legislação específica no país, pelo que, neste caso, as operações de gestão deste resíduo são reguladas em concordância com o disposto no DL 73/2011 (2011).

Dada a inexistência de legislação específica em Portugal para a classificação da perigosidade ambiental dos resíduos a aplicar em obras de engenharia civil, a sua reciclagem é aceite pela autoridade reguladora nacional, a Agência Portuguesa do Ambiente – APA, desde que pertençam à categoria de resíduos admissíveis em aterros para resíduos inertes, definida pelo DL nº 183/2009, (DL 183/2009, 2009), por se considerar que em tais condições não existe risco para o ambiente e para a saúde pública. As especificações LNEC E 471 (2009), LNEC E 473 (2009) e LNEC E 474 (2009), contempladas pelo DL 46/2008 (2008), preveem, a par de uma caracterização física e mecânica, um controlo ambiental dos RCD com a frequência mínima de duas vezes por ano. No caso das escórias de aciaria de FAE, não existe legislação específica que defina a caracterização ambiental e de engenharia a realizar. Contudo, estudos já realizados por Roque *et al.* (2010) demonstraram tratar-se de um resíduo inerte, admissível em aterros para resíduos inertes, e Gomes Correia *et al.* (2012) concluíram que as suas características de engenharia são adequadas à sua utilização como material granular não ligado em camadas de pavimentos rodoviários e em aterros estruturais.

3 - PROGRAMA EXPERIMENTAL

A avaliação da durabilidade dos quatro materiais selecionados para estudo foi efetuada mediante a realização de ensaios de DMA conforme previsto pelo método da ISRM já indicado. Porém, com o objetivo de simular condições químicas e mecânicas mais agressivas e prolongadas do que as previstas no método, procedeu-se a algumas alterações.

Para cada material prepararam-se quatro conjuntos de provetes identicamente preparados. Em todos os conjuntos, aos dois ciclos de desgaste do ensaio de DMA recomendados pelo método, de 10 minutos – min cada um, à velocidade constante de 20 rotações por minuto – rpm, efetuou-se um terceiro ciclo de desgaste com a duração de 30 min (600 rotações, no total), pretendendo-se, com este último ciclo, submeter os materiais a ações mecânicas mais prolongadas. Os três ciclos de desgaste totalizaram, assim, 1000 rotações. Dois conjuntos de cada material foram ensaiados em água e os restantes dois em lixiviado.

Dois dos conjuntos ensaiados em cada material foram, antes da realização do ensaio de DMA, imersos por um período de tempo de 15 dias em água e em lixiviado. Com esta imersão prévia pretendeu-se prolongar o tempo de contato dos materiais com o meio aquoso de ensaio.

O potencial hidrogeniónico – pH, do lixiviado, que no momento da recolha no aterro de resíduos era de 7,6, foi acidificado em laboratório até se atingir um pH de 5,5. Com esta acidificação pretendeuse criar condições químicas mais agressivas que as normalmente observadas nos aterros de RSU.

Paralelamente aos ensaios de DMA, procedeu-se, antes e após a sua realização, à análise macro e micropetrográfica e à caraterização física ($M_{VR} e M_{VA}, P_e e w_{max}$) dos quatro materiais estudados. Estes ensaios decorreram com o objetivo de avaliar a ocorrência de alterações nos materiais após os ensaios de DMA, e a expressão das mesmas. O quadro 1 resume os ensaios efetuados e identifica os provetes utilizados. Com os provetes virgens (AB_{RCD}, ASIC, BAS e CAL) apenas se procedeu à análise petrográfica e à sua caracterização física, como mostra o quadro.

Ensaio	Meio aquoso	Provete
Antes do ensaio de DMA – Análise petrográfica – Caracterização física	_	AB _{rcd} ASIC BAS CAL
		AB _{RCD} DMA_A
	Água (A)	ASIC_DMA_A
Após ensaio de DMA. sem imersão	Ban (1 -)	BAS_DMA_A
 <i>prévia</i> Análise petrográfica Caracterização física 		CAL_DMA_A
	Lixiviado (L)	AB _{RCD} DMA_L
		ASIC_DMA_L
		BAS_DMA_L
		CAL_DMA_L
		AB _{RCD} DMA _L A
	Água (A)	ASIC_DMA _L A
Anós ensaio de DMA, com imersão		BAS_DMA _i _A
<i>(I) prévia de 15 dias</i>		CAL_DMA _i _A
– Análise petrográfica		AB _{RCD} _DMA _L L
 Caracterização física 	Liviviado (L)	ASIC_DMA ₁ _L
	LIXIVIAUO (L)	BAS_DMA _i _L
		CAL_DMA _i _L

Quadro 1 - Resumo dos ensaios efetuados.

4 – MATERIAIS

4.1 – Agregado reciclado de betão britado de RCD (AB_{RCD})

A amostra de AB_{RCD} utilizada no estudo proveio do processamento de RCD de diversas obras de demolição na central de reciclagem da empresa Demotri, S.A., a operar no Seixal (figura 1). Esta empresa é a responsável no Grupo Ambigroup pela área das demolições. O processamento dos RCD com vista à sua valorização como agregado reciclado é descrito em Rodrigues (2012).

O processo de amostragem do AB_{RCD} no parque da Demotri decorreu de forma empírica, por se considerar que a qualidade e a representatividade da amostra não seriam prejudicadas caso não se adotasse a totalidade das recomendações propostas em documentos técnicos, em particular nos relatórios técnicos TR 15310 (2006). As principais razões para adotar a metodologia seguida foram: a natureza do material amostrado; as condições do local da amostragem; o modo como o material se encontrava depositado; e os condicionalismos associados aos ensaios realizados no presente estudo, tais como, a dimensão e a forma dos provetes.

No quadro 2 é apresentada uma folha de registo, adaptada da norma ASTM D 4687 (1995), onde constam os elementos informativos mais relevantes do processo de amostragem do AB_{RCD} . A figura 2 complementa visualmente alguma da informação apresentada no quadro 2.

Fig. 1 – Localização dos materiais.

Nome da empresa	Demotri, S.A. (Grupo Ambigroup).				
Localização da infraestrutura	Parque Seixal/Casal do Marco – freguesia da Arrentela (Seixal).	Data da recolha	07/04/2011		
Tipo de procedimento para a produção do material	Descrito na presente secção.	Tipo de material	Agregado reciclado.		
Descrição visual do material	Material constituído por agregados naturais de dua envolvidos por uma matriz cimentícia e porosa, c pelo processo de britage	s dimensões, gros om forma irregula em.	ssos e finos, ar induzida		
Descrição do depósito de armazenamento do material	O material encontrava-se depositado numa pilha a do material recolhido tinha cerca de 2 m de altu	céu aberto (figura ıra e 5 m de comp	2a). A pilha rimento.		
Composição química do material	Sem informação.				
Número de blocos recolhidos	120 blocos de dimensões inferiores a 100 mm.	Massa total	Sem informação.		
Recipiente de recolha	5 sacos em nylon.				
Finalidade da amostragem	Estudo da durabilidade do material com ensaios de DMA, com vista à avaliação da sua adequabilidade para a construção da camada de drenagem e recolha dos lixiviados dos aterros de resíduos.				
Método de amostragem	Manual, sem recurso a qualquer tipo de equipamento de amostragem (figura 2b). Os critérios para a seleção das amostras foram estabelecidos em função das condições impostas pelos ensaios de DMA. Como tal, os blocos selecionados apresentavam dimensões inferiores a 100 mm e uma forma preferencialmente quadrangular, para facilitar a execução dos provetes necessários à realização daqueles ensaios.				
Tipo de preservação	Os blocos foram transportados nos sacos em nylon para o LNEC, mantendo-se nos mesmos, à temperatura ambiente, até à preparação dos provetes.				
Parâmetros avaliados in situ	Sem informação.				
Observações suplementares	Sem informação.				

Quadro 2 – Registo do processo de amostragem do AB_{RCD} .

Fig. 2 – Amostragem do AB_{RCD} : a) pilha de material; b) recolha de um bloco.

4.2 – Agregado Siderúrgico Inerte para a Construção (ASIC)

A amostragem do ASIC decorreu conforme descrito para o AB_{RCD} e foi realizada nas instalações da unidade industrial da Siderurgia Nacional Empresa de Produtos Longos, S.A. – SN, sita no Seixal (figura 1). O processamento das escórias de aciaria de FAE com vista à sua valorização como agregado reciclado é descrito em Roque *et al.* (2006).

No quadro 3 são apresentados os elementos informativos mais relevantes do processo de amostragem do ASIC, com alguma dessa informação a ser complementada com a figura 3.

Nome da empresa	SN.	Data da recolha 30/03/2011		
Localização da infraestrutura	Avenida Siderurgia Nacional – freguesia de Paio Pires (Seixal).			
Tipo de procedimento para a produção do material	Descrito na presente secção.	Tipo de material	Agregado reciclado.	
Descrição visual do material	Material denso, de tonalidade escura (negra), textur irregular e cortante. Em algumas amostras de A a inclusão de pequenas partícula	a vesicular e supe SIC era visível, a as de ferro.	rfície áspera, olho nu,	
Descrição do depósito de armazenamento do material	O material amostrado encontrava-se depositado em várias pilhas, a céu aberto (figura 3a). A pilha de onde o material foi recolhido tinha entre 3 e 5 m de altura e uma extensão superior a 10 m.			
Composição química do material	Sem informação.			
Número de blocos recolhidos	200 blocos de dimensões inferiores a 100 mm.	Massa total	Sem informação.	
Recipiente de recolha	2 sacos em plástico.			
Finalidade da amostragem	Ver quadro 2.			
Método de amostragem	Ver quadro 2.			
Tipo de preservação	Ver quadro 2.			
Parâmetros avaliados in situ	Sem informação.			
Observações suplementares	Sem informação.			

Quadro 3 – Registo do processo de amostragem do ASIC.

Fig. 3 – Amostragem do ASIC: a) pilha de material; b) recolha da amostra.

4.3 - Basalto (BAS)

A amostragem do BAS foi realizada no parque de armazenamento da central de processamento da pedreira nº 2029 – Moita da Ladra, sita em Vialonga (Vila Franca de Xira, figura 1), da empresa Alves Ribeiro, S.A., tendo decorrido conforme descrito para os dois agregados reciclados. O enquadramento geológico da região onde se insere a pedreira e o método utilizado no processamento do BAS são descritos em Rodrigues (2012).

No quadro 4 são apresentados os elementos informativos mais relevantes do processo de amostragem do BAS, com alguma dessa informação a ser complementada com a figura 4.

Nome da empresa	Alves Ribeiro, S.A.	Data da recolha 30/03/201		
Localização da infraestrutura	Pedreira nº 2029 – Moita da Ladra – freguesia de Vialonga (Vila Franca de Xira).			
Tipo de procedimento para a produção do material	Descrito em Rodrigues (2012).	Tipo de material	Rocha ígnea basáltica (agregado natural).	
Descrição visual do material	Material denso, de tonalidade escura (negra), g na fase da pré-britager	grão fino e forma i n.	rregular	
Descrição do depósito de armazenamento do material	O material amostrado encontrava-se depositado numa pilha, a céu aberto (figura 4a). A pilha de onde o material foi recolhido tinha cerca de 10 m de altura e uma extensão superior a 25 m.			
Composição química do material	Sem informação.			
Número de blocos recolhidos	25 blocos de dimensões superiores a 100 mm.	Massa total	125 kg.	
Recipiente de recolha	3 sacos em nylon.			
Finalidade da amostragem	Utilização como material de referência na avaliação da durabilidade dos agregados reciclados.			
Método de amostragem	Ver quadro 2.			
Tipo de preservação	Ver quadro 2.			
Parâmetros avaliados in situ	Sem informação.			
Observações suplementares	Sem informação.			

Quadro 4 – Registo do processo de amostragem do BAS.

Fig. 4 – Amostragem do BAS: a) pilha de material pré-britado; b) amostra recolhida.

4.4 - Calcário (CAL)

A amostragem do CAL foi realizada no parque de armazenamento da central de processamento da pedreira Vale Grande nº 2, sita em Meca (Alenquer, figura 1), pertencente à empresa Agrepor, S.A., tendo decorrido conforme descrito para os dois agregados reciclados. O enquadramento geológico da região onde se insere a pedreira e o método utilizado no processamento do CAL são descritos em Rodrigues (2012).

No quadro 5 são apresentados os elementos informativos mais relevantes do processo de amostragem do CAL, com alguma dessa informação a ser complementada com a figura 5.

Nome da empresa	Agrepor, S.A.	Dete de		
Localização da infraestrutura	Pedreira Vale Grande nº 2 – Freguesia de Meca (Alenquer).	recolha	30/03/2011	
Tipo de procedimento para a produção do material	Descrito em Rodrigues (2012).	Tipo de Rocha material calcária (agrega natural).		
Descrição visual do material	Material compacto, de grão fino, cor branca a amarelada, com uma forma irregular em virtude do processo de britagem. Em alguns blocos de mão eram visíveis veios de calcite e algumas zonas de tonalidade castanha-avermelhada e cinzenta.			
Descrição do depósito de armazenamento do material	O material amostrado encontrava-se depositado numa pilha, a céu aberto (figura 5a). A pilha de onde o material foi recolhido tinha cerca de 5 m de altura e uma extensão superior a 15 m.			
Composição química do material	Sem informação.			
Número de blocos recolhidos	20 blocos de dimensões superiores a 100 mm. Massa total 100 l			
Recipiente de recolha	3 sacos em nylon.			
Finalidade da amostragem	Para além do já mencionado no quadro 4, permitir a avaliação da durabilidade do material aos lixiviados, que a legislação atual (DL 183/2009, 2009) exclui para construir a camada de drenagem e recolha dos lixiviados.			

Quadro 5	- Registo do	processo de	amostragem	do (CAL.
----------	--------------	-------------	------------	------	------

Método de amostragem	Ver quadro 2.
Tipo de preservação	Ver quadro 2.
Parâmetros avaliados in situ	Sem informação.
Observações suplementares	Sem informação.

Quadro 5 (cont.) - Registo do processo de amostragem do CAL.

Fig. 5 – Amostragem do CAL: a) pilha de material pré-britado; b) recolha da amostra.

4.5 - Lixiviado

O lixiviado foi recolhido na célula C do aterro de RSU da Amarsul, S.A., localizado no Seixal (figura 1). O aterro é composto por três células: na célula A foram depositadas 650x10³ ton de RSU; a célula B recebeu cerca de 900x10³ ton, tendo-se já iniciado o seu processo de selagem; e a célula C, em exploração desde 2001, prevendo-se o seu encerramento apenas em 2020. Rodrigues (2012) detalha a composição estrutural do aterro e a composição dos resíduos depositados.

Para o processo de amostragem recorreu-se, inicialmente, a uma bomba para permitir extrair o lixiviado existente no sistema de drenagem e recolha dos lixiviados do aterro de RSU (figura 6a) para um balde em plástico. De seguida, o lixiviado foi transferido para garrafões em polietileno, com auxílio de um funil (figura 6b), e, posteriormente, transportado para o LNEC, onde ficou armazenado à temperatura de 4°C até à sua utilização nos ensaios.

Fig. 6 – Amostragem do lixiviado no aterro de RSU: a) bombagem do lixiviado a partir do sistema de drenagem e recolha; b) transferência do lixiviado recolhido para os recipientes de armazenamento a transportar.

Em laboratório, o lixiviado, que no momento da sua recolha no aterro de RSU apresentava um valor de pH igual a 7,6, foi acidificado com uma solução a 50% de ácido clorídrico – HCl, até se atingir um pH de 5,5. Esta acidificação, cujo procedimento é detalhado em Rodrigues (2012), deveu-se, por um lado, ao facto dos lixiviados nos aterros de RSU poderem apresentar valores de pH inferiores ao inicialmente medido e, por outro, por se pretender submeter os materiais a condições químicas mais agressivas que as normalmente observadas na camada de drenagem e recolha dos lixiviados.

5 – MÉTODOS

5.1 – Análise petrográfica

O estudo macropetrográfico do ASIC, do BAS e do CAL seguiu o procedimento descrito na norma NP EN 932-3 (2010), e no caso do AB_{RCD} , a norma ASTM C 856 (2011) desenvolvida para a análise petrográfica do betão. O estudo micropetrográfico, realizado em lâminas delgadas com recurso a um microscópio petrográfico, seguiu o procedimento descrito na norma EN 12407 (2007) para o ASIC, o BAS e o CAL, e no caso do AB_{RCD} , a norma ASTM C 856 (2011).

5.2 - Caracterização física

O ensaio para a determinação da M_{VR} , da M_{VA} , da P_e , e do w_{max} dos quatro materiais estudados decorreu segundo o procedimento descrito em LERO-PE01 (1993). Em cada ensaio utilizou-se um total de seis provetes, pelo que os resultados finais das quatro propriedades físicas correspondem à média dos resultados obtidos em cada um dos seis provetes.

5.3 – Durabilidade

O estudo da durabilidade dos dois agregados reciclados, o AB_{RCD} e o ASIC, e dos dois agregados naturais, o BAS e o CAL, foi efetuado mediante a realização do ensaio de DMA. Trata-se de uma técnica laboratorial desenvolvida com o objetivo de avaliar a resistência do material rochoso, em particular das rochas silto-argilosas (Jeremias, 2000), ao desgaste e à desintegração quando submetido a dois ciclos de desgaste de secagem e embebição (ISRM, 1977).

O ensaio foi realizado com recurso a um equipamento (figura 7) idêntico ao recomendado pela ISRM, exceto no número de tambores, quatro, no lugar dos dois propostos (figura 7a), o que se revelou particularmente útil, dado ter permitido empregar em cada ensaio realizado os dois meios aquosos.

Fig. 7 – Equipamento utilizado no ensaio de DMA: a) vista geral do equipamento;b) pormenor do tambor em aço inoxidável.

A partir de cada amostra de AB_{RCD} , de ASIC, de BAS e de CAL foram preparados 40 provetes, cada um com uma massa compreendida entre 40 e 60 g, perfazendo deste modo, cada conjunto de dez provetes, um total variável entre 400 e 600 g. Os provetes de AB_{RCD} , e dos dois agregados naturais, foram preparados com uma forma subangular, enquanto os provetes de ASIC apresentavam uma forma mais arredondada, ainda que não totalmente esférica, por impossibilidade de os preparar com uma forma subangular, em resultado das características intrínsecas ao próprio material. A preparação dos provetes com formas subangular e arredondada, contrariamente ao indicado no método da ISRM, que preconiza uma forma aproximadamente esférica, teve como propósito incrementar a exposição dos provetes à ação mecânica durante a realização do ensaio de DMA.

Os 40 provetes foram distribuídos de igual forma pelos quatro tambores cilíndricos em aço inoxidável e, em seguida, o conjunto provetes+tambor foi montado em quatro reservatórios, dois deles previamente preenchidos com 2,5 l de água, e os restantes dois com 2,5 l de lixiviado. Os quatro tambores com os provetes foram, posteriormente, sujeitos aos três ciclos de desgaste oportunamente mencionados. Antes do início do ensaio e imediatamente após cada um dos três ciclos de desgaste, os provetes ensaiados foram secos em estufa a 105±2 °C durante 24 horas – h e determinadas as respetivas massas secas.

De acordo com o descrito no método utilizado, o resultado do ensaio de DMA, expresso como índice de durabilidade – I_d , corresponde ao valor da percentagem da massa seca do material retido nos tambores no final do segundo ciclo, em relação à massa seca do material no início do ensaio - I_{d2} . O valor de I_{d2} referente aos dois ciclos de desgaste foi calculado pela expressão seguinte:

$$I_{d2} = \frac{C - D}{A} \times 100\%$$
⁽¹⁾

onde:

A – massa seca inicial de 10 provetes;

C – massa seca de 10 provetes após o segundo ciclo de desgaste;

D – massa do tambor.

Os resultados obtidos para I_{d2} correspondem à média dos valores de I_{d2} calculados em dois tambores, dado que no ensaio de DMA utilizaram-se dois conjuntos de 10 provetes em cada meio aquoso. O mesmo se aplica aos resultados apresentados para o I_{d1} e o I_{d5} , que correspondem, respetivamente, ao I_d do material no final do primeiro ciclo, 200 rotações, e do quinto ciclo, 1000 rotações.

6 – RESULTADOS E ANÁLISE

6.1 – Análise petrográfica

A análise macroscópica realizada a provetes virgens dos quatro materiais permitiu observar que: (a) o AB_{RCD} é um material multifásico e heterogéneo, constituído por agregados naturais de duas dimensões, grossos e finos, envolvidos por uma matriz cimentícia, porosa (presença de alguns poros de dimensão ≤ 3 mm, dispersos de modo heterogéneo) e de cor cinzenta clara (figura 8a); (b) o ASIC é um material denso, de textura vesicular, superfície áspera e irregular, de cor negra, e que contém na sua composição pequenas partículas de ferro (figura 8b); (c) o BAS é uma rocha compacta, melanocrata, de textura afanítica (figura 8c); e (d) o CAL é uma rocha compacta a oolítica, de cor branca a amarelada e na qual são visíveis veios e nódulos esféricos de calcite (figura 8d). Nos provetes dos quatro materiais não se identificaram sinais de alteração.

A análise microscópica das lâminas delgadas dos provetes virgens dos quatro materiais mostrou que: (a) o AB_{RCD} (figura 9a) é um material de estrutura complexa, composto: por uma

matriz cimentícia de cor castanha, na qual são identificados diversos pontos de cor preta distribuídos heterogeneamente, possivelmente associados a poros ou a zonas de ar aprisionado/incorporado; por agregados grossos e finos, com estes últimos a corresponderem a areias quartzíticas em resultado da presença de cristais de quartzo dispersos na matriz cimentícia; e por uma zona de transição que corresponde à interface matriz-agregados; (b) o ASIC (figura 9b) é um material de textura afanítica e de granulometria muito fina, composto por duas espécies minerais, minerais opacos e espécie mineral cuja natureza não se identificou ao microscópio petrográfico em virtude das suas características não se enquadrarem com as dos minerais comummente observados neste microscópio; (c) o BAS (figura 9c) é uma rocha hipocristalina, de textura porfirítica e granulometria fina, constituída por duas fases de cristalização, uma matriz afanítica composta por plagioclase, piroxenas, olivina e minerais opacos e fenocristais de olivina; e (d) o CAL (figura 9d) é uma rocha que apresenta uma matriz composta por calcite e por elementos cimentados, oólitos e clastos. Nas lâminas delgadas dos quatro materiais não se identificaram sinais de alteração.

Legenda: agregado britado fino – ABF; agregado britado grosso – ABG; matriz cimentícia – Mc; poros – Pts. Escala gráfica: 1 centímetro – cm.

Fig. 8 – Aspeto macroscópico dos provetes: a) AB_{RCD}; b) ASIC; c) BAS; d) CAL.

Legenda: calcite – Cal; clastos – Cla; matriz cimentícia – Mc; olivina – Ol; oolitos – Ool; minerais opacos – Opq; plagioclase – Pl; poros – Pts; quartzo – Qtz; espécie mineral não identificada – X.

Fig. 9 – Microfotografias das lâminas delgadas: a) AB_{RCD} em nicóis cruzados – NX com uma ampliação de 50×; b) ASIC em NX com uma ampliação de 200×; c) BAS em NX com uma ampliação de 50×;
d) CAL em NX com uma ampliação de 50×.

Da análise macropetrográfica realizada após os ensaios de DMA destacam-se os fenómenos de oxidação das partículas de ferro em todos os provetes de ASIC (figura 10) e dos minerais de olivina no provete BAS_DMA₁_A, bem como a deposição de matéria orgânica na superfície dos provetes dos quatro materiais ensaiados em lixiviado, em particular na matriz cimentícia dos provetes de AB_{RCD} (figura 11a e figura 11b), nos alvéolos dos provetes de ASIC e nos provetes BAS_DMA₁_L (figura 11c) e CAL_DMA₁_L (figura 11d).

Legenda: partícula de ferro oxidada - Pfo; poros - Pts; matéria orgânica - Mo. Escala gráfica: 1 cm.

Fig. 10 – Aspeto macroscópico dos provetes de ASIC: a) ASIC_DMA_A; b) ASIC_DMA₁_A; c) ASIC_DMA_L; d) ASIC_DMA₁_L.

Da análise micropetrográfica efetuada após os ensaios de DMA observaram-se alterações em todos os provetes de ASIC, correspondentes a um aumento da concentração de minerais opacos e de óxidos de ferro (figura 12), e de BAS (figura 13), correspondentes a diferentes graus de alteração dos minerais de olivina. Em particular nos provetes BAS_DMA₁_A e BAS_DMA₁_L, os fenocristais de olivina apresentaram-se parcial ou totalmente alterados, em alguns casos com perda de massa.

Legenda: agregado britado grosso - ABG; poros - Pts; matéria orgânica - Mo. Escala gráfica: 1 cm.

Fig. 11 – Aspeto macroscópico de alguns provetes ensaiados com lixiviado: a) AB_{RCD}_DMA_L; b) AB_{RCD}_DMAI_L; c) BAS_DMAI_L; d) CAL_DMAI_L.

As alterações observadas na análise petrográfica realizada após a execução dos ensaios de DMA não foram, contudo, suficientemente importantes para se refletirem na durabilidade dos quatro materiais estudados.

Legenda: óxidos de ferro – OF; minerais opacos – Opq; vidro da lâmina delgada – Vd; espécie mineral não identificada – X.

Fig. 12 – Microfotografías das lâminas delgadas dos provetes de ASIC: a) ASIC_DMA_A em NX com ampliação de 200×; b) ASIC_DMAI_A em NX com ampliação de 200×; c) ASIC_DMA_L em NX com ampliação de 200×; d) ASIC_DMA₁_L em NX com ampliação de 200×.

Legenda: sinais de alteração – Alt; olivina alterada – Ol_Alt; olivina – Ol; minerais opacos – Opq; plagioclase – Pl; vidro da lâmina delgada – Vd.

Fig. 13 – Microfotografías das lâminas delgadas dos provetes de BAS: a) BAS_DMA_A em NX com ampliação de 100×; b) BAS_DMAI_A em NX com ampliação de 100×; c) BAS_DMA_L em NX com ampliação de 50×; d) BAS_DMA₁_L em NX com ampliação de 50×.

6.2 - Caracterização física

O quadro 6 mostra os resultados obtidos para a M_{VR} , a M_{VA} , a P_e e o w_{max} nos provetes de AB_{RCD}, de ASIC, de BAS e de CAL, antes e após terem sido submetidos aos ensaios de DMA.

Da comparação entre os resultados registados na caracterização física do AB_{RCD} , do ASIC, do BAS e do CAL realizada antes da execução dos ensaios de DMA, ou seja nos materiais virgens, observa-se que o AB_{RCD} é o material menos denso, mais poroso, e com maior capacidade de absorção de água, o ASIC é o mais denso, e o BAS é o menos poroso e com menor valor de w_{max} . O CAL, por seu turno, caracteriza-se por apresentar resultados intermédios comparativamente com os restantes três materiais estudados. Em termos quantitativos conclui-se que: a) o AB_{RCD} é 1,2 e 1,5 vezes menos denso que o BAS e o ASIC, respetivamente; b) o AB_{RCD} é 1,3 vezes mais poroso que o ASIC, 3,1 vezes que o CAL e 38 vezes que o BAS; e c) o ASIC é 1,2 vezes mais denso e 27 vezes mais poroso que o BAS.

Material	Provete	MVR (Mg/m ³)	MVA (Mg/m³)	Pe (%)	w _{max} (%)
	AB _{RCD}	2,58	2,14	16,88	7,89
	AB _{RCD} _DMA_A	2,62	2,22	15,34	6,93
	AB _{rcd} _DMA_L	2,63	2,27	13,59	5,99
	AB _{RCD} _DMAI_A	2,65	2,24	15,27	6,82
Agregado	AB _{RCD} _DMAI_L	2,62	2,27	13,59	6,00
reciclado	ASIC	3,77	3,28	12,40	3,83
	ASIC_DMA_A	3,98	3,58	10,00	2,88
-	ASIC_DMA_L	3,71	3,28	11,65	3,77
	ASIC_DMAI_A	3,77	3,28	12,32	3,77
	ASIC_DMAI_L	3,78	3,29	12,61	3,90
	BAS	3,02	3,00	0,45	0,14
	BAS_DMA_A	3,01	2,99	0,48	0,16
	BAS_DMA_L	3,01	3,00	0,38	0,13
	BAS_DMA ₁ _A	3,04	3,02	0,45	0,15
Agregado	BAS_DMA ₁ _L	3,00	2,99	0,41	0,14
natural	CAL	2,72	2,58	5,40	2,20
	CAL_DMA_A	2,74	2,57	6,15	2,41
	CAL_DMA_L	2,72	2,57	5,33	2,09
	CAL_DMA _i _A	2,72	2,59	4,70	1,82
	CAL_DMA_L	2,72	2,56	5,99	2,38

Quadro 6 - Resultados da caracterização física realizada com os quatro materiais em estudo.

A comparação dos resultados obtidos para a M_{VR} , a M_{VA} e o w_{max} nos provetes virgens de AB_{RCD} com os apresentados em LNEC E 227 (2008) mostra tratarem-se de valores da mesma ordem de grandeza. De acordo com este estudo, em agregados de betão britado com granulometria compreendida entre 31,5 e 63,0 mm, os valores obtidos para a M_{VR} e a M_{VA} são respetivamente, 2,60 Mg/m³ e 2,37 Mg/m³, e para o w_{max} , 6,7%. Para esta última propriedade, refira-se, igualmente, Katz (2003 e Rao, 2005, *in* Rao *et al.*, 2007) e Gómez-Soberón (2002, *in* Martín-Morales *et al.*, 2011), que apontam para um intervalo de valores compreendidos entre 3,0 e 12,0%, para diferentes frações granulométricas de agregados de betão britado. Os valores obtidos para a P_e enquadram-se também nos dados apresentados pela bibliografia consultada. No caso do estudo de Tam *et al.* (2008), que para avaliar a P_e de 10 amostras de agregados de betão britado de dimensões inferiores a 20 mm recorreu ao método de intrusão de mercúrio, obtiveram-se valores compreendidos entre 13,94 e 20,41%.

Em relação ao ASIC, o estudo desenvolvido por Ferreira (2010), que procedeu à caracterização de escórias de aciaria de FAE processadas recolhidas também na SN do Seixal, refere para valores de M_{VR} , de M_{VA} e de w_{max} , respetivamente, 3,31 Mg/m³, 2,94 Mg/m³ e 3,87%, em ensaios realizados segundo a norma NP 581 (1969 *in* Ferreira, 2010), ou seja, da mesma ordem de grandeza dos obtidos neste estudo. No que respeita ao valor de P_e obtido nos provetes de ASIC antes da realização dos ensaios de DMA, 12,40%, este é cerca de 2 vezes superior ao valor (6,00%) apresentado por W_u *et al.* (2007), e cerca de 3 vezes superior aos apresentados por De Lima (1999), compreendidos entre 3,89 e 4,26%. Contudo, importa salientar, por um lado, que a P_e da escória é influenciada pelo tipo de processamento adotado (Pasetto e Baldo, 2010) e, por outro, que a textura vesicular da escória, materializada pela maior ou menor percentagem de alvéolos presentes na superfície do provete e pela configuração dos mesmos, aliada ao método utilizado para a determinação da P_e , podem influenciar os valores obtidos (Rodrigues, 2012), devendo-se analisar, por isso, os resultados com algumas reservas.

No que respeita aos resultados obtidos com os dois agregados naturais virgens (quadro 6), verifica-se que são comparáveis com os obtidos por Gupta e Rao (2000), Moon e Jayawardane (2004) e Tugrul (2004) para o BAS, e com os obtidos por Gupta e Ahmed (2007) para o CAL.

Comparando agora os resultados registados para as características físicas do AB_{RCD} , do ASIC, do BAS e do CAL, antes e após a execução dos ensaios de DMA, verifica-se que, de um modo geral, a utilização dos dois meios aquosos, água e lixiviado, o prolongamento das ações mecânicas (ciclo de desgaste adicional de 600 rotações em relação ao recomendado pelo método da ISRM) e a sujeição dos materiais a condições químicas mais agressivas (acidificação do lixiviado para pH 5,5) e mais prolongadas (imersão prévia dos provetes durante 15 dias), não se traduziu em alterações quantitativamente importantes. A exceção está associada à P_e e ao w_{max} nos provetes $AB_{RCD}_DMA_L e AB_{RCD}_DMA_1_L$. Entre estes e o provete virgem AB_{RCD} , a diferença percentual foi de 3,3% no caso da P_e , e de 2,0% no caso do w_{max} , devendo-se tais diferenças ao facto de, em algumas zonas da superfície da matriz cimentícia dos provetes que estiveram em contacto com o lixiviado no ensaio de DMA, se ter verificado o preenchimento dos poros aí existentes com matéria orgânica.

O fenómeno de deposição de matéria orgânica verificou-se em todos os provetes dos quatro materiais estudados, mas sobretudo nos que foram imersos antes de submetidos aos ensaios de DMA. Porém, a expressão quantitativa da sua deposição apenas se verificou nos provetes de AB_{RCD} identificados no parágrafo anterior. Em relação aos dois agregados naturais, a diferença de comportamento explica-se pela maior porosidade superficial no AB_{RCD} que no BAS e no CAL, enquanto em relação ao ASIC, deverá estar preferencialmente relacionada com a heterogeneidade textural da superfície dos provetes deste último, que pode mascarar o efeito da deposição da matéria orgânica.

6.3 – Durabilidade

Os resultados obtidos nos ensaios de DMA realizados nos dois meios aquosos, água e lixiviado, sem e após imersão prévia dos provetes, são apresentados no quadro 7. A classificação da durabilidade dos materiais em estudo foi definida com base na classificação proposta por Gamble (Gamble, 1971), mostrada no quadro 8.

Os valores de I_{d1} , de I_{d2} e de I_{d5} do AB_{RCD}, do ASIC, do BAS e do CAL obtidos em todos os ensaios de DMA foram superiores a 95%, pelo que, considerando a classificação apresentada no quadro 8 para cada I_{d5} se conclui que os quatro materiais estudados enquadram-se na categoria de materiais de durabilidade muito elevada. Os resultados evidenciam, também para esta propriedade, que o prolongamento das ações mecânicas e a sujeição dos materiais a condições químicas mais agressivas e prolongadas, não contribuíram para alterar a classificação dos materiais ensaiados quanto à sua durabilidade pela classificação proposta por Gamble.

Ainda que a durabilidade verificada nos quatro materiais ensaiados tenha sido muito elevada, é viável a sua ordenação. Deste modo, tomando por referência os valores obtidos para I_{ds} , a durabilidade dos quatro materiais assume a seguinte ordem crescente: AB_{RCD} < ASIC \cong CAL < BAS. A maior diferença percentual entre os valores obtidos para I_{ds} foi de 2,9%, e verifica-se entre os provetes AB_{RCD}_DMA₁_L e BAS_DMA_L. Em termos de massa de material perdida, este valor percentual corresponde à perda de 1,4 g.

Material	Provete	I_d	Valor	Material	Provete	I_d	Valor
		I_{dl}	99,5%			I_{dI}	99,8%
	$AB_{RCD}DMAAA$	I_{d2}	99,1%		BAS_DMA_A	I _{d2}	99,7%
		I_{d5}	98,0%			I _{d5}	99,5%
		I_{dI}	99,6%			I _{d1}	99,9%
	AB _{RCD} _DMA_L	I_{d2}	99,3%		BAS_DMA_L	I_{d2}	99,8%
		I_{d5}	98,3%			I _{d5}	99,6%
		I _{dl}	99,5%			I _{d1}	99,9%
	AB _{RCD} _DMA _I _A	I_{d2}	99,1%		BAS_DMA ₁ _A	I _{d2}	99,7%
		I_{d5}	97,7%			I _{d5}	99,5%
		I _{dl}	99,3%		BAS_DMA ₁ _L	I _{dl}	99,9%
	AB _{rcd} _DMA ₁ _L	I_{d2}	98,7%			I _{d2}	99,7%
Agregado		I_{d5}	96,7%	Agregado		I _{d5}	99,5%
reciclado		I _{dl}	99,7%	natural	CAL_DMA_A	I _{d1}	99,7%
	ASIC_DMA_A	I_{d2}	99,5%			I _{d2}	99,4%
		I_{d5}	99,0%			I _{d5}	98,7%
		I _{dl}	99,6%		CAL_DMA_L	I _{dl}	99,7%
	ASIC_DMA_L	I_{d2}	99,4%			I_{d2}	99,5%
		I_{d5}	99,0%			I _{d5}	99,0%
		I _{dl}	99,7%			I _{dl}	99,7%
	ASIC_DMA ₁ _A	I_{d2}	99,4%		CAL_DMA ₁ _A	I _{d2}	99,4%
		I_{d5}	98,9%	•		I _{d5}	98,6%
		I _{dl}	99,6%			I _{d1}	99,8%
	ASIC_DMA ₁ _L	I_{d2}	99,4%		CAL_DMA ₁ _L	I _{d2}	99,6%
		I _{d5}	98,9%			I _{d5}	99,0%

Quadro 7 - Resultados dos ensaios de DMA realizados com os quatro materiais.

A análise comparativa dos resultados obtidos para os agregados reciclados ensaiados com outros, não foi possível em virtude de não terem sido referenciados, na bibliografia nacional e internacional consultada, estudos idênticos para os agregados reciclados, em geral, e para o betão britado de RCD e as escórias de aciaria de FAE processadas, em particular. Por esta razão, comparam-se os resultados obtidos com dados publicados na bibliografia para agregados naturais, sumariados no quadro 9, de litologia idêntica à dos utilizados no estudo apresentado.

Durabilidade	<i>I</i> _{d1} (%)	I _{d2} (%)	I _{d5} (%)
Muito elevada	> 99	> 98	> 95
Elevada	98 - 99	95 - 98	85 - 95
Média a elevada	95 - 98	85 - 95	60 - 85
Média	85 - 95	60 - 85	30 - 60
Baixa	60 - 85	30 - 60	20 - 30
Muito baixa	< 60	< 30	< 20

Quadro 8 - Classificação da durabilidade dos materiais rochosos segundo Gamble.

Observa-se que Delgado Rodrigues (1986), Conde *et al.* (2004) e Sharma e Singh (2008) obtiveram valores de I_d da mesma ordem de grandeza dos registados para os dois agregados reciclados, o AB_{RCD} e o ASIC, e para os dois agregados naturais, o BAS e o CAL.

Quadro 9 – Durabilidade de	agregados naturais	s com litologia idêntica	aos estudados.
----------------------------	--------------------	--------------------------	----------------

Material	Autor	I_d (%)	Valor
	Dalara da Da drianara (1096)	I_{d2}	99,3 - 99,7
	Deigado Rodrigues (1980)	I_{d6}	96,7 - 98,8
	Loromias (2000)	I_{d2}	74,5
	Jerennas (2000)	I_{d5}	62,4
	Conde et al. (2004)	I_{d2}	98,3 - 99,4
			96,6 - 98,7 (AR)
	Kolay e Kayabali (2006) ⁶	I_{ar}	87,6 - 97,0 (SA)
			85,3 - 98,6 (AN)
Calcário			91,4 - 96,3 (AR)
		I_{d2}	84,2 - 92,0 (SA)
			82,2 - 94,8 (AN)
		I_{d3}	86,9 - 95,6 (AR)
			81,7 - 90,9 (SA)
			79,6 - 94,3 (AN)
			84,4 - 93,9 (AR)
		I_{d4}	79,6 - 87,1 (SA)
			77,6 - 91,9 (AN)
Basalto	Sharma e Singh (2008)	I_{d2}	97,0 - 98,9

Legenda: (a) calcário oolítico; (b) calcário argiloso; (AR) forma arredondada; (SA) forma subangular; (AN) forma angular

Considerando apenas o comportamento dos provetes de CAL nos ensaios de DMA realizados, não se justificaria a interdição de utilização de brita de origem calcária na camada de drenagem e recolha dos lixiviados dos aterros de resíduos prevista no DL nº 183/2009 (2009). Esta conclusão deve, contudo, ser fundamentada com estudos complementares ao presente, de modo a despistar sobre a possibilidade de ocorrência de fenómenos de dissolução em material calcário. Importa referir, no entanto, que os fatores naturais intervenientes na sua ocorrência são diferentes dos existentes na camada de drenagem e recolha dos lixiviados, em particular o tempo de duração dos processos de dissolução e carsificação, que na natureza é contabilizado numa escala de tempo geológica.

7 – CONCLUSÕES

A investigação apresentada neste artigo teve por principal objetivo avaliar a viabilidade técnica da aplicação de dois agregados reciclados, o AB_{RCD} e o ASIC, na construção da camada de drenagem e recolha de lixiviados do sistema de proteção basal ativo existente nos aterros de resíduos.

Os resultados obtidos indicam que os dois agregados reciclados, o AB_{RCD} e o ASIC, bem como os dois agregados naturais, o BAS e o CAL, utilizados no presente estudo como materiais de referência, pertencem à categoria de materiais de durabilidade muito elevada, considerando a classificação proposta por Gamble, mesmo nos casos em que os quatro materiais foram submetidos a condições químicas e mecânicas mais agressivas do que as previstas no ensaio de DMA recomentado pela ISRM (designadamente, a realização do ensaio de DMA com um lixiviado, acidificado de pH 7,6, aquando da sua recolha no aterro de RSU, para um pH 5,5; e o prolongamento do ensaio por mais 30 min, ou seja, 600 rotações). Demonstram ainda que a imersão dos materiais em água e no lixiviado durante 15 dias, precedendo a realização do ensaio de DMA, não teve influência relevante na durabilidade dos mesmos.

Os resultados do estudo petrográfico (macro e microscópico) e da caracterização física são, por sua vez, coerentes com a classificação de durabilidade obtida para os quatro materiais, dado não se terem verificado alterações significativas nas suas propriedades petrográficas e físicas iniciais.

Numa perspetiva de durabilidade e para as condições de ensaio adotadas, conclui-se, assim, que os agregados reciclados e naturais estudados podem ser aplicados na construção da camada de drenagem e recolha dos lixiviados dos aterros de resíduos, bem como noutras obras geotécnicas e em infraestruturas de transporte.

Considera-se, no entanto, necessária a continuação dos estudos para avaliar a durabilidade dos materiais a temperaturas mais elevadas (similares às que ocorrem na base dos aterros de resíduos), bem como o seu comportamento hidráulico. Em relação ao CAL, os estudos adicionais devem ter igualmente em consideração a possibilidade de ocorrência dos fenómenos de dissolução do material, na perspetiva de se avaliar a viabilidade técnica da sua utilização na camada de drenagem e recolha dos lixiviados, que não é permitida pela legislação em vigor no país.

8 – AGRADECIMENTOS

Os autores agradecem às empresas Demotri, S.A., do Grupo Ambigroup, SGPS, S.A., Siderurgia Nacional – Empresa de Produtos Longos, S.A., Alves Ribeiro, S.A., Agrepor, S.A., e Amarsul – Valorização e Tratamento de Resíduos Sólidos, S.A., pelo fornecimento dos materiais utilizados no estudo. Agradecem igualmente ao Doutor Joaquim Simão, do Departamento de Ciências da Terra/CICEGe da FCT/UNL, pelo apoio dado na análise petrográfica dos agregados estudados.

9 - REFERÊNCIAS BIBLIOGRÁFICAS

- ASTM C 856 (2011). *Standard practice for petrographic examination of hardened concrete*. Annual Book of ASTM Standards 2012, ASTM, Philadelphia, USA, vol. 04.02.
- ASTM D 4687 (1995). *Standard guide for general planning of waste sampling*. Annual Book of ASTM Standards 2012, ASTM, Philadelphia, USA, vol. 11.04.
- Conde, M.C.; Dinis da Gama, C.; Lopes, M.G. (2004). Correlação entre o comportamento mecânico de agregados e das rochas originais. Atas do 9º Congresso Nacional de Geotecnia, Aveiro, Universidade de Aveiro e Sociedade Portuguesa de Geotecnia, Aveiro, vol. 1, pp. 141-150.
- De Lima, L.A. (1999). *Hormigones con escorias de horno eléctrico como áridos: propiedades, durabilidad y comportamiento ambiental.* Tese de Doutoramento, Departament d'Enginyeria de la Construcció da Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports da Universitat Politècnica de Catalunya, Barcelona, Espanha, 243 p.
- Delgado Rodrigues, J. (1986). Contribuição para o estudo das rochas carbonatadas e para a sua classificação. Relatório 104/86 NP, LNEC, Lisboa, 45 p.
- Diretiva 75/442/CEE (1975). *Relativa aos resíduos*. Jornal Oficial das Comunidades Europeias, Bruxelas. OJ L 194, 1975-07-25, 15/Fasc. 01, pp. 129-131.
- DL 488/85 (1985). *Estabelece normas sobre os resíduos sólidos*. Diário da República Portuguesa, Imprensa Nacional Casa da Moeda, Lisboa. 1ª Série, nº 271 (1985-11-25), pp. 3905-3907.
- DL 178/2006 (2006). *Estabelece o regime geral da gestão de resíduos*. Diário da República Portuguesa, Imprensa Nacional Casa da Moeda, Lisboa. 1ª Série, nº 171 (2006-09-05), pp. 6526-6545.
- DL 46/2008 (2008). Estabelece o regime das operações de gestão de resíduos resultantes de obras ou demolições de edifícios ou de derrocadas, compreendendo a sua prevenção e reutilização e as suas operações de recolhas, transporte, armazenagem, triagem, tratamento, valorização e eliminação. Diário da República Portuguesa, Imprensa Nacional Casa da Moeda, Lisboa. 1ª Série, nº 51 (2008-03-12), pp. 1567-1574.
- DL 183/2009 (2009). Estabelece o regime jurídico da deposição de resíduos em aterro e os requisitos gerais a observar na conceção, construção, exploração, encerramento e pós encerramento de aterros, incluindo as características técnicas específicas para cada classe de aterros. Diário da República Portuguesa, Imprensa Nacional Casa da Moeda, Lisboa. 1ª Série, nº 153 (2009-08-10), pp. 5170-5198.
- DL 73/2011 (2011). Estabelece o regime geral aplicável à prevenção, produção e gestão de resíduos. Diário da República Portuguesa, Imprensa Nacional Casa da Moeda, Lisboa. 1ª Série, nº 116 (2011-06-17), pp. 3251-3300.
- EN 12407 (2007). Natural stone test methods Petrographic examination. CEN, Brussels, Belgium.
- Ferreira, S.M.R. (2010). Comportamento mecânico e ambiental de materiais granulares - Aplicação às escórias de aciaria nacionais. Tese de Doutoramento, Escola de Engenharia da Universidade do Minho, Guimarães, 330 p.
- Fortunato, E.; Lopes, M.L.; Curto, P.; Fonseca, A. (2009). Valorização dos resíduos de construção e demolição em obras geotécnicas. Seminário sobre Valorização de Resíduos em Obras Geotécnicas, Universidade de Aveiro e Sociedade Portuguesa de Geotecnia, Aveiro.

- Freire, A.C. (2011). Enquadramento dos RCD. Curso FUNDEC-LNEC: Utilização de agregados reciclados em infraestruturas de transporte, 2^a edição, Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa [em CD-ROM].
- Gamble, J.C. (1971). *Durability-plasticity classification of shales and other argillaceous rock*. PhD Thesis, University of Illinois, Chicago, USA, 322 p.
- Gomes Correia, A.; Roque, A.J.; Ferreira, S.M.R.; Fortunato, E. (2012). *Case study to promote the use of industrial byproducts: the relevance of performance tests*. Journal of ASTM International, vol. 9, n° 2, pp. 1-18.
- Gupta, A.S.; Rao, K.S. (2000). Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Engineering Geology, vol. 56, n° 3-4, pp. 257-274.
- Gupta, V.; Ahmed, I. (2007). The effect of pH of water and mineralogical properties on the slake durability (degradability) of different rocks from the Lesser Himalaya, India. Engineering Geology, vol. 95, nº 3-4, pp. 79-87.
- ISRM (1977). Suggested method for determination of the slake-durability index Part 2. Commission on testing methods. Pergamon Press, pp. 101-102.
- Jeremias, F.T. (2000). *Geological controls on the engineering properties of mudrocks of the north Lisbon area*. PhD Thesis, University of Sheffield, Sheffield, UK, 464 p.
- Kolay, E.; Kayabali, K. (2006). Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology, vol. 86, nº 4, pp. 271-284.
- LERO-PE01 (1993). Ensaio de determinação da porosidade acessível à água, das massas volúmicas e do teor máximo em água de absorção. LNEC, Lisboa.
- LNEC E 227 (2008). Caracterização de agregados reciclados de acordo com o Normativo Europeu prEN 933-11. Especificação LNEC, Lisboa.
- LNEC E 471 (2009). Guia para a utilização de agregados reciclados grossos em betões de ligantes hidráulicos. Especificação LNEC, Lisboa.
- LNEC E 473 (2009). Guia para a utilização de agregados reciclados em camadas não ligadas de pavimentos. Especificação LNEC, Lisboa.
- LNEC E 474 (2009). Guia para a utilização de materiais reciclados provenientes de resíduos de construção e demolição em aterro e camada de leito de infraestruturas de transporte. Especificação LNEC, Lisboa.
- Lourenço, C. (2007). *Otimização de sistemas de demolição Demolição seletiva*. Dissertação de Mestrado, Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa. 112 p.
- Martín-Morales, M.; Zamorano, M.; Ruiz-Moyano, A.; Valverde-Espinosa, I. (2011). Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Construction and Building Materials, vol. 25, nº 2, pp. 742-748.
- Moon, V.; Jayawardane, J. (2004). *Geomechanical and geochemical changes during early stages* of weathering of Karamu basalt, New Zealand. Engineering Geology, vol. 74, nº 1-2, pp. 57-72.

- NP EN 932-3 (2010). Ensaios das propriedades gerais dos agregados. Parte 3: Método e terminologia para a descrição petrográfica simplificada. Instituto Português da Qualidade, Caparica.
- Pasetto, M.; Baldo, N. (2010). Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. Hazardous Materials, vol. 181, nº 1-3, pp. 938-948.
- Rao, A.; Jha, K.N.; Misra, S. (2007). Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling, vol. 50, nº 1, pp.71-81.
- Rodrigues, G.M. (2012). *Reciclagem do ASIC e de RCD na camada de drenagem dos aterros de resíduos Avaliação da suscetibilidade à degradação*. Dissertação de Mestrado, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, 262 p.
- Roque, A.J.; Gomes Correia, A.; Fortunato, E.; Pardo de Santayana, F.; Castro, F.; Ferreira, S.; Trigo, L. (2006). A geotecnia na valorização de agregados siderúrgicos inertes reciclados – Um projecto nacional. Atas do 12º Encontro Nacional de Saneamento Básico, APESB, Cascais, 16 p (CD-ROM).
- Roque, A.J. (2010). O contributo da CT-VROG/SPG para a valorização de resíduos em obras geotécnicas. Atas do 12º Congresso Nacional de Geotecnia, Universidade do Minho e SPG, Guimarães, pp. 2089-2098 (CD-ROM).
- Roque, A.J.; Castro, F.; Gomes Correia, A.; Silva, S.; Cavalheiro, A. (2010). Laboratory and field leaching tests for predicting the environmental impact of Portuguese steel slag. Proceedings of the 6th International Congress on Environmental Geotechnics, ISSMGE, New Delhi, India, vol. 2, pp. 1166-1171.
- Sharma, P.K.; Singh, T.N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, vol. 67, nº 1, pp. 17-22.
- Tam, V.W.Y.; Wang, K.; Tam, C.M. (2008). Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis. Journal of Hazardous Materials, vol. 152, nº 2, pp. 703-714.
- TR 15310 (2006). Characterization of waste: Sampling of waste materials Part 1-5. CEN. Brussels, Belgium.
- Tugrul, A. (2004). The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Engineering Geology, vol. 75, n° 3-4, pp. 215-227.
- Wu, S.; Xue, Y.; Ye, Q.; Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, vol. 42, nº 7, pp. 2580-2585.

ACÇÕES SOBRE MUROS DE SUPORTE EM CONSOLA

Actions on cantilever retaining walls

Guilherme Loureiro* Nuno Guerra** Jorge Almeida e Sousa***

RESUMO – Apresentam-se e aplicam-se dois métodos de determinação das acções estáticas, devidas ao peso do solo, sobre muros de suporte em consola, um baseado na teoria de Rankine e outro na teoria de Coulomb. Descrevem-se e comparam-se os métodos e apresentam-se de forma adimensional as acções que decorrem da sua aplicação. Procede-se a uma análise paramétrica, mostrando-se a influência do ângulo de atrito solo–estrutura, da inclinação do terreno suportado, da espessura da sapata e do peso volúmico da sapata do muro. Constata-se que o método baseado na teoria de Rankine pode ser aplicado na maior parte dos casos, na medida em que, quando comparado com o método baseado na teoria de Coulomb fornece resultados iguais ou conservativos, sendo ligeiramente contra a segurança quando o ângulo de atrito solo-estrutura é menor do que a inclinação do terreno suportado.

SYNOPSIS – Two methods for determining the static actions, due to soil weight, on cantilever retaining walls are presented. One of the methods is based on Rankine's theory and the other on Coulomb's theory. The methods are described and compared and the actions determined by them are shown adimensionally. A parametric analysis is performed, studying the influence of the soil-to-wall friction angle, the inclination of supported soil, the height of the wall footing and the unit weight of the wall footing. It can be concluded that the method based on Rankine's theory can be applied in most cases, because when compared with the one based on Coulomb's theory the results are either the same or conservative, and is slightly unconservative for the cases where the soil-to-wall friction angle is less than the inclination of the supported soil.

PALAVRAS CHAVE - Muros de suporte em consola; teoria de Rankine, teoria de Coulomb.

1 – INTRODUÇÃO

Os muros de suporte em consola, de betão armado, do tipo do representado na Figura 1, são estruturas relativamente comuns. A sua análise apresenta como dificuldade a determinação dos impulsos activos que sobre eles actuam.

A geometria do muro de suporte conduz a que, normalmente, um pequeno movimento do muro seja acompanhado por uma cunha de solo, habitualmente designada por "cunha morta", que actua sempre com o seu peso como parte do muro, movimentando-se com ele e originando um paramento virtual. A geometria deste paramento virtual e o cálculo dos impulsos sobre este tipo de estrutura têm sido abordados por diversos autores, como Barghouthi (1990), Greco (1992, 1999, 2001), Matos Fernandes *et al.* (1997) e Matos Fernandes (2011).

^{*} Mestre em Engenharia Civil - Estruturas e Geotecnia, E-mail: loureiro.guilherme@gmail.com

^{**} Professor Associado, UNIC, Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, E-mail: nguerra@fct.unl.pt

^{***} Professor Associado, Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, E-mail: jas@dec.uc.pt

Fig. 1 - Muro em consola: representação da "cunha morta" e do paramento virtual.

Admita-se, no presente trabalho, que o referido paramento virtual é planar e que o seu ângulo com a horizontal é β . O procedimento natural seria, caso β fosse conhecido, calcular os impulsos sobre o muro e sobre o paramento de acordo com o que se identifica através de "Método C", na Figura 2. Verifica-se que, de acordo com este procedimento, os impulsos a determinar seriam $I_{a1}^c \in I_{a2}^c$ caso $\beta \leq \beta^* \in I_{a1}^c$, $I_{a3}^c \in I_{a4}^c$ caso $\beta > \beta^*$. Estes impulsos podem ser determinados recorrendo ao método de Coulomb (1776). O facto de β não ser conhecido complica o problema, mas no espírito de um método de equilíbrio limite faz sentido procurar o ângulo β que conduz à maior acção horizontal sobre a estrutura.

Admita-se, para já, que a altura da sapata, e, é pequena e que, portanto, o impulso I_{al}^{c} pode ser incluído no impulso I_{a2}^{c} (Figura 3). Admita-se igualmente que o paramento virtual é a superfície AB

Fig. 2 – Muro em consola; métodos C e R.

Fig. 3 – Muro em consola: impulsos.

indicada na mesma figura e que esta intersecta a superfície do terreno e não o paramento vertical do muro de betão armado, bastando, para tal, que a sapata do muro seja suficientemente larga, ou seja, que b_2 seja suficientemente grande. O ângulo β que maximiza o impulso horizontal sobre a estrutura conduz a (Greco, 1992):

$$\beta_t = 135^{\circ} - \frac{\phi'}{2} - \frac{1}{2} \left(\arcsin \frac{\sin i}{\sin \phi'} - i \right) \tag{1}$$

sendo que o ângulo ξ é dado por:

$$\xi = 45^{\circ} + \frac{\phi'}{2} - \frac{1}{2} \left(\arcsin \frac{\sin i}{\sin \phi'} - i \right)$$
(2)

Sabendo-se o valor de $\beta = \beta_t$, pode determinar-se o impulso sobre *AB*, através de

$$I_{a2}^{C} = \frac{1}{2} K_{a}^{C} \gamma h^{2}$$
(3)

71

podendo K_a^c ser calculado através da solução de Coulomb, nomeadamente através da expressão analítica de Müller-Breslau:

$$K_{a}^{C} = \left[\frac{\operatorname{cosec}\beta\,\operatorname{sen}\,(\beta - \phi')}{\sqrt{\operatorname{sen}\,(\beta + \delta)} + \sqrt{\frac{\operatorname{sen}(\phi' + \delta)\,\operatorname{sen}(\phi' - i)}{\operatorname{sen}(\beta - i)}}}\right]^{2} \tag{4}$$

Este impulso equilibra, naturalmente, com $W \in R$, a cunha de solo ABC. Divida-se, no entanto, esta cunha em duas – 1 e 2 – conforme se representa ainda na Figura 3. Considere-se, então, o equilíbrio da cunha 1 (cunha ABD). Sobre esta cunha estão aplicadas as forças I_{a2}^{c} , W_{I} e a acção da cunha 2 sobre a cunha 1, que se designa por I_{a2}^{R} . Pode mostrar-se que esta acção corresponde ao impulso de Rankine na superfície AD, formando portanto um ângulo *i* com a horizontal. O cálculo do impulso de terras pode, assim, ser realizado na superfície AD, evitando-se a determinação da superfície AB e simplificando-se o cálculo. O impulso I_{a2}^{R} será, assim:

$$I_{a2}^{R} = \frac{1}{2} K_{a}^{R} \gamma h^{\prime \prime 2}$$
(5)

sendo K_a^R dado pela teoria de Rankine extendida a solos com superfície inclinada:

$$K_{a}^{R} = \frac{\cos i - \sqrt{\cos^{2} i - \cos^{2} \phi'}}{\cos i + \sqrt{\cos^{2} i - \cos^{2} \phi'}} \cos i$$
(6)

dando origem, deste modo, ao "Método R", representado na Figura 2. Verifica-se, assim, que o Método R é equivalente ao Método C para o caso em que o paramento virtual intersecta a superfície do terreno suportado.

Admita-se agora que a superfície *AB* intersecta o paramento vertical do muro de betão armado. Para este caso o ângulo β já não é dado pela equação (1) e passa a depender, para além de ϕ' e de *i*, do ângulo de atrito solo-estrutura, δ . O impulso para esta situação está compreendido entre o impulso de Rankine (para o caso limite em que o plano *AB* intersecte o ponto *E*), e o impulso de Coulomb, para o caso limite em que os pontos *A* e *E* estão sobre a mesma linha vertical.

Quais são, no entanto, os seus valores, no intervalo destes casos limite?

2 – DESCRIÇÃO DOS MÉTODOS R E C

Em resposta a esta questão, aplique-se o método C, anteriormente descrito e compare-se os resultados obtidos com o método R. O interesse desta aplicação está, como se viu, nos casos em que não se conhece solução para o problema, ou seja, nos casos em que $\beta > \beta^*$. No que se apresenta em seguida, no entanto, mostra-se os resultados obtidos também para $\beta \le \beta^*$. As razões para se aplicarem os métodos também a esta situação são duas:

- em primeiro lugar, tal permitirá concluir que o valor de β é efectivamente dado pela equação (1) e que nas circunstâncias em que a altura da sapata, e, seja desprezada (as condições de validade da análise a que se refere a Figura 3), os métodos C e R são efectivamente coincidentes;
- em segundo lugar, tal permitirá averiguar a influência que a consideração da altura da sapata, *e*, tem nos resultados dos dois métodos e, como se verá, na diferença entre os resultados por eles obtidos.

Fig. 4 – Muro em consola; geometria e acções.

A comparação dos valores obtidos dos métodos C e R não pode ser feita directamente através da análise dos impulsos obtidos por cada um deles mas sim através da acção global sobre a estrutura.

A acção global sobre a estrutura pode ser determinada através de uma carga vertical V, uma carga horizontal H e um momento M aplicados no ponto P (Figura 4), localizado a meio da largura da sapata B. Tais acções são devidas ao peso da estrutura de suporte, ao peso do solo limitado por esta e pelo paramento virtual e aos impulsos sobre a estrutura.

No entanto, com o objectivo de tornar os resultados obtidos no presente trabalho o mais gerais possível optou-se por:

- considerar apenas as acções devidas à estrutura e ao terreno na zona correspondente a valores de x positivos, indicada a cinzento claro (Figura 4); as acções devidas ao peso da zona do muro assinalada a cinzento escuro não dependem, naturalmente, do método de cálculo dos impulsos e devem ser somadas às restantes acções pelo leitor, para utilização prática dos resultados do presente trabalho; as acções devidas à zona a cinzento claro são ΔV, ΔH (igual a H, por não haver outras acções horizontais) e ΔM^p;
- determinar essas acções no ponto O e não no ponto P, ou seja, determinar as acções ΔV , ΔH e $\Delta M'$.
- determinar estas acções em forma adimensionalizada: $\Delta V/(0,5\gamma h^2)$, $\Delta H/(0,5\gamma h^2)$ e $\Delta M'/(0,5\gamma h^3)$.

Deste modo, é possível determinar as acções adimensionais referidas em função de um número mínimo de parâmetros geométricos – e/h, b_2/h e *i*.

Se se designar por W_{me} o peso do muro à esquerda do eixo dos y (x negativos), ou seja, o peso do muro assinalado a cinzento escuro, e por $M_{w_{me}}^{P}$ o momento dessa força em relação ao ponto P, ter-se-á que, conhecendo ΔV , ΔH e $\Delta M'$, as acções no ponto P, V, H e M, podem ser determinadas por:

$$V = W_{me} + \Delta V \tag{7}$$

$$H = \Delta H \tag{8}$$

$$M = M_{W_{me}}^{P} + \Delta M^{P} = M_{W_{me}}^{P} - \Delta V \left(b_{2} - \frac{B}{2} \right) + \Delta M'$$
(9)

As equações (7) a (9) não consideram o efeito de qualquer impulso passivo; no entanto, tal impulso pode facilmente ser adicionado às referidas equações, se tal for pretendido.

As forças envolvidas nos métodos R e C estão representadas na Figura 5. Apresenta-se em Anexo as expressões que permitem determinar ΔV , ΔH e $\Delta M'$, para os métodos R e C.

Fig. 5 – Métodos C e R: forças envolvidas.

3 – RESULTADOS – CASO BASE

Considere-se como caso base a situação de um muro com e/h = 0, suportando solo com ângulo de resistência ao corte de 30° e inclinação, *i*, nula, com ângulo de atrito solo-estrutura, δ , igual a $2\phi/3$. Faz-se notar que na hipótese de e/h = 0 tal não significa, necessariamente, que não exista sapata do muro, mas apenas que não se pretende considerar a influência da espessura dessa sapata (assunto a retomar posteriormente) e que a própria sapata tem peso volúmico igual ao do solo suportado. Acrescente-se, ainda, que seria simples corrigir as equações anteriormente apresentadas para que fosse possível não considerar a influência da espessura e, simultaneamente, considerar peso volúmico da sapata diferente do do solo. Bastaria para tal acrescentar uma força vertical e considerar os seus efeitos, que traduzisse o acréscimo de peso do material da sapata relativamente ao do solo.

Analise-se, então, fazendo variar a largura da sapata adimensionalizada (b_2/h) , os seguintes resultados:

- o ângulo β para o qual a acção horizontal é maximizada;
- a acção horizontal adimensionalizada $\Delta H/(0.5\gamma h^2)$ correspondente;
- a acção vertical adimensionalizada $\Delta V/(0,5\gamma h^2)$ correspondente;

- o momento adimensionalizado $\Delta M'/(0.5\gamma h^3)$ correspondente;
- a relação $\Delta H/\Delta V$, que constitui uma medida da inclinação da carga;
- a relação $\Delta M' / \Delta V / h$, que é uma medida da excentricidade adimensionalizada.

Estes resultados encontram-se representados na Figura 6, na qual se sobrepõem, para o caso dos valores de β , os valores dos ângulos $\beta_t \in \beta^*$, e, para as restantes grandezas, os resultados obtidos pelos métodos R e C. Na mesma figura apresenta-se igualmente os resultados obtidos para condições análogas às do caso base com, no entanto, ângulos de resistência ao corte de 20 e 40°; esses resultados serão comentados a seguir.

A análise desta figura, para o caso base ($\phi' = 30^\circ$) permite as seguintes observações:

- a partir de determinado valor de b₂/h cerca de 0,58 os resultados das diferentes grandezas obtidos pelos dois métodos R e C coincidem, conforme esperado; trata-se do caso correspondente a uma sapata "larga", anteriormente referido, para o qual não é necessário recorrer ao método C, dado que o método R, de aplicação mais simples, é equivalente;
- a partir do mesmo valor de b₂/h os valores de β determinados através do método C são iguais, portanto, aos valores teóricos desse ângulo, β_t, dados pela equação (1); a partir desse valor, o ângulo β é constante, independente, portanto, da largura da sapata; é também, naturalmente, para este valor de b₂/h que β^{*} toma valor igual a β e a β_t;
- para b₂/h inferior ao valor referido, os valores de β são, para o caso em estudo, menores do que β_t, e tanto menores quanto menor for b₂/h;
- para b₂/h inferior a 0,58, os resultados dos métodos R e C diferem, tendo-se que o método R fornece maiores valores da força horizontal adimensionalizada, menores da vertical, maiores do momento e, consequentemente, maiores da relação Δ*H*/Δ*V* e da excentricidade adimensionalizada, o que evidencia que o método R seja conservativo face a C;
- verifica-se ainda que para b₂/h inferior a 0,58 e superior a cerca de 0,30, as diferenças entre as diferentes grandezas são residuais, evidenciando-se que, para o caso estudado, exceptuando relações b₂/h muito pequenas, se tem que que o método R continua a permitir uma boa aproximação dos resultados do método C.

4 – INFLUÊNCIA DO ÂNGULO DE RESISTÊNCIA AO CORTE DO SOLO SUPORTADO

Para análise da influência do ângulo de resistência ao corte do solo suportado realizou-se a análise análoga à do caso base com, no entanto, ângulos de resistência ao corte ϕ' , de 20 e 40°, a que já se fez referência. Os resultados obtidos encontram-se igualmente representados na Figura 6.

A comparação de resultados obtidos para ângulos de resistência ao corte diferentes permite extrair as conclusões esperadas, associadas ao facto de um ângulo de resistência ao corte superior reduzir as acções sobre a estrutura, que não serão analisadas no presente trabalho, por se considerar desnecessário. Há, no entanto, alguns aspectos interessantes a referir:

- a largura da sapata b₂/h a partir da qual o método R fornece os mesmos resultados que o método C (ou seja, a largura para a qual a sapata passa a ser "larga") é tanto maior quanto menor o ângulo de resistência ao corte;
- a força vertical é praticamente independente do ângulo de resistência ao corte.

(e) Relação $\Delta H/\Delta V$

(f) Excentricidade adimensionalizada

Fig. 6 – Caso base: $\phi' = 30^\circ$; i = 0; e/h = 0; $\delta/\phi' = 2/3$; comparação com casos análogos, com $\phi' = 20^\circ$ e $\phi' = 40^\circ$.

5 – INFLUÊNCIA DO ÂNGULO DE ATRITO SOLO-ESTRUTURA (caso e/h = 0)

Para análise da influência do ângulo de atrito solo–estrutura, realizaram-se algumas análises complementares, fazendo variar este parâmetro; deste modo, para além de $\delta/\phi' = 2/3$, correspondente ao caso base, apresenta-se na Figura 7 os resultados obtidos para δ/ϕ' de 0, 1/3 e 1. Os restantes parâmetros foram mantidos com o mesmo valor.

A análise da Figura 7 permite constatar que:

- os resultados obtidos do método C para $\delta/\phi' = 0$ são iguais aos resultados do método R; de notar que o método R não depende da relação δ/ϕ' ;
- todos os resultados do método C coincidem com o método R a partir da relação b_2/h de 0,58;
- o aumento da relação δ/ϕ' tem o efeito de reduzir o ângulo β , de reduzir a força horizontal adimensionalizada, de aumentar a vertical, de reduzir o momento adimensionalizado, de reduzir a relação $\Delta H/\Delta V$ e a excentricidade adimensionalizada;
- uma vez mais, as diferenças não são muito significativas para b_2/h superior a cerca de 0,3.

É igualmente interessante estudar a influência do ângulo de atrito solo–estrutura para o caso de terreno inclinado. Considere-se, assim, que $i/\phi' = 2/3$ e averigue-se a influência da relação δ/ϕ' para este caso. Os resultados estão representados na Figura 8.

A sua análise permite constatar algumas diferenças importantes em relação aos resultados apresentados anteriormente:

- o caso do método C cujos resultados são iguais aos do método R é, agora, o de $\delta/\phi' = 2/3$; verifica-se, aliás, que o método C fornece resultados iguais aos do método R, para qualquer b_2/h , para $i = \delta$;
- o método R é conservativo para $\delta > i$, não o sendo para $\delta < i$;
- existe, tal como para os casos anteriores, um valor de b₂/h para o qual os resultados do método C são iguais entre si e aos do método R; esse valor é agora de cerca de 0,33;
- o valor exacto para o qual isso acontece é ligeiramente superior para o caso de $\delta/\phi' = 1$, verificando-se mesmo uma descontinuidade no valor de β , traduzido no caso da Figura 8(a) pela linha vertical que se observa para este caso e para o referido valor de b_2/h ; é interessante constatar, no entanto, que esta descontinuidade não aparenta ter implicação nos resultados das forças e momento, que, como se pode observar nas Figuras 8(b) a (d) (e, portanto, também nas (e) e (f)), não têm qualquer descontinuidade; voltar-se-á a este assunto mais à frente no trabalho.

Algumas destas conclusões são alteradas quando se admite a influência da espessura da sapata, pelo que se voltará a este assunto posteriormente, quando tal espessura for considerada.

6 - INFLUÊNCIA DA INCLINAÇÃO DO TERRENO SUPORTADO

Analise-se agora a influência da inclinação do terreno, a partir do caso base, e fazendo variar a relação i/ϕ' ; adoptaram-se os valores desta relação de 0, 0,4, 2/3, 0,8, 29/30 e 1. Os resultados obtidos estão representados na Figura 9.

(e) Relação $\Delta H / \Delta V$

(f) Excentricidade adimensionalizada

Fig. 7 – Influência da relação δ/ϕ' para o caso $\phi' = 30^\circ$; i = 0; e/h = 0.

Fig. 8 – Influência da relação δ/ϕ' para o caso $\phi' = 30^\circ$; $i/\phi' = 2/3$; e/h = 0.

(e) Relação $\Delta H / \Delta V$

(f) Excentricidade adimensionalizada

Fig. 9 – Influência da relação i/ϕ' para o caso $\phi' = 30^\circ$; $\delta/\phi' = 2/3$; e/h = 0.

A análise desta figura permite algumas observações:

- os valores de β são tanto menores quanto maior a relação i/φ'; a partir de determinado valor de b₂/h, dependente da relação i/φ', os resultados obtidos através do método C coincidem com os de β₁ e os valores de b₂/h para os quais tal acontece são tanto menores quanto maior a relação i/φ'; para o caso de i/φ' = 1 o valor de b₂/h para o qual os valores coincidem é 0, e o ângulo β é igual a 90°;
- para *i/φ' = 2/3* o valor de β é sempre igual e igual a β_i; trata-se do caso em que *i = δ*; para *i < δ* os valores de β são crescentes com a relação *b₂/h*, até atingirem o patamar correspondente a β_i; para *i < δ* os valores de β decrescem com *b₂/h*, atingindo o mesmo patamar; de notar que quando *i* é pouco superior a *δ* caso de *i/φ' = 0,8 –* a variação de β parece ser suave, sem descontinuidades; quando *i* é bastante superior a *δ* tal descontinuidade existe e aparenta conduzir a um *b₂/h* para o qual β = β_i um pouco superior a β^{*}, sem que tal tenha efeito, como se viu anteriormente e se pode confirmar agora para estas situações, em qualquer descontinuidade no valor de β é o que ocorre para *i/φ' = 1*, verificando-se a descontinuidade para *b₂/h = 0* e tomando esta o maior valor;
- é também interessante constatar, apesar de sem utilidade prática, que os resultados do ângulo β quando b₂/h tende para zero são iguais independentemente de i/φ' e iguais ao valor de β₁ correspondente ao caso δ = i;
- a análise dos vários gráficos da referida figura permite concluir que o método R é conservativo quando *i* < δ, é exacto quando *i* = δ e quando *i*/φ' = 1 e contra a segurança (muito ligeiramente) nos restantes casos (δ/φ'< *i*/φ' < 1).

7 - INFLUÊNCIA DA ESPESSURA DA SAPATA DO MURO

Para avaliar a influência da espessura da sapata da estrutura de suporte procedeu-se a uma série de cálculos, a partir do cálculo base, que tinha e/h = 0, alterando este parâmetro para 0,1, 0,2 e 0,3. Em todos os casos manteve-se a relação $\gamma_b/\gamma = 1$, isto é, admitiu-se que o peso volúmico da sapata era igual ao peso volúmico do solo suportado pelo muro.

A Figura 10 mostra os resultados obtidos.

A análise desta figura permite constatar que:

- o método R, conforme já tinha sido constatado, fornece o mesmo resultado do método C para e/h = 0; para e/h > 0 constata-se que os dois métodos não conduzem aos mesmos resultados, sendo a diferença tanto maior quanto maior for e/h (o método R é, aliás, independente da relação e/h), sendo conservativo para e/h > 0;
- os resultados do método C para os diferentes *e/h* são tanto mais próximos quanto menor a relação *b₂/h*; efectivamente, para o caso limite de esta relação assumir valor nulo, os métodos são iguais, uma vez que deixa de fazer sentido falar-se de espessura da sapata, *e*.

8 – INFLUÊNCIA DO PESO VOLÚMICO DA SAPATA DO MURO

Como se constatará, a influência do peso volúmico da sapata do muro é relativamente pequena, pelo que, para a mostrar de forma clara nos gráficos que se apresenta se optou por adoptar o caso de e/h de 0,2, relativamente elevado, e dois valores extremos da relação γ_b/γ , 1 e 2. É, assim, o resultado destas análises que se apresenta na Figura 11.

Fig. 10 – Influência da espessura adimensionalizada da sapata, e/h, para o caso $\phi' = 30^\circ$; $\delta/\phi' = 2/3$; i = 0; $\gamma_{\theta}/\gamma = 1$.

Fig. 11 – Influência da relação γ_t/γ , para o caso $\phi' = 30^\circ$; $\delta/\phi' = 2/3$; i = 0; e/h = 0,2.

A sua análise permite constatar que:

- como seria de esperar, o ângulo β e o valor da força horizontal não depende da relação γ_{b}/γ ;
- o método R nunca fornece o mesmo resultado que o método C, sendo sempre conservativo para a situação estudada $(i/\phi' = 0 e \delta/\phi' = 2/3)$;
- os resultados das forças obtidas do método R para os dois valores da relação γ_b/γ são tanto mais diferentes entre si quanto maior a relação b_s/h ; os resultados da relação $\Delta H/\Delta V$ e da excentricidade adimensionalizada são, no entanto, muito próximos; para b_s/h tendentes para zero as diferenças anulam-se;
- a mesma descrição do *item* anterior pode ser feita para os resultados do método C.

9 - INFLUÊNCIA DO ÂNGULO DE ATRITO SOLO-ESTRUTURA (caso e/h > 0)

Para estudo da influência do ângulo de atrito solo–estrutura para o caso de e/h > 0 (na secção 5 já se tinha apresentado o estudo para e/h = 0) realizaram-se análises admitindo $\phi' = 30^{\circ}$, $i/\phi' = 2/3$, e/h = 0,2, $\gamma_{i}/\gamma = 1$ e em que se fez variar δ/ϕ' : 0, 2/3 e 1. Os resultados obtidos são apresentados na Figura 12.

Os efeitos do ângulo de atrito solo-estrutura admitindo espessura da sapata podem ser comparados com aqueles em que tal espessura não foi considerada através da análise das Figuras 12 e 8.

Pode constatar-se que os resultados do método C só coincidem com os do método R para $\delta = i$, tanto para sapatas "curtas" como para sapatas "largas". Com efeito, tanto para um caso como para outro, diferentes valores de δ conduzem a acções diferentes, sendo que o método R é conservativo para $\delta > i$ e contra a segurança para $\delta < i$. Verifica-se ainda que o método é tanto mais conservativo $(\delta > i)$ e tanto mais contra a segurança $(\delta < i)$ quanto menor for b_i/h .

10 - ANÁLISE GLOBAL DOS RESULTADOS

Os resultados apresentados mostraram que o método R pode fornecer resultados conservativos (superiores aos do método C), iguais aos do método C ou contra a segurança (inferiores aos do método C). Tais casos encontram-se resumidos no Quadro 1.

Quadro 1 – Identificação das situações em que o método R fornece resultados superiores, iguais ou inferiores aos do método C (indicados simplificadamente como R > C, $R = C \in R < C$, respectivamente).

sapata	e/h	$\delta > i$	$\delta = i$	$\delta < i$
curta	≥ 0	R > C	$\mathbf{R} = \mathbf{C}$	R < C
longa	0 > 0	R = C $R > C$	R = C $R = C$	R = C $R < C$

No caso de $\delta > i$, o método R só fornece o mesmo resultado do método C quando a sapata é longa e a espessura desta é desprezada; para todos os restantes casos o método R fornece resultados conservativos.

No caso de $\delta = i$, os dois métodos conduzem sempre aos mesmos resultados.

No caso de $\delta < i$, tal como acontece para $\delta > i$, o método R só fornece o mesmo resultado do método C quando a sapata é longa e a espessura desta é desprezada; para todos os restantes casos o método R fornece resultados inferiores aos do método C.

Fig. 12 – Influência da relação δ/ϕ' , para o caso $\phi' = 30^\circ$; $i/\phi' = 2/3$; e/h = 0,2; $\gamma_h/\gamma = 1$.

Poderá ser interessante, em face destes resultados, procurar averiguar o quanto o método R é conservativo ou contra a segurança, para os casos $\delta > i$ e $\delta < i$, respectivamente.

Para o caso $\delta > i$ constata-se que o método R é tanto mais conservativo quanto maior a diferença entre δ e *i*, quanto menor γ_t/γ e, naturalmente, para valores elevados da relação *e/h*. Procurando mostrar-se o efeito nas diferenças entre os resultados obtidos pelos dois métodos, considere-se, assim, o caso de *i* = 0, $\delta = \phi'$ (maximizando, portanto a diferença entre δ e *i*) e *e/h* = 0,3, valor muito elevado desta relação. Representam-se os resultados obtidos na Figura 13, fazendo-se notar que em abcissas se tem b_2/b_{2i} em lugar de b_2/h . Define-se b_{2i} como o valor de b_2 limite, isto é, aquele para o qual o ângulo β_i é igual a β^* (Figura 5):

$$\frac{b_{2t}}{h} = -\frac{1}{\mathrm{tg}\beta_t} \left(1 - \frac{e}{h}\right) \tag{10}$$

Na Figura 13 apresenta-se, assim, as relações $\Delta H/\Delta V \in \Delta M'/(\Delta V h)$, para dois valores de $\phi' - 20 e 40^\circ$. Faz-se notar que nesta figura, para enfatizar as diferenças, apresentam-se os resultados obtidos pelo método C (curvas identificadas com "C") e os correspondentes às diferenças entre os métodos R e C (curvas identificadas com "R-C", traduzindo, portanto, as diferenças ($\Delta H/\Delta V$)_R – $(\Delta H/\Delta V)_{\rm C} e [\Delta M'/(\Delta V h)]_{\rm R} - [\Delta M'/(\Delta V h)]_{\rm C}$).

(a) Relação $\Delta H/\Delta V$

Fig. 13 – Resultados da relação $\Delta H/\Delta V$ e da excentricidade adimensionalizada obtidos pelo método C e das diferenças entre as relações obtidas entre aquelas grandezas obtidas entre os métodos R e C; casos i = 0; $\delta/\phi' = 1$, e/h = 0,3; $\gamma_{\mu}/\gamma = 1$ com $\phi' = 20^{\circ}$ e com $\phi' = 40^{\circ}$.

A observação desta figura permite concluir que mesmo para o caso apresentado, escolhido para extremar as diferenças entre os dois métodos, a diferença existente para o caso de sapata longa $(b_2/b_{2t} > 1)$ é relativamente pequena. Para valores de b_2/b_{2t} mais pequenos, inferiores a cerca de 0,5 para o caso da relação $\Delta H/\Delta V$ e a cerca de 0,25 para o caso da excentricidade adimensionalizada, as diferenças aumentam muito significativamente, tornando-se o método R excessivamente conservativo.

Para o caso $\delta < i$ constata-se que o método R é tanto mais contra a segurança quanto maior a diferença entre *i* e δ , quanto menor γ_b/γ e, naturalmente, para valores elevados da relação *e/h*. Procurando mostrar-se o efeito nas diferenças entre os resultados obtidos pelos dois métodos, considere-se, assim, o caso de $i/\phi' = 0.95$, $\delta/\phi' = 1/3$ (maximizando, portanto a diferença entre δ e *i* e

mantendo δ num valor mínimo realista) e e/h = 0,3. Representam-se os resultados obtidos na Figura 14, fazendo-se notar que em abcissas se tem, tal como na Figura 13, b_2/b_{2i} em lugar de b_2/h .

Fig. 14 – Resultados da relação $\Delta H/\Delta V$ e da excentricidade adimensionalizada obtidos pelo método C e das diferenças entre as relações obtidas entre aquelas grandezas obtidas entre os métodos R e C; casos $i/\phi' = 0.95$; $\delta/\phi' = 1/3$, e/h = 0.3; $\gamma_{b}/\gamma = 1$ com $\phi' = 20^{\circ}$ e com $\phi' = 40^{\circ}$.

A observação desta figura permite concluir que a diferença existente para o caso de sapata longa $(b_2/b_{2t} > 1)$ é relativamente pequena. Para valores de b_2/b_{2t} mais pequenos, inferiores a cerca de 0,5 para o caso da relação $\Delta H/\Delta V$ e a cerca de 0,25 para o caso da excentricidade adimensionalizada, as diferenças aumentam muito significativamente, tornando-se o método R significativamente contra a segurança.

11 - CONCLUSÕES

Descreveram-se dois métodos de determinação das acções sobre muros de suporte em consola, designados por "Método R" e "Método C". No primeiro caso os impulsos são determinados usando a teoria de Rankine sobre uma superfície vertical que passa na extremidade da sapata; no segundo caso, o método considera um paramento virtual planar inclinado, que pode intersectar a superfície do terreno suportado (caso de sapata "larga") ou o paramento do muro (caso de sapata "curta"). Mostrou-se como as acções provenientes da aplicação de cada método podem ser determinadas, de forma geral e adimensional, em função de um reduzido número de parâmetros geométricos, do ângulo de resistência ao corte do terreno e, no caso do método C, também do ângulo de atrito solo-estrutura.

Aplicaram-se os métodos a um caso base e estudou-se o efeito de diversos parâmetros: o ângulo de resistência ao corte, o ângulo de atrito solo-estrutura, a inclinação do terreno suportado, a espessura da sapata do muro e o peso volúmico da sapata do muro.

Para a sapata larga, os métodos R e C são equivalentes quando a espessura da sapata é desprezada; considerando a espessura da sapata, o método R fornece resultados conservativos para $\delta > i$, iguais aos do método C para $\delta = i$ e contra a segurança para $\delta < i$. A influência da espessura não é, no entanto, muito significativa, pelo que o método R constitui uma boa solução para o problema.

Para a sapata curta, o método R é conservativo para $\delta > i$, fornece resultados iguais aos do método C para $\delta = i$ e é contra a segurança para $\delta < i$.

As diferenças entre os métodos são tanto maiores quanto maior for o valor absoluto da diferença entre δ e *i*, maior a relação entre os pesos volúmicos do muro e do terreno e maior a espessura da sapata. Para larguras da sapata (b_2) da ordem de metade da largura a partir da qual a sapata é larga (b_2) o método *R* pode tornar-se muito conservativo (caso $\delta > i$) ou muito contra a segurança (caso $\delta < i$), pelo que tais casos merecem análise mais detalhada, usando o método C.

12 - REFERÊNCIAS BIBLIOGRÁFICAS

- Barghouthi, A. F. (1990). Active earth pressure on walls with base projection. ASCE Journal of Geotechnical Engineering, 112(7), pp. 727-745.
- Coulomb, C. A. (1776). Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l'architecture. Mem. Acad. Roy., 7, p. 38.
- Greco, V. R. (1992). *Discussion to active earth pressure on walls with base projection*. ASCE Journal of Geotechnical Engineering, 118(5), pp. 825-827.
- Greco, V. R. (1999). Active thrust on cantilever walls in general conditions. Soils and Foundations, 39(6), pp. 65-78.
- Greco, V. R. (2001). Active thrust on cantilever walls with short heel. Canadian Geotechnical Journal, 38(2), pp. 401-409.
- Matos Fernandes, M. (2011). *Mecânica dos Solos. Introdução à Engenharia Geotécnica,* volume 2. FEUP Edições.
- Matos Fernandes, M. A.; Mateus de Brito, J.; Cardoso, A. S.; Vieira, C. F. S. (1997). 25 Anos da Sociedade Portuguesa de Geotecnia – Eurocódigo 7: Projecto Geotécnico, capítulo Estruturas de suporte, pp. IV–1-53. LNEC.

ANEXO

Apresenta-se em seguida os valores das forças determinadas para ambos os métodos. O peso da sapata do muro é, naturalmente, independente do método usado e é (atendendo a que apenas são contabilizadas as forças na zona cinzenta clara da Figura 4), adimensionalizando-o:

$$w_b = \frac{W_b}{0.5\gamma h^2} = 2 \frac{e}{h} \frac{b_2}{h} \frac{\gamma_b}{\gamma}$$
(11)

Método R

No Método R, os pesos do solo que actuam como fazendo parte do muro são $W_{sl}^{R} e W_{s2}^{R}$. Os pesos adimensionalizados correspondentes são $w_{sl}^{R} e w_{s2}^{R}$, dados por:

$$w_{s1}^{R} = \frac{W_{s1}}{0.5\gamma h^{2}} = 2 \frac{b_{2}}{h} \left(1 - \frac{e}{h}\right)$$
(12)

$$w_{s2}^{R} = \frac{W_{s2}}{0.5\gamma h^{2}} = \left(\frac{b_{2}}{h}\right)^{2} \text{tg}\,i$$
 (13)

O impulso activo I_a^R , soma de I_{a1}^R com I_{a2}^R , adimensionalizado, tem componente horizontal:

$$p_{ah}^{R} = \frac{I_{ah}^{R}}{0.5\gamma h^{2}} = K_{a}^{R} \left(1 + \frac{b_{2}}{h} \text{tg}\,i\right)^{2} \cos i \tag{14}$$

com o coeficiente de impulso K_a^R a dado pela equação (6) ou, o que é equivalente, fazendo na equação (4) $\beta = 90^\circ$ e $\delta = i$:

$$K_{a}^{R} = K_{a}^{C}(\beta = 90^{\circ}; \phi'; i; \delta = i)$$
(15)

e componente vertical:

$$p_{av}^{R} = \frac{I_{av}^{R}}{0.5\gamma h^{2}} = K_{a}^{R} \left(1 + \frac{b_{2}}{h} \text{tg}\,i\right)^{2} \,\text{sen}\,i$$
(16)

Os acréscimos de forças vertical ΔV e horizontal ΔH e o acréscimo de momento $\Delta M'$ adimensionalizados são determinados através de:

$$\frac{\Delta V}{0.5\gamma h^2} = w_{s1}^R + w_{s2}^R + p_{av}^R + w_b \tag{17}$$

$$\frac{H}{0.5\gamma h^2} = p_{ah}^R \tag{18}$$

$$\frac{\Delta M'}{0,5\gamma h^3} = -w_{sI}^R \frac{1}{2} \frac{b_2}{h} - w_{s2}^R \frac{2}{3} \frac{b_2}{h} + p_{ah}^R \frac{1}{3} \left(1 + \frac{b_2}{h} \operatorname{tg} i\right) - p_{av}^R \frac{b_2}{h}$$
(19)

89

Método C

Paramento virtual intersectando a superfície do terreno

Para o caso de paramento virtual intersectando a superfície do terreno, os pesos do solo adimensionalizados são:

$$w_{sI} = \frac{W_{sI}}{0.5\gamma h^2} = 2 \left(1 - \frac{e}{h}\right) \frac{1 - \frac{e}{h} + \frac{b_2}{h} \text{tg}\beta}{\text{tg}\beta - \text{tg}i}$$
(20)

$$w_{s2} = \frac{W_{s2}}{0.5\gamma h^2} = \operatorname{tg} i \left(\frac{1 - \frac{e}{h} + \frac{b_2}{h} \operatorname{tg} \beta}{\operatorname{tg} \beta - \operatorname{tg} i} \right)^2$$
(21)

$$w_{s3} = \frac{W_{s3}}{0.5\gamma h^2} = \left(\frac{b_2}{h} - \frac{1 - \frac{e}{h} + \frac{b_2}{h} \mathrm{tg}\beta}{\mathrm{tg}\beta - \mathrm{tg}\,i}\right) \left(1 - \frac{e}{h} + \mathrm{tg}\,i\frac{1 - \frac{e}{h} + \frac{b_2}{h} \mathrm{tg}\beta}{\mathrm{tg}\beta - \mathrm{tg}\,i}\right) \tag{22}$$

Os impulsos sobre a estrutura são I_{al} (com parcelas I_{all} e I_{al2}) e I_{a2} . A parcela I_{all} corresponde ao impulso provocado pelo efeito de sobrecarga do terreno acima do limite superior da sapata e a parcela I_{al2} ao impulso provocado pelo terreno abaixo do limite superior da sapata. Adimensionalizando estes impulsos e determinando as suas componentes horizontal e vertical obtém-se:

$$p_{a11h} = \frac{I_{a11h}}{0.5\gamma h^2} = 2 K_{a1} \left(1 - \frac{e}{h} + \frac{b_2}{h} \operatorname{tg} i \right) \frac{e}{h} \cos \delta$$
(23)

com

$$K_{a1} = K_a^C (\beta = 90^{\circ}; \phi'; i; \delta)$$
(24)

$$p_{a12h} = \frac{I_{a12h}}{0.5\gamma h^2} = K_{a1} \left(\frac{e}{h}\right)^2 \cos\delta$$
(25)

$$p_{a11\nu} = \frac{I_{a11\nu}}{0.5\gamma h^2} = p_{a11h} \operatorname{tg} \delta \tag{26}$$

$$p_{a12v} = \frac{I_{a12v}}{0.5\gamma h^2} = p_{a12h} \text{tg}\,\delta \tag{27}$$

$$p_{a2h} = \frac{I_{a2h}}{0.5\gamma h^2} = -K_{a2} \left(1 - \frac{e}{h} + \operatorname{tg} i \frac{1 - \frac{e}{h} + \frac{b_2}{h} \operatorname{tg} \beta}{\operatorname{tg} \beta - \operatorname{tg} i} \right)^2 \operatorname{sen}(\phi' + \beta)$$
(28)

com

$$K_{a2} = K_a^C(\beta; \phi'; i; \delta = \phi')$$
⁽²⁹⁾

$$p_{a2\nu} = \frac{I_{a2\nu}}{0.5\gamma h^2} = -\frac{p_{a2h}}{\text{tg}(\phi' + \beta)}$$
(30)

o que conduz a:

$$\frac{\Delta V}{0.5\gamma h^2} = w_{s1} + w_{s2} + w_{s3} + p_{a11\nu} + p_{a12\nu} + p_{a2\nu}$$
(31)

$$\frac{H}{0,5\gamma h^2} = p_{a11h} + p_{a12h} + p_{a2h} \tag{32}$$

$$\frac{\Delta M'}{0,5\gamma h^3} = -w_{sI}\frac{1}{2}\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i} - w_{s2}\frac{2}{3}\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i} - w_{s2}\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i} - w_{s2}\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i} + \frac{b_2}{h}\right) + p_{a2h}\frac{1}{3}\left(2\frac{e}{h}+1+\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i}\mathrm{tg}\beta}\mathrm{tg}i\right) - p_{a2\nu}\frac{1}{3}\left(2\frac{b_2}{h}+\frac{1-\frac{e}{h}+\frac{b_2}{h}\mathrm{tg}\beta}{\mathrm{tg}\beta-\mathrm{tg}i}\right) + p_{a11h}\frac{1}{2}\frac{e}{h} - p_{a11\nu}\frac{b_2}{h} + p_{a12h}\frac{1}{3}\frac{e}{h} - p_{a12\nu}\frac{b_2}{h}$$
(33)

Paramento virtual intersectando o muro de suporte

Para o caso de paramento virtual intersectando o muro de suporte, o peso do solo adimensionalizado é:

$$w_s = \frac{W_s}{0.5\gamma h^2} = -\left(\frac{b_2}{h}\right)^2 \mathrm{tg}\beta \tag{34}$$

e os impulsos adimensionalizados p_{a11h} , p_{a12h} , p_{a11v} e p_{a12v} são dados pelas equações (23) a (27). Os restantes impulsos adimensionalizados são:

$$p_{a4h} = \frac{I_{a4h}}{0.5\gamma h^2} = K_{a4} \left(1 - \frac{e}{h} + \frac{b_2}{h} \operatorname{tg}\beta \right)^2 \cos\delta$$
(35)

com

$$K_{a4} = K_a^C (\beta = 90^{\circ}; \phi'; i; \delta)$$
(36)

$$p_{a4v} = \frac{I_{a4v}}{0.5\gamma h^2} = p_{a4h} \operatorname{tg} \delta \tag{37}$$

$$p_{a31h} = \frac{I_{a31h}}{0.5\gamma h^2} = \frac{b_2}{h} \frac{2K_{a3} \mathrm{tg}^2 \beta}{\mathrm{tg} \, i - \mathrm{tg} \beta} \left(1 - \frac{e}{h} + \frac{b_2}{h} \mathrm{tg} \beta \right) \mathrm{sen} \left(\phi' + \beta \right)$$
(38)

com

$$K_{a3} = K_a^C(\beta; \phi'; i; \delta = \phi')$$
⁽³⁹⁾

$$p_{a31\nu} = \frac{I_{a31\nu}}{0.5\gamma h^2} = -\frac{p_{a31h}}{\text{tg}(\phi' + \beta)}$$
(40)

91

$$p_{a32h} = \frac{I_{a32h}}{0.5\gamma h^2} = K_{a3} \left(\frac{b_2}{h}\right)^2 \operatorname{tg}^2 \beta \,\operatorname{sen}\left(\phi' + \beta\right)$$
(41)

$$p_{a32\nu} = \frac{I_{a32\nu}}{0.5\gamma h^2} = -\frac{p_{a32h}}{\text{tg}(\phi' + \beta)}$$
(42)

o que conduz a:

$$\frac{\Delta V}{0.5\gamma h^2} = w_s + w_b + p_{a11\nu} + p_{a12\nu} + p_{a31\nu} + p_{a32\nu} + p_{a4\nu}$$
(43)

$$\frac{H}{0,5\gamma h^2} = p_{a11h} + p_{a12h} + p_{a31h} + p_{a32h} + p_{a4h}$$
(44)

$$\frac{\Delta M'}{0,5\gamma h^3} = -w_s \frac{1}{3} \frac{b_2}{h} + p_{a11h} \frac{1}{2} \frac{e}{h} + p_{a12h} \frac{1}{3} \frac{e}{h} - p_{a11v} \frac{b_2}{h} - p_{a12v} \frac{b_2}{h} + p_{a4h} \frac{1}{3} \left(1 + 2 \frac{e}{h} - 2 \frac{b_2}{h} \text{tg} \beta \right) + p_{a31h} \left(\frac{e}{h} - \frac{1}{2} \frac{b_2}{h} \text{tg} \beta \right) - p_{a31v} \frac{1}{2} \frac{b_2}{h} + p_{a32v} \left(\frac{e}{h} - \frac{1}{3} \frac{b_2}{h} \text{tg} \beta \right) - p_{a32v} \frac{2}{3} \frac{b_2}{h}$$
(45)

DESENVOLVIMENTO DE NOVAS TECNOLOGIAS PARA INCLINÔMETROS APLICADOS AO MONITORAMENTO DE OBRAS GEOTÉCNICAS

Development of new technologies for inclinometers applied to monitoring geotechnical structures

Rodrigo Siqueira Penz* Adriano Luís Toazza** Maurício Tonello Vargas*** Francisco Dalla Rosa****

RESUMO – Os sistemas de medição e monitoramento em taludes objetivam verificar a existência e a evolução de movimentos horizontais na massa de solo e são indispensáveis em áreas de riscos. Um instrumento bastante conhecido para medições de movimentos em taludes é o inclinômetro, que realiza medições da inclinação de sua sonda em relação a vertical gravitacional, segmentando a profundidade em trechos de reta definidos pela distância entre os rodízios da sonda. O desenvolvimento e implementação realizados no inclinômetro neste trabalho, destacam atributos como: a redução da distância de segmentação da profundidade para 0,15 m, aumentando o número de medições ao longo do trecho medido; a medição automática da profundidade e dos ângulos da sonda com a sonda em movimento; a utilização de um programa de interface que realiza a captura de todas as medições através de uma comunicação Bluetooth, com a gravação destes resultados em um arquivo com extensão ".CSV", extensão esta reconhecida em todos os programas de planilhas.

SYNOPSIS – The systems for measurement and control of slopes have the main goal of checking the existence and evolution of horizontal movements in the ground and are indispensable in risky areas. A commonly used tool for the measurement of movements in slopes is the inclinometer, which measures the inclination of its probe related to the gravitational vertical, dividing the depth in equal parts defined by the distance between the probe casters. The development and implementation operated in the inclinometer described in this work provide as main features: reduction of the depth segmentation to 0.15m, thus increasing the number of measurements along the measured part; automatic measurement of the probe depth and inclination with the probe in motion; use of an interface program that captures all measurements through Bluetooth communication and records these results in a CSV file recognized by all spreadsheets.

PALAVRAS CHAVE - Inclinômetros, tecnologia MEMS, monitoramento de obras geotécnicas.

1 – INTRODUÇÃO

Os desafios de grandes obras geotécnicas têm imposto cada vez mais a necessidade da instalação de sistemas de monitoramento, como forma de avaliar o seu desempenho pós-construção. Desta forma, a instrumentação e o monitoramento de diferentes tipos de obras geotécnicas tem-se tornado cada vez mais frequente. O uso destas ferramentas colabora principalmente no

^{*} Universidade de Passo Fundo - UPF, Passo Fundo - RS. E-mail: rodrigopenz@upf.br

^{**} Universidade de Passo Fundo - UPF, Passo Fundo - RS. E-mail: toazza@upf.br

^{***} Universidade de Passo Fundo - UPF, Passo Fundo - RS. E-mail: mautv@ibest.com.br

^{****} Universidade de Passo Fundo - UPF, Passo Fundo - RS. E-mail: dalla@upf.br

monitoramento (*in situ* ou remoto) do desempenho de tais estruturas quando em operação. Entre os exemplos de sistemas de monitoramento *in situ*, podem-se citar os trabalhos apresentados por Rosi *et al.* (2011), Mishra *et al.* (2011), Stark e Choi (2008), Lin e Tang (2005), Dixon e Spriggs (2007) entre outros, e os sistemas de monitoramento remoto, apresentados por Tofani *et al.* (2013), Yin e Zhu (2008), e outros trabalhos.

Entre os instrumentos clássicos utilizados *in situ* se destaca o inclinômetro por ser uma ferramenta simples, a qual fornece importantes parâmetros relacionados a deslocamentos horizontais e/ou verticais.

Machan e Bennett (2008) estabelecem que inicialmente, os inclinômetros eram utilizados para o monitoramento de escorregamentos e estabilidade de taludes. Contudo, atualmente estes dispositivos são utilizados no monitoramento dos impactos de escavações próximas a obras já existentes, bem como, na avaliação dos recalques de barragens e de estruturas rodoviárias, podendo resumir como obras geotécnicas em geral.

Dunnicliff (1988) apresenta as características básicas encontradas nos inclinômetros, onde os mesmos utilizam sensores que detetam a variação de ângulo de um tubo guia em relação à direção vertical. Os sensores mais comuns utilizados nas sondas são os do tipo corda vibrante (Russo, 2005), extensômetros do tipo LVDT (*Linear Variable Differential Transducer*) (Krelling, 2006), *strain gauges* (Krelling, 2006), métodos acústicos (Dixon e Spriggs, 2007), refletometria no domínio do tempo (Lin e Tang, 2005), e sensores de fibra ótica (Yin e Zhu, 2008).

Contudo, recentemente tem sido empregada a tecnologia MEMS (*Micro-Electro-Mechanical System*). Os sensores com tecnologia MEMS se utilizam de pequenas partes móveis instaladas no interior de pequenos circuitos integrados. Exemplos de inclinômetros que utilizam está tecnologia são apresentados por Hanto *et al.* (2011), Abdoun (2010), Busslinger (2009), Machan e Bennett (2008), Bennett *et al.* (2011), e outros.

Machan e Bennett (2008) descrevem que sondas com acelerômetro MEMS são de tecnologia mais recente e apresentam condições favoráveis com relação ao baixo consumo de energia e custo, reduzido tamanho e elevada durabilidade. Contudo, esta tecnologia apresenta condições desfavoráveis como sensibilidade à temperatura, ruído no sinal medido e precisão entre $\pm 2,6$ mm a ± 6 mm a cada 30 metros de excursão, alcançando valores superiores em comparação aos sistemas acionados por servo-acelerômetros, que apresentam $\pm 1,2$ mm na mesma distância percorrida. Embora esta informação seja proveniente das especificações dos fabricantes, ainda não existe a comprovação por estudos independentes, uma vez que a sua aplicação em sondas comerciais de inclinômetros foi iniciada em 2005.

Hanto *et al.* (2011) propõem a utilização de um sistema de medição de inclinação em tempo real utilizando o acelerômetro ADXL330. Contudo, estas sondas apresentam ainda dimensões elevadas quando considerados os sensores atualmente disponíveis. Este aspeto muitas vezes pode inviabilizar medições de grandes movimentos de maciços ou estruturas. Aliado a este fato, também os atuais sistemas realizam as medições de forma estática e numa única direção, o que resulta em dificuldades e atrasos nas medições realizadas em campo.

Neste contexto, o presente trabalho busca apresentar um Sistema de Aquisição de Inclinações (SADi), constituído de um inclinômetro de tamanho reduzido, capaz de efetuar medições de inclinação utilizando um acelerômetro com tecnologia MEMS biaxial. Ao mesmo tempo, o SADi realiza a medição de profundidade da sonda com o uso de um *encoder* de forma contínua na medida em que o inclinômetro é excursionado pelo tubo guia. Os dados são enviados automaticamente através de um sistema Bluetooth até a sua interface de leitura, que pode ser acoplada com um microcomputador convencional ou outra plataforma que possua o sistema de comunicação Bluetooth.

Acredita-se que as características de melhoramentos agregados do SADi possam resultar em uma evolução dos sistemas de medições de inclinação, buscando ampliar seu uso e difundi-lo para as mais diversas áreas.

2 – DESENVOLVIMENTO DO SISTEMA

O sistema desenvolvido buscou manter o tradicional método de medição de inclinação em taludes, ou seja, utilizando-se tubo guia, sonda e um sistema de interface de leitura. Entretanto, o sistema de interface para o SADi é realizado através de um PC ou em um dispositivo móvel genérico, onde previamente deve estar instalado o programa desenvolvido para operar como interface com o usuário.

O SADi utiliza como transdutor de medição de inclinação um acelerômetro biaxial SCA-100T-D02. A sua estrutura compacta possibilitou a construção de uma sonda de dimensões reduzidas, propiciando uma característica melhorada no que tange a excursão da mesma internamente ao tubo guia. Além deste aspeto, este sensor é capaz de realizar a medição do ângulo com a vertical nas direções 0°-180° e 90°-270°.

A sonda desenvolvida para o SADi pode operar dentro de tubos guias de 45 mm a 90 mm. A sonda possui seu corpo construído em aço inox 316, com dimensões externas de 25,4 mm de diâmetro, 450 mm de comprimento (menos da metade das sondas tradicionais, que possuem 1000 mm). A distância entre os eixos dos rodízios é de 150 mm, massa de 1,15 kg e diâmetro dos rodízios de 24 mm. O principal ganho com a redução da distância entre os rodízios está relacionado com a maior precisão na identificação de interfaces de movimento de massa, as quais são comuns onde existem materiais com diferentes características geotécnicas.

As vedações dos circuitos elétricos e das conexões elétricas possuem índice de proteção IP-68, o que possibilita a imersão da sonda em líquidos de forma permanente. Na Fig. 1 é apresentada a forma final da sonda do sistema SADi.

Fig. 1 – Sonda do SADi.

Com estas dimensões, a sonda do SADi propicia excursões em curvas com raios de 0,7 m, onde comparativamente uma sonda com distância entre rodízio igual a 500 mm, somente possibilita excursões em raios mínimos de 0,9 m. Esta comparação refere-se a excursões em tubos guias de 90 mm de diâmetro. A Fig. 2 apresenta a comparação da sonda convencional com a que foi desenvolvida neste estudo.

Fig. 2 - Comparação das sondas na excursão por curvas.

A redução do tamanho da sonda além de propiciar a excursão da mesma em curvas com raios reduzidos propicia também a redução dos intervalos em que ocorrem as medições das inclinações. Desta forma, tem-se um incremento do número de medições de inclinações realizadas no trecho amostrado.

Seguindo as técnicas de medições de inclinação que utilizam sondas móveis em invólucros, os intervalos de aquisição ao longo do trecho amostrado ocorrem na mesma distância do espaçamento dos eixos dos rodízios (Fig. 3), mantendo-se desta forma, um ponto comum de referência entre a medição atual e a medição antecessora. A Fig. 3 ilustra para um trecho do invólucro a sonda do SADi realizando duas medições em um intervalo de 450 mm, sendo estas medições os ângulos α_1 e α_2 em comparação as sondas tradicionais, as quais efetuam apenas uma medição num intervalo de 500 mm, sendo este ângulo β_1 .

Fig. 3 – Comparação das medições entre a sonda do SADi e uma sonda convencional.

Ainda, está incorporado ao sensor SCA100T-D02 um canal de comunicação serial SPI "Serial Peripheral Interface", por onde as informações das medições dos eixos são enviadas em resolução de 11 bits através do cabo elétrico para a interface de leitura.

Os dados coletados pelo sensor são enviados através de um cabo blindado multipolar, acrescido de uma malha externa de blindagem e seis condutores de secção quadrada com 1 mm² de área encordoados em classe 5, indicando um cabo flexível. A sua especificação é complementada pela capacidade de isolamento de 500 V.

Além da transmissão de dados e alimentação do acelerômetro, o cabo elétrico também apresenta a função de sustentação da sonda, bem como é utilizado para movimentar o sistema de referência e medição da posição da sonda.

A posição da sonda é registrada através da passagem do cabo elétrico por entre um mecanismo contendo três roldanas. Em uma destas roldanas, está acoplado um *encoder* incremental, que envia sinais elétricos conforme a sonda se movimenta. Estes sinais elétricos são levados à placa eletrônica responsável por realizar a aquisição dos sinais da profundidade da sonda, sejam estes deslocamentos ascendentes ou descendentes. O sistema de medição da posição da sonda é apresentado na Fig. 4.

Fig. 4 – Sistema de medição de deslocamento do SADi.

O processo de realização das leituras durante o ensaio em campo é esquematizado na Fig. 5. No fluxograma, é indicado que o sistema SADI realiza a aquisição do ângulo da sonda no instante quando a profundidade requerida é alcançada, passando a transmitir o valor da inclinação para o dispositivo de gravação (PC ou *tablet*) por meio de comunicação Bluetooth.

A utilização de um sistema automático de medição da inclinação da sonda propicia menores riscos de aquisição de dados errados. Machan e Benett (2008) afirmam que um dos principais problemas relacionados com o uso de inclinômetro está relacionado a medições erradas da profundidade durante o monitoramento.

Desta forma, o sistema aqui proposto é capaz de realizar as medições de deslocamento do tubo guia a cada 15 cm.

O sistema controlador do SADi é composto por uma placa eletrônica que apresenta o microcontrolador PIC16F876A (PIC), responsável por várias ações do sistema. Uma das ações do PIC é receber e condicionar os sinais da medição da profundidade da sonda provindos do *encoder*. Outra função do PIC é realizar o recebimento e condicionamento dos dados das inclinações enviadas pelo canal SPI do inclinômetro SCA100T-D02, além de realizar o envio dos dados das medições das inclinações para a interface de leitura. Também é função do controlador disponibilizar as tensões reguladas para alimentação dos dispositivos elétricos. O SADi está projetado para operar em locais onde não há fornecimento de energia elétrica, desta forma um sistema de bateria está dimensionado para cumprir com as necessidades das solicitações de corrente instantânea e com as condições de capacidade de carga para regimes de longas durações.

Fig. 5 - Fluxograma do funcionamento do SADi.

O SADi realiza também a comunicação com a interface de leitura através da transmissão por Bluetooth (Fig. 5). A escolha do sistema Bluetooth se deve ao baixo consumo que este tipo de dispositivo apresenta, permitindo então que sejam alcançados longos períodos de utilização com uma bateria. Além do menor consumo de energia do sistema, o uso da transmissão via Bluetooth fornece uma adaptabilidade maior aos diferentes sistemas de armazenamento de dados para operar em conjunto com o SADi.

Desta forma, o sistema proposto é capaz de se comunicar com um PC, *tablet*, ou ainda um *smartphone*. O único requisito para tais dispositivos é possuir um canal de comunicação Bluetooth. Junto a estes requisitos é também necessária a utilização do programa desenvolvido especificamente para utilização com o SADi. Este programa possui uma interface de usuário conforme apresentado na Fig. 6. As indicações de profundidade da sonda, dos ângulos das medições em eixo direto e em eixo transversal aos rodízios, bem como, a velocidade de excursão da sonda são apresentados de forma instantânea pela interface.

Fig. 6 – Interface com o usuário do SADi em ambiente Windows.

Os dados das medições realizadas pelo SADi são disponibilizados em um arquivo ".CSV", que contém as informações de profundidade, inclinação, deslocamento vertical e horizontal (direto e transversal) de cada trecho medido.

3 – AFERIÇÃO E CALIBRAÇÃO DO EQUIPAMENTO

A calibração da sonda foi efetuada ajustando o ângulo do corpo da sonda ao ângulo zero gravitacional. Na sequência, o valor medido pelo SADi foi ajustado via programa de forma a medir zero graus. Para promover este ajuste foi construído um suporte articulado, contendo um segmento de tubo guia onde a sonda apoia-se naturalmente por seus rodízios. O ajuste da sonda com o ângulo vertical foi realizado com o auxílio de uma mesa tridimensional de alta precisão modelo Prismo Navigator fabricada pela Carl Zeiss, assumidos aqui como os valores reais de inclinação.

Através da medição do ângulo paralelo com o eixo vertical pela mesa tridimensional na parede externa do tubo guia, foi possível verificar a diferença existente entre a medição provinda da mesa tridimensional (tomada como real) e a medição provinda do inclinômetro. Assim, foi possível efetuar a compensação da diferença de medidas através de ajuste no programa do microcontrolador responsável pelo condicionamento do sinal enviado pelo inclinômetro.

Ainda com relação a verificações das medições realizadas pelo inclinômetro foi possível utilizar o mesmo suporte citado anteriormente para a verificação do comportamento linear das medições. Foram realizadas várias excursões da sonda para os quatro sentidos (D+: eixo direto positivo; D-: direto negativo; I+: eixo transversal positivo; I-: transversal negativo), fixando a sonda em posições aleatórias e realizando medições pelo SADi e pela mesa tridimensional.

Fig. 7 – Esquema das medições que a sonda é capaz de realizar ao mesmo tempo.

O sistema desenvolvido é capaz de realizar medidas de ângulos de $\pm 50^{\circ}$ com relação ao eixo gravitacional. Contudo, durante este processo de aferição foi observado uma pequena não linearidade entre o valor real e o valor indicado pelo SADi. O erro de linearidade foi transformado em uma equação de segunda ordem, confirmado pelo comportamento típico do erro como é demonstrado na Fig. 8, que apresenta o comportamento gráfico do erro de linearidade e a equação do erro baseada na linha de tendência do polinômio.

Segundo as especificações do fabricante do sensor, o inclinômetro pode apresentar uma não linearidade durante as medições de diferentes ângulos, onde esta pode variar de -0,57° a 0,57°. Esta não linearidade também foi identificada durante o processo de aferição do SADi, tendo esta não linearidade comportamentos diferentes em função da inclinação da sonda.

Desta forma, os erros de linearidade foram separados em duas equações para cada sentido de medições. Para os ângulos entre 0° e 5,0° foi aplicada uma equação sem membro constante e para ângulos entre 5,01° e 50° é aplicada uma equação de segunda ordem como apresentada na Fig. 8. As equações encontradas dos erros, que no total são 8 equações, foram implementadas no programa do microcontrolador corrigindo a não linearidade das medições do inclinômetro.

Fig. 8 - Comportamento do erro de linearidade do inclinômetro e a equação comportamental do erro.

Após a implementação das equações dos erros no programa do microcontrolador, foi realizada nova aferição para os quatro sentidos, a fim de verificar a correta linearidade das medições do SADi. Na Fig. 9 é apresentado o resultado final do ajuste realizado na mesa tridimensional no sentido positivo de eixo direto da sonda do SADi, onde se observa o baixo erro medido entre o ângulo real e aquele obtido pelo SADi.

Fig. 9 – Ensaio de verificação da calibração do SADi no sentido positivo de eixo direto da sonda.

Dentre as propostas do SADi, a realização das medições de inclinação com a sonda em movimento acaba por possibilitar a ocorrência de erros nas medições, devido as variações de velocidades durante a excursão da sonda, situações características de acelerações e desacelerações. As variações de velocidade na sonda acabam por interferir no valor medido, pois o circuito MEMS

utilizado na sonda do SADi é um acelerômetro. Conforme seu fabricante o SCA100T-D02 é influenciado na ordem de 57,33°/g. A fim de minimizar a ocorrência das variações de velocidades durante o deslocamento da sonda, é acionado mecanicamente através do movimento do cabo elétrico da sonda, um disco de inércia que reduz a ocorrência de grandes acelerações e desacelerações. O disco de inércia que acaba por ser tracionado por um dos rolos guia do sistema de medição de profundidade, através da passagem do cabo da sonda é apresentado na Fig. 4.

Na segunda ação para minimizar as influências das acelerações sobre o resultado das medições do SADi é utilizado um sistema de filtro digital no programa do microcontrolador. O sistema de filtro escolhido é o filtro passa baixa, que pela teoria de filtros permite a passagem de sinais de baixa frequência. Assim aplicando ao SADi a análise do filtro, não serão atenuados pelo filtro os valores das medições sucessivas provindas de pequenas variações de medições angulares, logo atenuando os valores das medições sucessivas que apresentam grandes variações de medições angulares. A fundamentação desta condição é baseada no comportamento da medição angular numa distância entre rodízios igual a 15 cm. É afirmativo então que grandes variações de valores medidos na distância de 0,15 m são influências de acelerações da sonda e neste caso o valor da medição será atenuado. A Equação 1 é a equação do filtro "passa baixa" escolhido e a Fig. 10 mostra o gráfico da resposta do filtro implementado.

$$Id = 1/\{[(10*(Ii-Ia))/Ia]^{2}+1\}$$
(1)

Na Equação 1 a parcela "Id" representa o fator assumido para atenuação do valor lido no ponto. A parcela "Ii" é o valor enviado pela sonda do SADi, e pode conter influências das variações das acelerações e a parcela "Ia" é a média aritmética das últimas quatro leituras, ou seja, é a tendência do comportamento da inclinação da sonda, definido pelas últimas quatro medições. Assim, verificando-se os valores da Fig. 10 para o comportamento da resposta da medição através da Equação 1, identifica-se no eixo das abscissas a inscrição "relação da medição", que é definida pela parcela "(Ii-Ia)/Ia" na Equação 1 e no eixo das ordenadas identifica-se a inscrição "valor assumido da medição", que é definido pela parcela "Id" na Equação 1.

Observando a Fig. 10, identifica-se a janela "calcular", que está referenciada ao cruzamento das linhas pontilhadas sugestivamente escolhido. Neste cruzamento a atenuação do sinal medido definido pelo valor da ordenada "f(x)" será de 0,5043, ou seja, haverá uma atenuação de 50% da

Fig. 10 - Resposta do filtro "passa baixa" implementado no programa.

variação da medição do ponto em relação a média. Atenta-se que a atenuação de 50% ocorrerá no ponto 0,313 das abscissas, assim uma variação angular de 31,3% em relação à média das últimas quatro medições atenua a variação em 50%.

A atenuação do filtro implementado definido pela Equação 1 afetará a diferença entre o valor "Ii" e o valor "Ia", ou seja, sobre a diferença entre as medições consecutivas, como definido pela Equação 2.

$$If=[Id^{*}(Ii-Ia)]+Ia$$
(2)

Na Equação 2 a parcela "If" representa o valor real de inclinação que o SADi irá assumir para o ponto, com característica tendenciosa, pois atenua a diferença entre as medidas consecutivas, somando-a a média anterior, logo pode-se afirmar que o sistema opera sobre uma tendência. Embora o valor de "If" seja assumido como real pelo SADi, este valor não é utilizado para o cálculo da média das últimas quatro medições "Ia". É assumido para realizar o cálculo da média o valor da medição "Ii", que desta forma promove uma agilidade no acompanhamento das variações das medições angulares provindas da sonda do SADi. Esta condição é necessária, pois, todo o sistema de filtragem acaba por atrasar o acompanhamento do sinal real, e se caso as variações de medições sucessivas de proporção elevada forem verdadeiras e não estiverem influenciadas por acelerações, seus valores serão mantidos e em um ciclo de quatro leituras a média já estará modificada e produzirá menor atenuação para o comportamento da nova tendência.

4 - VALIDAÇÃO DO SADI

Com o intuito de validar os resultados apresentados pelo SADi, foi proposta a comparação da sua eficiência frente aos equipamentos disponíveis comercialmente. Neste caso, a validação do sistema foi realizada através da medição dos deslocamentos horizontais de diferentes estacas de concreto armado com comprimento de 8,5 m, solicitadas a um carregamento horizontal como apresentado na Fig. 11a. A sonda de referência utilizada neste estudo é produzida pela *Slope Indicator*, a qual possui um aspeto similar ao apresentado na Fig. 2b.

O campo experimental utilizado neste estudo já possui uma ampla caracterização geotécnica, onde foram realizados ensaios de placa, SPT (*Standard Penetration Test*) e sondagem a trado, entre outros. Resultados de ensaios triaxiais indicaram que os parâmetros c' e ϕ ' são respetivamente 8 kPa e 28°.

Primeiramente foi lançada a sonda de referência e realizadas as medições do trecho. Logo em seguida foi lançada a sonda do SADi e realizadas quatro excursões com medições pelo tubo guia, desta forma possibilitando realizar em conjunto o ensaio de repetição. Os comportamentos das medições das sondas para o ensaio comparativo estão demonstrados na Fig. 11b.

Para o ensaio comparativo entre o SADi e o inclinômetro de referência no trecho de 8,0 m, foi encontrada a maior diferença no deslocamento horizontal de 24,83 mm, medido a menor pelo SADi, o que resulta um desvio máximo da medição de 17,12%. Ainda, com relação ao ensaio comparativo a menor diferença de medição efetivada pelo SADi foi de 7 mm a menor que a referência, resultando em um desvio mínimo da medição de 4,82% e para a média das quatro medições o SADi apresentou uma média de 15,85 mm a menor que o valor de referência, efetivando um desvio médio de medição de 10,93%.

Utilizando os resultados experimentais, foi analisado o desvio entre as medições realizadas pelo SADi, resultando em um desvio médio de 6,92 mm, representando 5,34%.

Também, foi necessário para a validação do SADi a verificação do funcionamento do sistema de medição de profundidade da sonda, constituído pelo mecanismo composto pelas três roldanas,

Fig. 11 – Avaliação da reprodutibilidade das medições realizadas com o SADi em comparação aos resultados de um sistema comercialmente vendido (Slope Indicator):
 a) Localização; b) Deslocamento horizontal acumulado.

o *encoder* e a placa de aquisição. O *encoder* dimensionado para efetuar a verificação do movimento da sonda possui 100 pulsos por volta e a roldana tracionadora do *encoder* possui um diâmetro de 31,8 mm, resultando num comprimento periférico de 99,9 mm. Assim, com relação aos pontos de profundidade em que serão efetuadas as medições de inclinação, estes ocorrerão afastados de 150 mm entre si, visto que a distância entre os rodízios do SADi é de 150 mm. Com isto, o SADi realiza a contagem de 150 pulsos em seu *encoder*, promovendo o deslocamento de 149,85 mm da sonda, resultando em um erro de 0,1%.

Para a verificação prática do funcionamento do sistema de medição de profundidade da sonda, utilizou-se uma trena métrica. Foi medida uma distância no cabo elétrico de sustentação da sonda igual a 8 m, a sonda foi lançada dentro do tubo guia, para reproduzir uma ação real de medição, ocorrendo a tração no cabo elétrico. Ao final do trecho de 8 m ocorreu a antecipação da leitura da distância por parte do SADi em 5 mm, efetivando um erro ensaiado para a situação definida de 0,062%. O erro encontrado no ensaio acabou sendo menor do que o esperado (0,1%). Este fato deve-se muito as características elásticas do cabo elétrico que estando em suspensão e tração acabou se alongando, compensando a medição de profundidade realizada pelo SADi.

5 – CONCLUSÕES

Após as realizações dos ensaios com o SADi, verificou-se a possibilidade de efetuar a medição de inclinação utilizando um acelerômetro em movimento. Os resultados dos ensaios apontam a valores percentuais de erros relativamente pequenos junto com a manutenção da tendência comportamental da referência. Esta condição alcançada pelo SADi é decorrente das implementações realizadas, que promoveram uma maior estabilidade da velocidade no deslocamento do cabo elétrico através do disco de inércia, assim surtindo em uma menor possibilidade de ocorrência de acelerações, e uma condizente atenuação de ruídos nos valores das medições, realizadas pelo filtro digital, sendo que ambas as ações ainda são passíveis de melhorias.

Nas condições em que são apresentados os resultados das medições do SADi, o profissional que utilizará os resultados possui liberdade de manipulação dos valores medidos, já que estes estão apresentados em uma planilha. Incluído ao processo de medição o SADi efetiva a impossibilidade de ocorrência de equívocos na medição de profundidade, incidindo de uma maneira automática todas as medições necessárias para a montagem da tabela de resultados e salvando estes dados em disco rígido do PC ou em uma memória móvel (*pen drive*, cartão SD, ...).

Ao final dos ensaios chegou-se à conclusão que o tempo para realizar a medição de todo o trecho com o SADi, precisando de realizar várias medições a mais no trecho, devido à distância menor dos rodízios, chegou a ser a metade do tempo com o modelo comparado.

Melhoria, ajustes e mais testes estão sendo efetuados com o sistema SADi, a fim de produzir um produto acabado de excelente qualidade, buscando facilitar a instalação do sistema no local a ser medido, ter excelente confiabilidade e fornecer ao usuário informações palpáveis e úteis para uma adequada análise.

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- Abdoun, T. (2010). *MEMS Based Real-Time Monitoring System For Geotechnical Structures*. Indian Geotechnical Conference, GEOtrendz. IGS Mumbai Chapter & IIT Bombay.
- Bennett, V.; Abdoun, T.; Zeghal, M.; Koelewijn, A.; Barendse, M.; Dobry, R. (2011). Real-time Monitoring System and Advanced Characterization Technique for Civil Infrastructure Health Monitoring. Advances in Civil Engineering, Vol. 2011, Article ID 870383. Hindawi Publishing Corporation.
- Busslinger, M. (2009). *Landslide time-forecast methods*. HSR University of Applied Sciences Institut für Bau und Umwelt. Disponível em http://bau.hsr.ch. Acesso em 13. Jan. 2012.
- Dixon, N.; Spriggs, M. (2007). Quantification of Slope Displacement Rates Using Acoustic Emission Monitoring. Canadian Geotechnical Journal 44, 6, 966-976.
- Dunnicliff, J. (1988). *Geotechnical Instrumentation for Monitoring Field Performance*. Lexington, Massachusetts: John Wiley & Sons, Inc.
- Hanto, D.; Widiyatmoko, B.; Hermanto, B.; Puranto, P.; Handoko, L.T. (2011). *Real-time inclinometer using accelerometer MEMS*. Research Center for Physics, Indonesian Institute of Sciences.
- Krelling, P.C.L. (2006). Concepção de um Inclinômetro Foto-Mecânico para Controle Geodésico de Estruturas. Tese Doutorado. UFPR, Curitiba.
- Lin, C.P.; Tang, S.H. (2005). Development and Calibration of a TDR Extensioneter for Geotechnical Monitoring. Geotechnical Testing Journal, Vol. 28, nº 5.

- Machan, G.; Bennett, V.G. (2008). Use of Inclinometers for Geotechnical Instrumentation on Transportation Projects: State of the Practice. Transportation Research Board, Soils and Rock Instrumentation Committee, Engineering Geology Committee.
- Mishra, P.K.; Shukla, S.K.; Dutta, S.; Chaulya, S.K.; Prasad, G.M. (2011). *Detection of Landslide Using Wireless Sensor Network*. Central Institute of Mining and Fuel Research. IEEE.
- Rosi, A.; Bicocchi, N.; Castelli, G.; Mamei, M.; Zambonelli, F.; Berti, M.; Corsini, A. (2011). Landslide Monitoring With Sensor Networks: Experiences and Lessons Learnt from a Real-World Deployment. Int. Journal Signal and Imaging Systems Engineering.
- Russo, L.N. (2005). Interpretação de Deformação e Recalque na Fase de Montagem de Estrutura de Concreto com Fundação em Estaca Cravada. Tese Doutorado. USP-Escola de Engenharia de São Carlos.
- Stark, T.D.; Choi, H. (2008). Slope Inclinometers for Landslides. Technical Development: Landslide.
- Tofani, V.; Segoni, S.; Agostini, A.; Catani, F.; Casagli, N. (2013). Technical Note: *Use of Remote Sensing for Landslide Studies in Europe*. Natural Hazards and Earth System Sciences.
- Yin, J., Zhu, H. (2008). Monitoring of soil nailed slopes and dams using innovative technologies. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

VARIAÇÃO DOS EFEITOS DAS QUEDAS DE ROCHAS EM SEÇÕES RODOVIÁRIAS POR MODIFICAÇÕES NA SEÇÃO TRANSVERSAL E NOS ELEMENTOS DE PROTEÇÃO

Variation of rockfall effects on road sections by changes in cross section and elements of protection

Jorge Hernán Flórez Gálvez* Luiz Antônio Bressani**

RESUMO – São apresentados alguns resultados de simulações de quedas de blocos em quatro seções rodoviárias, obtidas através das informações coletadas durante o projeto e execução do Lote 2 da rodovia RS471/BR153, localizada no Estado do Rio Grande do Sul (sul do Brasil). Definiram-se quatro condições de seção transversal para cada local, além de cinco elementos de proteção, e foram feitas combinações entre eles visando obter o melhor nível de desempenho sob cada condição, estabelecendo como parâmetro de comparação a frequência de invasão de blocos dentro da área de operação veicular. As simulações foram feitas com o programa *RocFall*, definindo o coeficiente de restituição normal (R_N) para os materiais dos taludes mediante uma correlação entre este parâmetro e as leituras obtidas com o martelo Schmidt. A forte rugosidade superficial dos taludes motivou uma análise de sensibilidade considerando três condições e diferentes valores de R_N visando obter a condição que melhor representasse a realidade.

SYNOPSIS – Some results are presented of simulations of rockfalls in four road sections, obtained through the information gathered during the design and construction of the Section 2 of RS471/BR153 highway, located in Rio Grande do Sul State (southern Brazil). Four conditions of cross section for each location were defined, as well as five elements of protection, and combinations between them were made to obtain the best level of performance under each condition, establishing as control parameter the rate of invasion of blocks within the vehicle operating area. The simulations were done with the software RocFall by setting the coefficient of normal restitution (R_N) for the material of the slopes by means of a correlation between this parameter and the reading obtained with the Schmidt hammer. The strong surface roughness of slopes motivated a sensitivity analysis considering three conditions and different R_N values to obtain the condition that could represent the reality in the best manner.

PALAVRAS CHAVE – Quedas de rochas, martelo Schmidt, coeficientes de restituição, elementos de proteção contra quedas de rochas.

1 – INTRODUÇÃO

A existência de maciços rochosos intactos, completamente contínuos, corresponde a um evento pouco comum, principalmente para os encontrados em superfície, afetados por agentes naturais e/ou antrópicos, que fazem com que a suas propriedades tendam a apresentar mudanças com o

^{*} Doutorando, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Brasil. E-mail: jhflorezg@gmail.com

^{**} Professor Associado, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Brasil. E-mail: bressani@ufrgs.br

passo do tempo. Às vezes, dependendo do material e do tipo de agente de alteração, a taxa de variação de propriedades pode levar de meses até muitos anos.

Na maioria dos casos, os maciços rochosos devem ser considerados como sendo conjuntos de blocos limitados nas três dimensões por um sistema de descontinuidades (Norrish e Wyllie, 1996). Em alguns casos, as descontinuidades podem guardar ou não padrões de ocorrência, o que permitirá definir o tipo de mecanismo de falha presente para o caso estudado.

Um dos tipos de mecanismos que envolvem estes tipos de materiais corresponde às quedas, que como resultado da ação da natureza ou do homem podem originar que em algumas superfícies muito íngremes aconteça o destaque de alguns blocos dentre os existentes (Giani, 1992). Este tipo de mecanismos não necessariamente se encontra associado com outros maiores. Os principais problemas deste tipo de mecanismo têm a ver com a sua própria velocidade, classificada entre rápida e muito rápida segundo a proposta de Cruden e Varnes (1996), e com os níveis de energia desenvolvidos pelos blocos em trajetória de queda, principalmente em taludes de grande altura.

O objetivo do presente estudo é estabelecer a variação nos efeitos das quedas de blocos, tanto pela aplicação de modificações na seção transversal, quanto pela implantação de elementos de proteção de uso comum em seções rodoviárias, seja em topografías homogêneas em corte (comumente conhecidas como corte caixão), seja em meia encosta. Os resultados obtidos pela aplicação de uma determinada alternativa serão analisados segundo a frequência de queda de rochas dentro da área de operação veicular (incluindo os acostamentos). O presente estudo foi aplicado ao subtrecho 2 da rodovia RS471/BR153, localizado entre os municípios de Herveiras e Vera Cruz (centro de Estado de Rio Grande do Sul, sul do Brasil). Os resultados aqui apresentados podem ser consultados em maior detalhe no trabalho desenvolvido por Flórez-Gálvez (2012).

2 – ESTUDO DAS QUEDAS DE ROCHAS

Em boa parte das situações, as oscilações térmicas diárias ou sazonais provocam variações volumétricas em massas rochosas que podem conduzir ao destaque de blocos (Guidicini e Nieble, 1984) ao levar as descontinuidades a condições de pressão neutra ou com resultante desfavorável (Gomes, 2009). Além disto, existem alguns outros fatores que podem desencadear os processos de quedas de rochas, tais como:

- Intemperismo físico e químico;
- Terremotos;
- Explosões;
- Tráfego pesado.

Neste sentido, vários trabalhos têm sido desenvolvidos visando uma melhor compreensão das principais variáveis deste tipo de mecanismos, empregando para isto uma ou até várias metodologias: registros de quedas e/ou lançamentos controlados *in situ* (Ritchie, 1963; Wu, 1985; Pierson *et al.*, 2001; Lorentz, 2006; Spadari *et al.*, 2011; Buzzi *et al.*, 2011); ensaios em laboratório a escala reduzida até real (Rayudu, 1997; Peng, 2000; Chau *et al.*, 1999, 2002; Giani *et al.*, 2004; Heidenreich, 2004; Wang e Lee, 2010); e aplicação dos anteriores resultados em programas de análise de quedas como Colorado Rock-Fall Simulation Program - CRSP (Pfeiffer e Bowen, 1989), Rockfall (Spang e Sönser, 1995), RocFall (Stevens, 1998), entre outros. Embora os estudos mencionados tenham sido desenvolvidos tanto para encostas como para taludes, a modelagem de quedas de rochas é empregada com maior frequência para o primeiro caso.

2.1 - Tipos de mecanismos e trajetórias de queda

Inicialmente, os estudos de quedas de rochas estavam focados na determinação do alcance máximo dos blocos em função unicamente da altura de queda, considerando que o bloco crítico era
aquele que saia da crista do talude (Ritchie, 1963). No entanto, a existência de diferentes tipos de mecanismos de deslocamento obrigou a aprofundar os estudos visando definir modelos matemáticos que pudessem considerar os parâmetros próprios de cada um deles. Vários são os trabalhos focados na definição dos modelos que possam descrever as trajetórias (Giani, 1992; Azzoni *et al.*, 1995; Stevens, 1998), sendo que o último autor descreve quais foram as equações empregadas dentro do programa *RocFall*.

São quatro os mecanismos de deslocamento possíveis para um bloco, sendo que a trajetória total será a combinação de vários deles:

- Deslizamento: quando a resultante das forças atuantes e das resistentes é mantida dentro do plano em contato com a superfície do talude, e se as forças normais são o suficientemente baixas com relação às tangenciais, o bloco se deslocará deslizando ao longo do plano crítico da superfície do talude;
- Rolamento: para blocos com formatos arredondados não é comum o desenvolvimento de trajetórias de deslizamento pela forte tendência ao rolamento. A existência de um plano de contacto pequeno e forças normais pequenas em relação às tangenciais permite este tipo de mecanismo;
- Queda livre: quando o bloco consegue se afastar da superfície de contato, principalmente por declividades muito íngremes e por variações abruptas na geometria do talude, descreverá uma trajetória parabólica até atingir de novo alguma superfície;
- Repique: este mecanismo não pode ocorrer de maneira independente dos anteriores. Exatamente, o repique se associa à ocorrência inicial de uma queda livre, sendo seguida por outra queda livre, um deslizamento ou um rolamento.

2.2 - Parâmetros envolvidos no cálculo de trajetórias de queda

Uma das principais dificuldades do processo de definição das trajetórias de quedas de rochas está na grande quantidade de parâmetros que podem afetar os resultados obtidos, mesmo que alguns deles possam ter um baixo nível de impacto nos resultados. Os principais parâmetros encontram-se resumidos no Quadro 1.

FATOR	PARÂMETRO	
	Declividade do talude	
Geometria do talude	Comprimento do talude	
	Rugosidade superficial	
	Variabilidade lateral	
Propriododos do matorial do taludo	Coeficientes do talude	
Propriedades do material do talude	Coeficientes da rocha	
Geometria do bloco	Tamanho da rocha	
	Forma da rocha	
Propriedados da matarial da blaca	Durabilidade da rocha	
r ropricuaues do material do bloco	Massa da rocha	

Quadro 1 -	- Parâmetros que determinam	o comportamento	das quedas de rocha	s (Pfeiffer e Bower	n, 1989).
------------	-----------------------------	-----------------	---------------------	---------------------	-----------

Além destes parâmetros, para o caso de análises computacionais podem existir incertezas decorrentes de simplificações na geometria do modelo (dependendo se este é em 2D ou em 3D). Para o caso de modelos 2D, a definição da linha crítica de trajetória terá que ser definida por investigações em campo e pelo bom senso das pessoas encarregadas do processo, sendo que a variabilidade lateral é desconsiderada.

Existem algumas simplificações que com frequência são feitas para a execução das análises:

- Quando existe uma grande variabilidade litológica, se assume que as propriedades definidas para a superfície do talude nesse ponto são iguais às do bloco que o impacta;
- Em alguns modelos não é possível considerar a possibilidade de quebra do bloco decorrente dos impactos. Esta situação pode ser considerada como um fator de grande dissipação de energia, ou também pode se considerar a condição do bloco intacto como sendo a situação mais crítica pela energia cinética atingida no final da trajetória;
- Alguns modelos consideram blocos rochosos com formato esférico, facilitando assim a determinação da inércia do elemento, e permitindo considerar os efeitos rotacionais durante a queda.

2.3 - Coeficientes de restituição

A capacidade de restituição de um corpo é determinada mediante a definição do quociente entre o comportamento logo após um impacto e o existente logo antes, tendo como referência as direções normal e tangencial do plano da superfície de impacto. São múltiplas as abordagens que sobre este valor existem, sendo a mais comum a relação entre as velocidades em cada uma das direções (Wu, 1985; Spang e Rautenstrauch, 1988).

$$R_{N} = \frac{V_{N_{2}}}{V_{N_{1}}} \qquad \qquad R_{T} = \frac{V_{T_{2}}}{V_{T_{1}}}$$
(1)

R_N – Coeficiente de restituição normal;

R_T – Coeficiente de restituição tangencial;

 V_{NI} – Velocidade normal à superfície, logo antes do impacto;

V_{N2} – Velocidade normal à superfície, logo após o impacto;

 V_{T1} – Velocidade tangencial à superfície, logo antes do impacto;

V_{T2} – Velocidade tangencial à superfície, logo após o impacto.

Chau *et al.* (1999) os define pela relação entre impulsos. Se a partícula não sofrer variações na sua massa, a relação ficaria expressa como em (1).

$$R_{I} = \frac{I_{2}^{+}}{I_{1}^{-}} = \frac{V_{r}}{V_{i}}$$
(2)

- I_1 Impulso do bloco antes do impacto;
- I_2^+ Impulso do bloco após o impacto;
- V_i Velocidade do bloco antes do impacto;

V_r – Velocidade do bloco após o impacto.

Em outros trabalhos desenvolvidos por Chau *et al.* (1999; 2002), os coeficientes são expressos em função da dissipação de energia cinética. Também, se a partícula não sofrer alterações de massa, as equações poderão se expressar de igual maneira que em (1).

$$R_{E} = \frac{\frac{1}{2} * m * V_{r}^{2}}{\frac{1}{2} * m * V_{i}^{2}} = \frac{V_{r}^{2}}{V_{i}^{2}}$$
(3)

R_E - Coeficiente de restituição em função da energia cinética;

m – Massa do bloco.

Quando considerada a energia rotacional do bloco, os coeficientes de restituição se expressam assim:

$$R_{E} = \frac{\frac{1}{2} * m * V_{r}^{2} + \frac{1}{2} * I * w_{2}^{2}}{\frac{1}{2} * m * V_{i}^{2} + \frac{1}{2} * I * w_{1}^{2}}$$
(4)

I – Momento de inércia do bloco rochoso;

w₁ – Velocidade angular antes do impacto;

w2 - Velocidade angular após o impacto.

2.4 - Elementos de proteção

Quando por questões de tipo técnicas, econômicas ou sociais, é desconsiderada a relocação do projeto, será necessária a adoção de medidas que permitam conter os elementos perigosos a fim de evitar seus efeitos negativos.

A oferta destes tipos de elementos vem sendo ampliada em função dos avanços tecnológicos e necessidades de cada local, sendo bons exemplos destes os fornecidos por empresas como Geobrugg e Maccaferri, assim como as soluções apresentadas por diversos autores (Gerber, 2001; FHWA, 2005; Lorentz, 2006; Farrand, 2007; Schellenberg, 2008). Estes tipos de elementos podem ser agrupados da seguinte maneira:

- Proteções ativas: seu objetivo é eliminar qualquer sinal de deslocamento dos blocos, sejam eles gerados pelo desconfinamento do maciço ou pelos processos de intemperismo nas faces expostas.
- Proteções passivas: quando não existem condições para impedir o mecanismo de queda, serão necessários elementos que desviem ou retenham os elementos que caem, permitindo assim uma convivência segura com o fenômeno.

3 – MATERIAIS E MÉTODOS

3.1 – Determinação do valor de R_{N} de cada seção ensaiada

O uso do martelo Schmidt como ferramenta para a determinação indireta de algumas das propriedades das rochas tem sido estudado em vários trabalhos, visando principalmente a obtenção de correlações com parâmetros mecânicos (Deere e Miller, 1966; Aydin e Basu, 2005). No trabalho desenvolvido por Peng (2000), baseado na proposta de Rayudu (1997), foram obtidas algumas

correlações entre os valores obtidos com o martelo Schmidt tipo "L" e os valores de R_N para alguns materiais existentes na Nova Zelândia. Para o presente estudo foi aplicada a equação proposta por Peng para superfícies rugosas de talude e blocos angulares (5).

$$R_{\rm N} = \frac{-145 + 4H_{\rm R(L)-superf} + 2H_{\rm R(L)-bloco} + 2\alpha}{1000}$$
(5)

 $H_{R(L)$ -superf} – Número de dureza de rebote para a superfície do talude.

H_{R(L)-bloco} - Número de dureza de rebote para o bloco que cai.

 α – Ângulo de declividade do talude, medido em relação ao plano horizontal.

Originalmente, para aplicações em rocha eram permitidos unicamente martelos do tipo "L" (ISRM, 1978), limitando assim o uso da versão de maior capacidade (tipo "N"). Atualmente, o uso de ambos os martelos é aceite (ASTM D5873-05; Aydin, 2009).

Para o presente estudo o martelo usado correspondeu ao tipo "NR", fabricado por Proceq, e fornecido pelo Laboratório de Ensaios e Modelos Estruturais (LEME) da Universidade Federal do Rio Grande do Sul. O procedimento de ensaio seguiu a Norma ASTM D5873-05. Para cada ponto de ensaio foi selecionada uma área da superfície do talude que estivesse livre de fraturamentos intensos, situação que obrigou a descartar alguns pontos de ensaio, bem pela inconsistência nos valores obtidos ou também pela própria instabilidade da superfície devido a fraturamentos paralelos à face do talude. A área definida para cada ensaio for definida mediante um retângulo com comprimento da base menor de mínimo 15 cm (ver Fig. 1).

Fig. 1 – Procedimento de toma das leituras.

Foram definidas quatro seções transversais dentro do Lote 2 da rodovia RS471/BR153, localizada no Estado do Rio Grande do Sul (sul do Brasil), para a execução das leituras com o martelo e posteriores simulações de quedas de blocos (ver Fig. 2).

Em todos os casos, a superficie de ensaio encontrava-se seca e livre de incrustações de partículas finas, com textura superficial tendendo a lisa. Foram obtidas dez leituras para cada ponto de ensaio, sempre na direção normal ao plano do ponto de ensaio. Para cada superfície de ensaio foi medida a inclinação.

Fig. 2 - Geometria horizontal e localização das seções analisadas.

O processo de correção das leituras obtidas em campo para que ficassem referidas à direção horizontal foi feito empregando o procedimento proposto por Basu e Aydin (2004). A determinação do ângulo de leitura foi feita mediante uma bússola, ao determinar a declividade da face ensaiada do talude e somar ou restar 90° segundo fosse o caso. Para a aplicação deste método de correção, é necessária a determinação de algumas constantes próprias do tipo de martelo empregado (ver Quadro 2). O martelo encontrava-se calibrado, razão pela qual foi adotada a energia de referência de 2,207 N*m.

CONSTANTES DO MARTELO "NR" PROCEQ					
k	N/m	764,2			
X ₁	М	0,076			
М	kg	0,3895			
g	m/s ²	9,810			
Е	N*m	2,207			
V_1^2	$(m/s)^2$	11,3325			

Quadro 2 - Constantes para martelo empregado.

Fonte: Basu e Aydin (2004).

k - Constante da mola do martelo Schmidt;

x₁ – Extensão máxima da mola do martelo Schmidt (quando completamente carregada);

- M Massa do pistão;
- g-Aceleração da gravidade;
- E Energia do impacto;

V₁ – Velocidade do pistão quanto toca o êmbolo (durante o disparo), medida na direção horizontal.

Uma vez aplicado o método, também é possível gerar famílias de curvas próprias para o equipamento empregado (Fig. 3, onde θ é o ângulo de disparo do martelo, medido em relação ao plano horizontal).

Fig. 3 - Curva de normalização em relação à horizontal (modificado de Basu e Aydin, 2004).

Tendo que a equação empregada para o cálculo de R_N é válida para martelos do tipo "L', foi necessário converter as leituras obtidas com o martelo "N" para o primeiro. Dentre as equações propostas em diversos trabalhos, foi adotada a proposta por Aydin e Basu (2005), válida para valores de $H_{R(L)}>30$ e $H_{R(N)}>40$:

$$H_{R(L)} = \frac{H_{R(N)} - 6,3673}{1,0646}$$
(6)

 $\mathrm{H}_{\scriptscriptstyle \! R(L)}-$ Número de dureza de rebote, medido com o martelo Schmidt tipo "L".

 $H_{R(N)}$ – Número de dureza de rebote, medido com o martelo Schmidt tipo "N".

A equação (5) foi aplicada para cada leitura individual do martelo, o tratamento que requer a Norma ASTM D5873-05 foi feito para as leituras equivalentes com o martelo "L".

Para a determinação do valor de R_{N} segundo a equação (5) foram feitas as seguintes considerações:

- Considerou-se que tanto a superfície do talude e o bloco eram constituídos pelo mesmo material, devido à grande quantidade de combinações possíveis de materiais;
- Foi usada a declividade do talude existente nos locais estudados (4V:1H e 3V:1H).

Pelos riscos e dificuldades de execução das leituras nas partas altas dos taludes estudados, foi necessária a consideração de que as propriedades mecânicas das rochas avaliadas eram constantes para a mesma cota. Assim, quase todas as leituras foram feitas no mesmo nível do greide, para serem projetadas depois dentro de cada seção analisada, tal como se ilustra na Fig. 4.

Fig. 4 – Sequência de pontos ensaiados e projeção dentro da seção 57+800.

3.2 - Condições ensaiadas

Para cada seção rodoviária foram ensaiadas quatro alternativas de condição geométrica, sendo que duas se derivavam de uma das primeiras, e representavam condições possíveis a acontecer durante a operação do projeto, assim:

- Seção sem alargamento com banquetas: Cada talude de corte está definido por banquetas com altura de 10 m e largura de 3 m, com uma declividade de 4,2V:1H (77°). Logo do lado dos acostamentos foi definida uma sarjeta com largura total de 1,50 m e profundidade de 0,30 m. Do lado da sarjeta encontra-se o pé do talude (ver Fig. 5a);
- Com alargamento com banquetas: A declividade dos taludes, a localização e as dimensões das banquetas são mantidas, mas foram adicionadas áreas de retenção de blocos no lado do pé do talude de corte, com uma largura de 4 m e largura de 0,70 m (ver Fig. 5b);
- Material acumulado em duas banquetas: A geometria básica é igual à do caso anterior, mas simulando o enchimento das duas banquetas inferiores com blocos que caíram do talude, até que a capacidade desta seja eliminada;
- Material acumulado em uma banqueta: Neste caso, foi considerada a limpeza frequente da banqueta inferior, mas com a segunda inferior cheia, sem capacidade de acumulação de material;
- Abatimento do talude e eliminação das banquetas: Neste último caso foi considerado o abatimento dos taludes de corte, de uma declividade de 4,2V:1H (77°) para 3V:1H (72°), além da eliminação das banquetas intermediárias.

Os resultados apresentados nas Figuras 9 a 17 correspondem às geometrias definidas acima.

Fig. 5 – Detalhe da estrutura do pavimento: (a) sem alargamento; (b) alargamento para área de retenção de blocos.

3.3 - Elementos de proteção contemplados

No presente estudo foram ensaiados elementos de proteção do tipo passivos permitindo assim a ocorrência do fenômeno de queda, visando que estes foram de uso comum e de baixo custo de instalação e de manutenção. Os elementos contemplados foram:

- Barreira vertical rígida de baixa altura: Neste caso foi testada uma barreira do tipo *New Jersey* sem ancoragens ao solo, para a qual foi atribuída uma energia máxima resistente de 25578 J (Fig. 6a);
- Substituição parcial da área de retenção de blocos por uma camada de areia fofa com espessura de 0,40 m (ver Fig. 6b);
- Construção de uma linha de barreiras constituídas por redes metálicas, instaladas logo acima da banqueta inferior ou na metade da altura do talude, para o caso de ausência de banquetas (ver Fig. 6c);

 Recobrimento da superfície dos taludes com redes metálicas ou com concreto projetado, deixando desprotegida a primeira banqueta ou a metade inferior do talude para o caso de ausência de banquetas (ver Fig. 6d).

(a) Barreira no fim do acostamento

(c) Barreira em redes metálicas instaladas na superfície (d) Proteção superfícial do talude

3.4 - Propriedades dos materiais e condições de simulação

Para a execução das simulações no programa *RocFall*, as propriedades adotadas para os materiais encontram-se sumarizadas no Quadro 3.

MATERIAL	R _N		R _r		ÂNGULO DE ATRITO (°)		RUGOSIDADE SUPERFICIAL	
	Médio	Desvio padrão	Médio	Desvio Padrão	Médio	Desvio padrão	(°)	
Rocha dos taludes	(*)	0,04	0,55	0,04	30	5	0	
Rocha em banquetas	0,18	0	0,50	0	35	5	5	
Areia fofa (**)	0,04	0,03	0,48	0,23	30	5	0	
Concreto	0,48	0,19	0,53	0,17	10	5	0	
Camada asfáltica	0,40	0,04	0,90	0,04	30	2	0	

Quadro 3 – Propriedades dos materiais usados nas simulações.

(*) Valores obtidos através do procedimento com o martelo Schmidt.

(**) Fonte: Labiouse e Heidenreich (2009).

Os valores restantes foram adotados da base de dados do programa *RocFall*. Cabe aclarar que o programa desconsidera o formato dos blocos, considerando-os como sendo esféricos com um diâmetro muito pequeno.

Foram definidas faixas de origem de quedas correspondentes à totalidade do talude, considerando velocidades iniciais nulas para todas as componentes (horizontal, vertical e angular), e uma massa do bloco de 10 kg.

Para as simulações feitas em barreiras de concreto foram usados tanto blocos de 10 kg quanto de 500 kg visando determinar a frequência de ruptura dos elementos.

Devido às fortes irregularidades superficiais nos taludes decorrentes do processo de desmonte com explosivos e do intenso fraturamento nos maciços, foram ensaiadas três rugosidades visando encontrar a mais apropriada para este caso. Por esta razão, dentro das propriedades do material do talude deixou-se este valor em zero. As condições ensaiadas foram:

- Sem irregularidades: os taludes foram definidos por alinhamentos topográficos definidos entre as bordas das banquetas, definido assim os diferentes taludes entre as banquetas;
- Existência de irregularidades: foram considerados dois níveis de irregularidade, medida pela largura em relação à linha de irregularidade zero. A primeira com um valor de 10 cm, e a segunda com 40 cm.

Foi feita uma análise de sensibilidade com cada uma das rugosidades, abrangendo uma faixa de valores de R_N entre 0,237 e 0,47.

4 – RESULTADOS E DISCUSSÃO

Para cada ponto ensaiado com o martelo Schmidt foi feita a determinação do valor de $H_{R(L)}$ médio, tal como apresentado no Quadro 4.

No.	Leitura H _{R(N)(0)}	x ₂ (m)	$\frac{V_{2(\theta)}^{2}}{(m/s)^{2}}$	V_2^2 (m/s) ²	Leitura Equivalente $H_{R(N)}(\theta = 0^{\circ})$	Leitura Equivalente H _{R(L)}	Leitura aceita H _{R(L)}
1	49	0,0372	2,823	2,772	49,5	40,5	40
2	47	0,0357	2,601	2,554	47,5	38,6	39
3	58	0,0441	3,933	3,862	58,4	48,9	49
4	50	0,0380	2,937	2,884	50,4	41,4	41
5	58	0,0441	3,933	3,862	58,4	48,9	49
6	54	0,0410	3,417	3,355	54,4	45,1	45
7	51	0,0388	3,053	2,999	51,4	42,3	42
8	49	0,0372	2,823	2,772	49,5	40,5	40
9	50	0,0380	2,937	2,884	50,4	41,4	41
10	48	0,0365	2,711	2,662	48,5	39,5	40
			•	•	Leituras	10	10
					Média	42,7	43

Quadro 4 – Processamento para ponto ensaiado em 57+800 (leituras feitas com o martelo em posição ascendente de 8° em relação ao plano horizontal).

- x₂ Máximo alongamento da mola do martelo Schmidt, após o rebote;
- $V_{2(\theta)}$ Velocidade inicial do pistão após o rebote, medida para o ângulo de leitura do martelo;
- V2 Velocidade inicial do pistão após o rebote, medida na direção horizontal;
- $H_{R(N)(\theta)}$ Número de dureza de rebote, medido com o martelo Schmidt tipo "N" na direção normal à superfície da rocha.

Com estes valores foi determinado o valor de R_N usando a equação (5). Para cada camada de derrame foi obtida a média aritmética quando disponível, ou adotado o valor único tal como apresentado na Fig. 7. O valor para a camada asfáltica foi adotado do banco de dados do programa *RocFall* e não obtido a partir do procedimento descrito.

Fig. 7 - Valores médios do coeficiente de restituição normal empregados nas simulações.

Comparando os resultados das simulações para cada rugosidade com a faixa de valores de R_N , observou-se que a condição que melhor conseguiu representar a maneira como acontece o mecanismo em campo foi a de 40 cm. As outras rugosidades geraram principalmente rolamento de partículas, entanto que em campo as quedas começavam com poucos rolamentos, mas principalmente por repiques, como apresentado na Fig. 8.

Fig. 8 – Condições de rugosidade geométrica ensaiadas.

Na Fig. 9 são apresentados os resultados obtidos unicamente com as condições geométricas adotadas. A frequência de invasão se refere à quantidade (percentual) de blocos que entram na pista de rolamento (incluindo os acostamentos). A descrição completa das condições geométricas foi elencada no item 3.2, e é válida para as Figuras 9 a 17.

Fig. 9 - Presença de blocos dentro da pista de rolamento para as quatro seções estudadas.

Em todos os cinco casos, a incorporação da área de retenção de blocos foi a que melhor nível de resposta conseguiu gerar, diminuindo as frequências de invasão em valores superiores de 93% (como exceção de 57+800, onde a redução foi de 85%). As seções 50+840 e 58+460 foram as de maior sensibilidade à construção da área de retenção de blocos, já que mesmo ao se alterar as condições do talude, não aconteceram incrementos importantes nas frequências de invasão.

O efeito do preenchimento das duas banquetas inferiores (57+800) elevou a frequência de invasão até níveis próximos do que os ocorridos sem alargamento da seção transversal. Em termos de frequência, mesmo com alargamento, o preenchimento elevou os valores em quase 6 vezes, constituindo-se em uma das piores situações possíveis de acontecer durante a operação da rodovia. A limpeza da banqueta inferior (55+360 e 57+800) trouxe a diminuição da frequência de invasões dentro da pista em mais de 50% quando comparadas com a anterior situação.

A condição sem banquetas e com abatimento dos taludes fez com que o desempenho da área de retenção fosse diminuído, aumentando as frequências em quase 12 vezes em relação à condição só com alargamento.

Na Fig. 10 são apresentados os resultados obtidos com a implantação de uma barreira tipo *New Jersey*.

Fig. 10 - Frequências de invasão para as diferentes geometrias transversais (com barreira h=0,81 m).

Em geral, a instalação das barreiras conseguiria reter quantidades importantes de material quando comparadas com a condição sem barreira. Para os casos sem alargamento, o fato da instalação da barreira fez com que as frequências fossem diminuídas entre 52% e 70%. No entanto, as duas seções com taludes de menor altura (50+840 e 58+460) ainda apresentaram as maiores frequências quando comparadas com as outras duas.

As duas seções com taludes de maior altura (55+360 e 57+800) tiveram uma perda de efetividade de retenção de blocos fora da pista decorrente do preenchimento das banquetas entre 3 e 7 vezes, constituindo-se como a condição de maior perigo durante a operação do projeto. No entanto, o efeito da barreira trouxe uma diminuição superior a 44% quando comparada com o caso sem barreira.

Quando feita a limpeza da banqueta inferior, e com a incorporação da barreira, origina-se uma diminuição da frequência de pelo menos 19% quando comparada à situação com as duas banquetas cheias de material, e de pelo menos 17% quando comparada com a condição sem barreira.

Em nenhuma das simulações com blocos de 10 kg foi encontrado dano de barreiras. O uso de blocos de 500 kg responde aos maiores tamanhos encontrados em campo durante a execução do projeto. Nas Figuras 11 a 14 são apresentados os resultados obtidos, tanto do lado direito quanto do esquerdo (para as seções 50+840 e 58+460), em função da frequência em que são atingidas por blocos de 500 kg, e a frequência em que estes ultrapassam a energia máxima resistente de 25578 J.

Fig. 11 - Frequência de blocos que impactam as barreiras do lado direito.

Fig. 12 – Frequência de blocos que danificam as barreiras do lado direito.

Fig. 13 – Frequência de blocos que impactam as barreiras do lado esquerdo.

Fig. 14 – Frequência de blocos que danificam as barreiras do lado esquerdo.

Em todos os casos, o alargamento da seção somado à existência de barreiras faz com que mesmo esta última forneça proteção à pista de rolamento, seu papel possa ser dispensável se a operação de limpeza for feita com regularidade (55+360 e 57+800). Unicamente quando não é possível a modificação da seção transversal (condição sem alargamento), a barreira será solicitada para impactos com bastante frequência.

Para o lado direito, embora o nível de solicitação das barreiras seja alto nos taludes de baixa altura (50+840 e 58+460, com >20% das quedas), a frequência de impactos com destruição do elemento de proteção tende a ser baixo na maioria das situações. Ocorre uma inversão desta

situação para os taludes de maior altura (55+360 e 57+800), para os quais se tem baixos níveis de solicitação das barreiras, mas com altas frequências de dano dos elementos.

Para o lado esquerdo, é mantida a tendência de alto nível de solicitações das barreiras, mas com baixa frequência de dano dos elementos.

Na Fig. 15 são apresentados os resultados obtidos com substituição parcial da área de retenção de blocos por uma camada de areia fofa. Em geral, o nível de resposta é muito melhor do que para os anteriores casos, principalmente para a seção 50+840 onde a frequência de invasões foi eliminada completamente. Para os outros três locais, a frequência ainda conseguiu se manter abaixo de 2%.

A condição com os efeitos mais negativos para os três casos restantes foi o abatimento dos taludes e eliminação das banquetas. No entanto, quando comparada esta condição com sua correspondente só com alargamento (ver Fig. 9), houve diminuições de pelo menos 72% nas frequências. Sob essa mesma lógica de comparação, para o caso da banqueta inferior cheia de material, houve diminuições com mínimo de 59%.

Fig. 15 – Frequências de invasão para as diferentes geometrias transversais (com camada de areia fofa e = 0,40 m).

Para o caso da construção de uma linha de barreiras em redes metálicas, os resultados são apresentados na Fig. 16.

Fig. 16 – Frequências de invasão para as diferentes geometrias transversais (com barreira em rede metálica L = 4,0 m).

Em todas as quatro seções, a condição sem alargamento teve o pior desempenho quando comparado com as outras condições. Nesta condição, além dos blocos oriundos da parcela do talude abaixo da barreira, muitos dos blocos procedentes da parte superior conseguem descrever trajetórias sem ser retidos pela rede.

Embora o anterior, ao se comparar estes resultados com os obtidos para os correspondentes sem elementos de proteção (ver Fig. 6), aparecem diminuições importantes nas frequências. Para a condição sem alargamento, as diminuições vão de 18% até 83%; para o caso área de retenção de blocos, as diminuições estão acima de 45%; para o caso de só uma banqueta cheia de material, as diminuições ficaram acima de 85%.

Os resultados para a implantação de alguma proteção superficial, com exceção da porção inferior do talude, são apresentados na Fig. 17. Aclara-se que esta condição não admite nenhuma camada cheia de material, já que em teoria não existiria queda de rochas das partes protegidas do talude.

A tendência geral dos resultados é muito similar com a obtida para a condição anterior (ver Fig. 16). Para o caso das seções sem alargamento, o efeito das rochas (da parte inferior do talude) levou as frequências até valores entre 4% e 7%.

Contudo, esta condição não conseguiu fornecer o melhor desempenho para as maneiras como foi considerada ao ser comparada com a camada de areia fofa.

Para a seção 57+800, quando eliminadas as banquetas, a existência da metade da altura do talude sem proteção fez com que alguns blocos atingissem energias muito elevadas, resultando em uma alternativa insuficiente para este caso em particular.

Fig. 17 – Frequências de invasão para as diferentes geometrias transversais (com proteção superfícial ao longo da face do talude).

5 - CONCLUSÕES

O conjunto de parâmetros empregados, tanto o obtido pelo procedimento de campo quanto os adotados da literatura, mostraram um comportamento consistente com as condições encontradas em campo. O valor de R_N mostrou-se baixo quando comparado com os valores encontrados na literatura, situação compensada pela incorporação da geometria e rugosidade do talude.

Das quatro seções analisadas, conseguiu-se obter duas tendências de comportamento associadas com as alturas dos cortes e com a geometria resultante para cada um deles. A primeira tendência observada correspondeu à das seções 50+840 e 58+460, com geometrias comparativamente mais baixas (alturas de corte em torno dos 15 metros); a segunda tendência logicamente foi a apresentada pelas seções 55+360 e 57+800, como alturas de corte maiores (30 e 50 metros, respectivamente). Lembra-se que as análises feitas para as seções de menor altura levaram em conta a ação de queda de blocos tanto na esquerda quanto na direita. Já para as seções de maior altura apenas foi levado em conta o talude direito.

O efeito do preenchimento de banquetas foi o surgimento de superfícies inclinadas que fizeram com que os blocos saíssem projetados diretamente à pista de rolamento ou em pontos muito próximos dela.

De todas as medidas de proteção contempladas no presente estudo, a substituição parcial da área de retenção de blocos por areia fofa foi a que conseguiu manter baixos todos os valores de invasão na pista, mesmo com variações nas condições da seção transversal. A condição chave deste tipo de solução está na possibilidade de garantir um valor de R_N baixo (para o presente caso, $R_N = 0,04$).

Para os taludes de menor altura (50+840 e 58+460), o efeito da área de retenção de blocos foi determinante, levando as frequências até valores muito próximos de zero. Neste tipo de soluções, se a manutenção das banquetas for feita com regularidade, poderia não se precisar a incorporação de elementos de proteção.

Em ambos os taludes de maior altura (55+360 e 57+800), embora o efeito da incorporação da área de retenção de blocos foi de grande ajuda, as seções ainda apresentaram as maiores frequências de invasão ao se comparar com as outras duas. No entanto, deve-se considerar que ainda os valores são mantidos abaixo de 1%, e que levar este valor até zero poderia significar investimentos muito altos.

O emprego de elementos de concreto de baixa altura mostrou ser eficaz para taludes de baixa altura, para os quais foram obtidos importantes níveis de retenção atribuída a estes elementos, como percentagens de dano relativamente baixo (5%). Já para os taludes maiores, além dos baixos níveis de retenção conseguidos por estes elementos, as energias desenvolvidas pelos blocos nas suas trajetórias fizeram com que resultassem valores importantes de barreiras danificadas por ultrapassar a sua energia resistente (entre 15 e 20% do total de blocos que as impactam).

6 – AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo auxílio financeiro para a elaboração do trabalho e a bolsa de pesquisa, ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul, às empresas envolvidas no projeto e execução do Trecho 2 da rodovia RS471/BR153 pelo fornecimento das informações do projeto, e ao Laboratório de Ensaios e Modelos Estruturais (LEME) da UFRGS pelo empréstimo do equipamento usado para a execução das determinações em campo.

7 – REFERÊNCIAS BIBLIOGRÁFICAS

- ASTM D 5873-05 (2005). Standard Test Method for Determination of Rock Hardness by Rebound Hammer: Annual Book of American Society for Testing and Materials 2005, 4p.
- Aydin, A. (2009). ISRM Suggested Method for determination of the Schmidt hammer rebound hardness: Revised version. International Journal of Rock Mechanics & Mining Sciences, 46, pp.627-634.
- Aydin, A.; Basu, A. (2005). The Schmidt hammer in rock material characterization. Engineering Geology, 81, pp.1-14.
- Azzoni, A.; La Barbera, G.; Zaninetti, A. (1995). Analysis and Prediction of Rockfalls Using a Mathematical Model. International Journal of Rock Mechanics & Mining Sciences, 32, pp.709-724.
- Basu, A; Aydin, A. (2004). A method for normalization of Schmidt hammer rebound values. International Journal of Rock Mechanics & Mining Sciences, 41, pp.1211-1214.
- Buzzi, O.; Giacomini, A.; Spadari, M. (2011). Laboratory Investigation on High Values of Restitution Coefficients. Rock Mechanics and Rock Engineering, 45, pp.35-43.
- Chau, K.T.; Wong, R.H.C.; Liu, J.; Wu, J.J. (1999). Shape effects on the coefficient of restitution during rockfall impacts. Ninth International Congress on Rock Mechanics, ISRM Congress, Paris, pp.541-544.
- Chau, K.T.; Wong, R.H.C.; Wu, J.J. (2002). *Coefficient of restitution and rotational motions of rockfalls impacts*. International Journal of Rock Mechanics & Mining Sciences, 39, pp.69-77.
- Cruden, D.M.; Varnes, D.J. (1996). Landslide types and processes. pp. 36-75. Em: Turner, A.K;
 Schuster, R.L. (Eds.). Landslides: Investigation and Mitigation. Special Report 247.
 Washington, D.C. Transportation Research Board, National Research Council, 673 p.
- Deere, D.U.; Miller, R.P. (1966). Engineering classification and index properties for intact rock. Technical Report AFWL-TR-65-116. Albuquerque, N. M. Air Force Weapons Laboratory, 300 p.

- Farrand, S.W. (2007). Rockfall Modelling Parameters and the Control Barrier at Stockton Mine, New Zealand. Christchurch, New Zealand. Master Thesis. Department of Geological Sciences. University of Canterbury, 207 p.
- Federal Highway Administration FHWA (2005). *Analysis and design of wire mesh/cable net slope protection*. Final Research Report WA-RS 612.1. Washington, 186 p.
- Flórez-Gálvez, J.H. (2012). Condicionantes geotécnicos e análise de quedas de blocos rochosos da rodovia RS471/BR152, lote 2. 164 p. Dissertação (Mestrado em Engenharia) – Programa de Pós-Graduação em Engenharia Civil. Universidade Federal do Rio Grande do Sul.
- Gerber, W. (2001). *Guideline for the approval of rockfall protection kits. Environment in practice.* Federal Office of the Environment (FOEN), Swiss Federal Institute for Forest, Snow and Landscape Research (SLF), Research Institute (WSL). Bern, 39 p. Disponível em: <www.environment-switzerland.ch/publications>, Acesso em: 01 abr. 2012.
- Giani, G.P. (1992). Rock Slope stability analysis. The Netherlands. Balkema Publishers, 345 p.
- Giani, G.P.; Giacomini, A.; Migliazza, M.; Segalini, A. (2004). Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design. Rock Mechanics, 37, pp.369-389.
- Gomes, Guilherme J.C. (2009). Avaliação do perigo relacionado à queda de blocos em rodovias. Ouro Preto. Dissertação (Mestrado em Geotecnia) – Programa de Pós-Graduação em Geotecnia. Universidade Federal de Ouro Preto, 136 p.
- Guidicini, G; Nieble, C.M. (1984). *Estabilidade de taludes naturais e de escavação*. São Paulo. Editora Blucher. 194 p.
- International Society for Rock Mechanics ISRM (1978). Suggested methods for Determining Hardness and Abrasiveness of Rocks. International Journal of Rock Mechanics & Mining Sciences, 15, pp. 89-97.
- Heidenreich, B. (2004). *Small and half- scale experimental studies of rockfall impacts on sandy slopes.* Thèse N° 3059 (Doctorat ès Sciences Techniques) Faculté Environnement Naturel, Architectural et Construit. École Polytechnique Fédérale de Lausanne, 231 p.
- Labiouse, V.; Heidenreich, B. (2009). *Half-scale experimental study of rockfall impacts on sandy slopes*. Natural Hazards and Earth System Sciences, 9, pp.1981-1993.
- Lorentz, J. (2006). Étude de la capacité de dissipation sous impact d'une structure sandwich de protection contre les chutes de blocs rocheux. Ph.D. Thèse. Université Grenoble 1 Joseph Fourier, Grenoble, France, 218 p.
- Norrish, N.I.; Wyllie, D.C. (1996). Rock slope stability analysis, pp. 391-425. Em: Turner, A.K.;
 Schuster, R.L. (Eds.). Landslides: Investigation and Mitigation. Special Report 247.
 Washington, D. C. Transportation Research Board, National Research Council, 673 p.
- Peng. B. (2000). Rockfall Trajectory Analysis: Parameter Determination and Application. Christchurch, New Zealand. Master Thesis. Department of Geological Sciences. University of Canterbury. 199 p.
- Pfeiffer T.J.; Bowen, T.D. (1989). *Computer Simulation of Rockfalls*. Bulletin of the Association of Engineering Geologists, 26, pp.136-146.

- Pierson, L.A.; Gullixson, C.F. Chassie, R.G. (2001). Rockfall catchment area. Design guide. Final report SPR-3(032). Washington. Federal Highway Administration, 78 p.
- Rayudu, D.N.P. (1997). Computer simulation of Rockfalls Application to rockfalls at Fox Glacier, West Coast, New Zealand. Christchurch, New Zealand. Master Thesis. Department of Natural Resources Engineering. Lincoln University, 172 p.
- Ritchie, A.M. (1963). *Evaluation of Rockfall and its Control*. Highway Research Record, 17, pp.13-28.
- Spadari, M.; Giacomini, A.; Buzzi, O.; Fityus, S.; Giani, G.P. (2011). In situ rockfall testing in New South Wales, Australia. International Journal of Rock Mechanics & Mining Sciences, 49, pp. 84-93.
- Spang, R.M.; Sönser, T. (1995). Optimized Rockfall Protection by ROCKFALL. Proceedings of 8th International Congress of Rock Mechanics, Tokyo.
- Spang, R.M.; Rautenstrauch, R.W. (1988). Empirical and mathematical approaches to rockfall protection and their practical applications. pp. 1237-1243. Em: Bonnard, C. (Ed.). Landslides: International Symposium on Landslides, 5. Rotterdam. Proceedings.
- Schellenberg, K. (2008). On the design of rockfall protection galleries. D.Sc. Thesis. Eidgenössische Technische Hochschule Zürich. Zürich, Suiça, 177 p.
- Stevens, W.D. (1998). Rocfall: A tool for probabilistic analysis, design of remedial measures and prediction of rockfalls. Toronto. 28 p. Thesis (Master of Applied Science) – Graduate Department of Civil Engineering. University of Toronto.
- Wang, I-T.; Lee, C-Y. (2010). Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall. World Academy of Science, Engineering and Technology, 65, pp. 1021-1027.
- Wu, S-S. (1985). Rockfall Evaluation by Computer Simulation. Transportation Research Record, 1031, pp.1-5.

MÉTODO DE AVALIAÇÃO DE DESEMPENHO DE BARRAGENS POR MEIO DE AGRUPAMENTO DE INSTRUMENTOS – APLICAÇÃO EM ITAIPU

Method of performance evaluation of dams by instrument clustering – Application to Itaipu

Rodrigo César Pierozan* Sidnei Helder Cardoso Teixeira** Andrea Sell Dyminski*** Celso Romanel****

RESUMO – O sistema de instrumentação de uma barragem deve ser capaz de detectar variações nas leituras ao longo do ciclo de vida da mesma como resultado do envelhecimento e das alterações ambientais. O estudo de como ocorre a interação entre as leituras dos diferentes instrumentos e como as variáveis ambientais interferem nas mesmas pode ser de grande utilidade para compreensão dos mecanismos que regem o comportamento de uma barragem. O presente trabalho apresenta um método de avaliação do desempenho de barragens por meio de agrupamento de instrumentos de comportamento similar, utilizando como ferramenta de análise correlações estatísticas lineares e não-lineares entre leituras de instrumentos de auscultação. Através do estudo proposto, é possível a identificação de instrumentos defeituosos e de comportamentos anômalos em barragens, além do fornecimento de indícios dos mecanismos geotécnicos que resultam na similaridade entre os mesmos. Como forma de validação e exemplificação do método proposto, são utilizados dados de piezometria da barragem de Itaipu Binacional.

SYNOPSIS – A proper dam instrumentation system should be able to detect variations in readings over its life cycle as a result of aging and environmental changes. The study about how the interaction between readings from different instruments occurs and how environmental variables affect them can be very useful to understand the mechanisms that affect the behaviour of a dam. This paper presents a method for evaluating dam performance by means of clustering instruments with similar behaviour, using linear and non-linear statistical correlations as an analysis tool for auscultation instruments. Through the proposed study, it is possible to detect malfunctioning instruments and anomalous dam behaviour, besides collecting evidence about the geotechnical mechanisms that result in similarity between both situations. In order to exemplify and validate the proposed method, piezometric data from the Itaipu Binational dam have been studied.

PALAVRAS CHAVE - Segurança de barragens, instrumentação, agrupamento de instrumentos.

^{*} Mestrando, Universidade Federal do Paraná – UFPR, Programa de Pós-Graduação em Engenharia da Construção Civil. E-mail: rodrigopierozan@hotmail.com

^{**} Professor Doutor, Universidade Federal do Paraná – UFPR, Departamento de Construção Civil. E-mail: s.helder@uol.com.br

^{***} Professora Doutora, Universidade Federal do Paraná – UFPR, Departamento de Construção Civil. E-mail: asdymi@gmail.com

^{****} Professor Doutor, Pontificia Universidade Católica do Rio de Janeiro – PUC-Rio, Departamento de Engenharia Civil. E-mail: romanel@puc-rio.br

1 – INTRODUÇÃO

Ao longo da história, a população humana foi afetada por várias rupturas de barragens, como por exemplo as barragens de St. Francis e Teton (Grahan, 1999). Até mesmo na atualidade, esse tipo de desastre é passível de ocorrência, como documentado em barragens britânicas (Charles *et al.*, 2011), barragens de rejeito européias (Rico *et al.*, 2008), barragens chinesas (He *et al.*, 2008) e barragens americanas (Dam Safety, 2013). No Brasil, a situação não é diferente, e muitos incidentes envolvendo barragens ocorreram nos últimos anos, como por exemplo em Camará (2004), Campos Novos (2006) e Algodões (2008). Situações como as citadas tornam pública a necessidade de estudos envolvendo a segurança de barragens.

A garantia das condições de segurança de uma barragem é resultante de uma série de fatores, entre os quais podem ser citados aspectos estruturais, geotécnicos, hidráulicos, operacionais e ambientais, visando a estabelecer conhecimento contínuo e adequado das mesmas (CBDB, 2001). Dessa forma, são necessárias reavaliações regulares do estado de uma barragem e de todas as demais estruturas e instalações.

Podem ser citadas como formas de reavaliação do estado de barragens as inspeções visuais e o acompanhamento das leituras do sistema de instrumentação. Instrumentação pode ser definida como a aquisição, apresentação e avaliação de informação oriunda de dispositivos de medida instalados em barragens ou próximos às mesmas (Department of Natural Resources and Mines, 2002). O sistema de monitoramento permite aos engenheiros validar as hipóteses e métodos de cálculo desenvolvidos durante o projeto e avaliar como a barragem, estruturas auxiliares e sua fundação se comportam ao longo do ciclo de vida.

A seleção de um determinado instrumento deve ser feita de modo a auxiliar na obtenção de uma resposta específica, ou seja, caso não haja questionamento então não há necessidade de instrumentação (Dunnicliff, 1993). Existem muitos parâmetros que podem ser analisados ao longo do tempo para assegurar as condições de segurança de uma barragem, entre os quais podem ser citadas as poropressões e subpressões, vazões de percolação, recalques e deslocamentos horizontais. Os parâmetros citados podem ser quantificados através de diferentes tipos de instrumentos, como piezômetros, medidores de vazão, extensômetros, inclinômetros e pêndulos.

O estudo de como ocorre a interação entre as leituras dos diferentes instrumentos e como as variáveis ambientais interferem nas mesmas pode ser de grande utilidade para a compreensão dos mecanismos que regem o comportamento de uma barragem, além de contribuir no processo de tomada de decisões com base na instrumentação. Uma discussão interessante sobre avaliação de risco e tomada de decisões em segurança de barragens é apresentada em Bowles (2004).

O monitoramento de barragens através de instrumentação gera um grande conjunto de dados composto de leituras periódicas realizadas ao longo do tempo. É essencial que os dados de instrumentação sejam processados, analisados e avaliados por especialistas da área, como forma de garantir os requisitos de segurança de uma determinada barragem. Durante essa tarefa, é importante identificar a informação realmente relevante para entender e solucionar determinados problemas, isolando os dados não representativos. Entretanto, os responsáveis pela análise dos dados nem sempre podem gastar semanas para extrair todo o conhecimento. Devido a esse fato, muitos conjuntos de dados acabam não recebendo um tratamento adequado (Tan *et al.*, 2005).

Como forma de lidar com essa questão, é possível a utilização de técnicas estatísticas como ferramenta de análise dos dados de instrumentação. Alguns trabalhos interessantes vêm sendo realizados nos últimos anos envolvendo o estudo de séries temporais e segurança de barragens, entre os quais podem ser citados os estudos de Papadrakakis *et al.* (2006), Mata (2010) e Chonghui *et al.* (2012).

Neste contexto também se encontra o trabalho de Buzzi (2007), o qual propõe um método de análise de séries temporais através de correlações estatísticas lineares, como ferramenta de estudo

das interações existentes entre diferentes instrumentos de monitoração geotécnico-estrutural instalados em barragens. O método proposto por Buzzi (2007) possibilita a identificação de anomalias em leituras de instrumentação, subsidiando a detecção de instrumentos defeituosos, leituras problemáticas ou alterações no comportamento da barragem.

Complementando os estudos citados, no presente trabalho os autores propõem um método de avaliação de desempenho de barragens por meio do agrupamento de instrumentos de comportamento similar. Como ferramenta de análise dos dados, são utilizadas correlações estatísticas lineares e não-lineares entre leituras de instrumentos de auscultação. Este método pode ser usado de modo complementar às técnicas clássicas de análise do comportamento de barragens com base em instrumentação.

O agrupamento dos instrumentos em famílias de comportamento correlato fornece indícios dos mecanismos que resultam na similaridade entre os mesmos, principalmente no que se refere às características do subsolo e à eficiência do tratamento de fundação. Além disso, através do estudo das correlações estatísticas ao longo do tempo é possível a detecção de comportamentos anômalos e de instrumentos defeituosos, além da geração de critérios de alerta.

Como forma de validação e exemplificação do método proposto, são utilizados dados de piezometria da barragem de Itaipu Binacional. O desempenho da barragem em questão é avaliado com base no agrupamento de piezômetros de comportamento correlato. Convém ressaltar que o método em questão também pode ser aplicado sobre outros instrumentos, como, por exemplo: bases de alongâmetro, pêndulos, tensômetros, extensômetros e medidores de juntas.

2 – MÉTODO DE AVALIAÇÃO DO DESEMPENHO

O método de análise dos dados consiste em seguir uma sequência de etapas, cada qual com sua finalidade, conforme apresentado no Quadro 1. Primeiramente, é realizada a coleta e pré-processamento dos dados, na qual os mesmos são organizados e define-se o período de análise. Como continuidade, são aplicados os métodos de análise, os quais consistem basicamente em correlações estatísticas lineares e não-lineares e validação das mesmas através de testes de hipóteses. Através dos dados de correlações estatísticas, os instrumentos são agrupados em famílias de comportamento similar, fornecendo indícios acerca do comportamento da barragem. As principais características de cada uma das etapas são descritas na sequência.

2.1 - Coleta e pré-processamento dos dados

O sistema de monitoramento de uma barragem é composto por uma série de instrumentos, cada qual responsável pela determinação de um parâmetro específico. Dessa forma, as leituras realizadas para cada um dos instrumentos individualmente resultam em séries temporais de dados, as quais necessitam ser analisadas adequadamente para aferição do comportamento da barragem. Para aplicação do método aqui apresentado, torna-se necessária a definição dos instrumentos de interesse do estudo e do período de tempo de análise.

2.1.1 – Agrupamento de leituras para cada data disponível

Devido às características próprias de cada barragem e aos procedimentos de monitoramento das mesmas, nem sempre as datas das leituras de diferentes instrumentos são coincidentes entre si. Por exemplo, pode ser necessário o estudo de dois instrumentos genéricos A e B, sendo que o instrumento A possui frequência de leituras semanal, enquanto que o instrumento B possui frequência de leituras forma, torna-se necessário definir um procedimento de agrupamento das leituras com o mínimo possível de perda de informação, anteriormente ao cálculo das correlações estatísticas.

Um primeiro método possível de agrupamento de dados pode ser encontrado em Buzzi (2007), o qual é capaz de agrupar as leituras pertencentes a uma mesma data, desde que todos os instrumentos possuam leitura na data em questão. Anteriormente à aplicação deste método, aconselha-se verificar se a perda de informação durante o agrupamento é significativa ou não.

Além do método exposto, é possível a geração de leituras artificiais para as lacunas existentes nas séries temporais, com o intuito de aproveitar ao máximo os dados reais de campo, com o mínimo possível de perda de informações. Dessa forma, torna-se necessário o cálculo de dados artificiais através de algum procedimento matemático, entre os quais pode ser citada a interpolação polinomial. Outros procedimentos, não abordados neste texto, também podem ser adotados com o intuito de diminuir a perda de informação decorrente do agrupamento.

2.1.2 – Normalização de atributos

Os parâmetros medidos através do sistema de monitoramento de uma barragem possuem como característica a oscilação ao longo do tempo, cuja amplitude da variação está associada à

resposta devida. Para se analisar e comparar as leituras de diferentes instrumentos, faz-se necessária a adoção de uma técnica de normalização, sendo esta uma forma de transformação dos valores absolutos de amplitude em valores relativos, referentes a um valor de amplitude caracterizado como 100%, conforme expõe a Equação 1. Considerações adicionais a respeito da normalização de atributos podem ser consultadas em Tan *et al.* (2005).

$$L_{n} = \frac{L_{t} - L_{min}}{L_{máx} - L_{min}}$$
(1)

L_n – valor normalizado;

 L_t – leitura do instrumento no tempo t;

L_{min} - valor mínimo de leitura compreendida no intervalo de tempo estudado;

L_{máx} - valor máximo de leitura compreendida no intervalo de tempo estudado.

2.2 - Aplicação do método de análise dos dados

Neste trabalho correlações estatísticas lineares e não-lineares são utilizadas como ferramentas para agrupamento de instrumentos de comportamento similar. Como forma de exemplificar o exposto, a Figura 1 apresenta a evolução das leituras de 3 instrumentos genéricos, denominados A, B e C. Através da figura, pode-se perceber que os instrumentos A e B possuem algum tipo de semelhança na evolução das leituras ao longo do tempo. Por outro lado, o instrumento C aparentemente não está oscilando da mesma forma que os instrumentos A e B.

Fig. 1 – Leituras de instrumentos genéricos A, B e C ao longo do tempo.

Uma outra maneira de avaliar graficamente se há algum tipo de tendência de comportamento entre as leituras de 2 instrumentos é através da construção de um diagrama de dispersão, o qual representa os "N" pares de leituras agrupadas de uma série temporal. Como exemplo, a Figura 2 apresenta o diagrama de dispersão das leituras dos instrumentos genéricos A e B, sendo que cada ponto do diagrama representa um par de leituras agrupadas em uma determinada data. Neste exemplo, os pontos do diagrama podem ser adequadamente ajustados por uma reta, devido à tendência de crescimento linear entre as leituras. Entretanto, a mesma nuvem de dados do diagrama de dispersão também pode ser ajustada por equações não-lineares, como é o caso do ajuste de equações do 2° grau, resultando, por vezes, em menores desvios.

Instrumento A

Fig. 2 – Diagrama de dispersão das leituras dos instrumentos A e B.

Dessa forma, torna-se necessário adotar um tipo de equação com a finalidade de se ajustar ao conjunto de leituras agrupadas dos instrumentos. Entre os tipos de equação empregados, podem ser citadas as equações polinomiais (Equação 2). Salienta-se que para o ajuste é necessário definir um instrumento como variável dependente *Y*, o qual assumirá novos valores estimados através da equação ajustada, mantendo-se os valores da variável independente *X*.

$$Y_{\text{estimado}} = a_0 + a_1 * X + a_2 * X^2 + \dots + a_n * X^n$$
(2)

 $Y_{estimado}$ – valor assumido pela variável dependente através da equação ajustada;

X - valor da variável independente;

a₀, a₁, a₂, ..., a_n – constantes do polinômio ajustado aos dados;

n - grau do polinômio ajustado.

A definição da equação a ser ajustada ao conjunto de dados depende dos objetivos do estudo, pois equações não-lineares polinomiais podem se ajustar melhor aos mesmos, fonecendo coeficientes de correlação mais elevados. Entretanto, deve-se verificar a necessidade de utilização de polinômios de maior grau, pois os mesmos aumentam a complexidade do estudo e não necessariamente fornecem dados significativamente melhores. Sugere-se que seja determinada a significância da diferença entre os coeficientes de correlação obtidos através de equações de maior e menor grau, conforme procedimento exposto em Spiegel e Stephens (2011).

A semelhança de comportamento entre instrumentos distintos pode ser quantificada através do cálculo do coeficiente de correlação estatística, R, entre os mesmos, considerando-se as leituras compreendidas em um intervalo de tempo (Δt) pré-determinado, através da Equação 3. O coeficiente calculado pode variar entre -1 e +1, ou seja, -100% ou +100% de semelhança de comportamento, sendo que o sinal indica a tendência de crescimento ou decrescimento das leituras.

$$R = \pm \sqrt{\frac{\sum (Y_{estimado} - Y_{médio})^2}{\sum (Y - Y_{médio})^2}}$$
(3)

R – coeficiente de correlação estatística (linear ou não-linear);

 $Y_{estimado}$ – valor assumido pela variável dependente através da equação ajustada;

Y - valor da leitura do instrumento representado pela variável Y para cada uma das datas;

Y_{médio} – média das leituras da variável dependente Y.

No caso do ajuste de equações não-lineares, o valor do coeficiente de correlação calculado entre dois instrumentos irá variar conforme as variáveis dependente e independente adotadas. Por exemplo, considerando-se os instrumentos genéricos citados anteriormente, caso o instrumento A seja adotado como variável independente e o instrumento B seja adotado como variável dependente, o coeficiente de correlação calculado será distinto do coeficiente obtido caso A seja a variável dependente e B a variável independente.

Os coeficientes calculados através da Equação 3 podem ser agrupados em níveis de variação, os quais estão atrelados a determinada força da correlação entre as variáveis estudadas. Neste trabalho, sugere-se que a classificação dos coeficientes de correlação seja feita conforme o Quadro 2, o qual pressupõe valores em módulo, ou seja, a tabela é válida tanto para coeficientes de correlação positivos quanto negativos.

Coeficiente de correlação	Força da correlação		
$0,00 < R \le 0,20$	Muito fraca ou ausência de correlação		
$0,20 < R \le 0,40$	Fraca		
$0,40 < R \le 0,60$	Moderada		
$0,60 < R \le 0,80$	Forte		
$0,80 < R \le 1,00$	Muito forte		

Quadro 2 – Força dos coeficientes de correlação, adaptado de Salking (2011).

Os coeficientes de correlação entre os instrumentos podem ser sintetizados no formato de uma matriz, a qual é denominada matriz de correlação. O Quadro 3 apresenta um exemplo de matriz de correlação linear, calculada para os instrumentos genéricos A, B e C, na qual são apresentados os coeficientes de correlação, *R*, entre os mesmos. Por exemplo, os instrumentos A e B possuem coeficiente de correlação linear igual a 0,9 entre si, ou seja, a similaridade entre as leituras dos mesmos é de 90%. Já o instrumento C possui baixos coeficientes de correlação com A e B, iguais a, respectivamente, 0,15 e 0,12. Pode-se também observar que a matriz de correlação linear é simétrica em relação à diagonal principal, o que não ocorre nos casos onde é calculada a correlação não-linear.

Quadro 3 – Matriz de correlação linear calculada para os instrumentos genéricos A, B e C.

	Instrumento A	Instrumento B	Instrumento C
Instrumento A	100%	90%	15%
Instrumento B	90%	100%	12%
Instrumento C	15%	12%	100%

Como o cálculo da correlação estatística entre duas variáveis aleatórias envolve uma amostra e não a população toda, sempre haverá uma incerteza acerca do coeficiente de correlação obtido. Os N pares de valores (X, Y) de duas variáveis, as quais representam as leituras de dois instrumentos, podem ser pensados como amostras de uma população total desconhecida na qual os pares de valores observados são possíveis. Dessa forma, deve-se avaliar se o coeficiente de correlação da amostra, R, é representativo da população, através da aplicação de testes de significância.

No teste de significância, a hipótese nula (H₀: $\rho = 0$) afirma que o coeficiente de correlação da população não difere significativamente de zero, enquanto a hipótese alternativa (H₁: $\rho \neq 0$) afirma que o coeficiente de correlação da população é diferente de zero. Através desta suposição, a Equação 4 é empregada no cálculo do valor assumido pela distribuição estatística *t* de *Student*.

$$t = \frac{R * \sqrt{N-2}}{\sqrt{1-R^2}}$$
(4)

R - coeficiente de correlação estatística (linear ou não-linear);

t - valor assumido pela distribuição t de Student;

N - número de datas nas quais houve agrupamento de leituras dos instrumentos.

Através do valor assumido pela distribuição *t* de *Student* (Equação 4) e do número de graus de liberdade (N-2), determina-se o nível de significância observado no teste, denominado P-valor. O P-valor é então comparado com o nível de significância adotado no teste (parâmetro α). Caso o P-valor seja menor que α , H₀ é rejeitada e portanto há evidências estatísticas de que haja correlação entre as variáveis estudadas.

Quanto à adoção de um nível de significância (parâmetro α), Cohen (1992) afirma que convencionalmente adota-se o mesmo igual a 5%, podendo-se restringir seu valor em situações nas quais seja necessário minimizar os riscos. Por exemplo, adotando-se o nível de significância (α) igual a 5%, caso P-valor seja inferior a 0,05 a hipótese nula (H₀) é rejeitada e a hipótese alternativa (H₁) é aceita, indicando que o coeficiente de correlação R difere significativamente de zero.

2.3 – Análise dos resultados

A avaliação do desempenho das barragens aqui proposta pressupõe o agrupamento dos instrumentos de comportamento similar, baseando-se nos resultados obtidos no cálculo de correlação. Dessa forma, torna-se necessário adotar um valor mínimo de coeficiente aceitável para que um determinado instrumento venha a fazer parte de uma determinada família, podendo este ser referente à correlação linear ou não-linear. Sugere-se adotar coeficiente de correlação superior a 50% no agrupamento dos instrumentos (correlação moderada, conforme Quadro 2). Classificações mais restritivas podem ser adotadas para avaliação dos coeficientes de correlação, caso haja interesse em limitar o número de instrumentos em estudo.

Através do agrupamento, formam-se grupos de instrumentos cujo comportamento é similar ao longo do período de tempo estudado (Δt), fornecendo indícios acerca do desempenho da barragem. Através dos resultados é possível estudar os mecanismos que resultam nas elevadas correlações entre determinados instrumentos, através da análise das características do subsolo e da eficiência do tratamento de fundação, por exemplo. Além disso, os resultados podem ser utilizados com o intuito de detectar anomalias em instrumentos e na recuperação de leituras faltantes ou problemáticas, caso haja dúvidas quanto ao valor obtido em campo, bem como para identificar mudanças no comportamento da barragem, conforme exposto na sequência. Esses procedimentos de cálculo podem ser automatizados por meio de programação de computador.

2.3.1 – Detecção de anomalias em instrumentos

O estudo das correlações estatísticas pode ser utilizado como forma de detecção de anomalias em instrumentos. Para tanto, podem ser calculados os coeficientes de correlação considerando-se períodos de tempo (Δt) inferiores ao período de tempo total disponível, sendo assim possível avaliar como as mesmas se comportam ao longo do ciclo de vida da barragem.

Como exemplo, a Figura 3 apresenta a evolução da correlação estatística entre 2 instrumentos genéricos, considerando-se intevalos de tempo inferiores ao período total de leituras disponíveis. Os coeficientes de correlação apresentados vêm oscilando em torno de 85%, entretanto os mesmos diminuem bruscamente para aproximadamente 20% na metade do período de tempo representado, indicando a ocorrência de alguma anomalia nas leituras próxima a data em questão. A recuperação da correlação mostra que o motivo causador do problema foi solucionado.

Fig. 3 – Evolução da correlação estatística entre 2 instrumentos genéricos (caso 1).

2.3.2 – Identificação de mudanças no comportamento da barragem

O cálculo de coeficientes de correlação, considerando-se períodos de tempo (Δt) inferiores ao período de tempo total disponível, além de evidenciar possíveis anomalias em instrumentos, conforme exposto acima, também pode servir como indicativo de mudanças no comportamento da barragem ao longo do ciclo de vida.

Como exemplo, a Figura 4 apresenta um caso de evolução da correlação estatística entre 2 instrumentos genéricos, considerando-se intevalos de tempo inferiores ao período total de leituras disponíveis. Neste caso, pode-se verificar uma tendência de diminuição dos coeficientes de correlação ao longo do tempo, independentemente das variações sazonais. Inicialmente, os coeficientes de correlação estão em torno de 85%, entretanto a redução dos mesmos ao longo do tempo resulta em coeficientes em torno de 50% no final do período, podendo indicar que o comportamento da barragem sofreu alterações ao longo do intervalo de tempo em estudo.

2.3.3 – Recuperação de leituras faltantes ou problemáticas

No caso da ocorrência de leituras faltantes ou problemáticas em algum dos instrumentos, é possível determinar as mesmas através de regressão estatística, tomando como base outros instrumentos pertencentes à mesma família de comportamento. Para tanto regressão múltipla pode ser utilizada como forma de obter as leituras citadas no instrumento de interesse, a partir das leituras existentes dos outros instrumentos pertencentes à família, os quais adquirem a função de estimadores ou variáveis independentes.

O objetivo das variáveis independentes adicionais é melhorar a capacidade de predição, reduzindo os resíduos estocásticos, aumentando assim a força dos testes de significância. Como exemplo, a Equação 5 apresenta uma equação linear ajustada a um instrumento genérico X através de regressão múltipla. Para cada data de interesse, calcula-se a leitura correspondente ao instrumento X através das leituras obtidas para os outros N instrumentos.

Fig. 4 – Evolução da correlação estatística entre 2 instrumentos genéricos (caso 2).

$$L_{X} = a_{0} + a_{1} * L_{1} + a_{2} * L_{2} + \dots + a_{N} * L_{N}$$
(5)

 L_x – leitura calculada para o instrumento X, admitido como variável dependente; $L_1, L_2, ..., L_N$ – valores assumidos pelas variáveis independentes, em uma determinada data; $a_0, a_1, a_2, ..., a_N$ – constantes do polinômio ajustado aos dados.

3 – APLICAÇÃO DO MÉTODO À BARRAGEM DE ITAIPU BINACIONAL

A barragem de Itaipu Binacional está localizada no Rio Paraná, na divisa entre Brasil e Paraguai, sendo considerada uma das maiores usinas hidrelétricas do mundo, especialmente considerando-se o aspecto de geração de energia. A estrutura de barramento possui a finalidade de represar a água e manter o desnível de 120 m, permitindo assim a operação das turbinas. A barragem é constituída por vários trechos constituídos por diferentes materiais, podendo ser considerada uma sequência de barragens menores, conforme apresentado na Figura 5.

Fig. 5 - Complexo de barragens de Itaipu Binacional, adaptado de Itaipu (2013).

As fundações da barragem estão assentadas sobre maciço rochoso basáltico da Bacia do Alto Paraná, pertencentes à formação Serra Geral. Os basaltos são rochas de origem vulcânica, formados por lavas básicas, as quais são mais fluidas, permitindo que o derrame se espalhe por longas distâncias em camadas aproximadamente horizontais. Entre essas camadas, podem ocorrer brechas basálticas, as quais são camadas de menor resistência e maior deformabilidade que o basalto, constituindo assim caminhos preferenciais de percolação (Silveira, 2003). A Figura 6 mostra um esquema da implantação da barragem principal sobre o perfil estatigráfico do maciço rochoso de fundação, salientando os derrames mais superficiais (A, B, C, D e E), além das brechas basálticas e do basalto vesicular amigdaloide entre os mesmos.

Fig. 6 – Perfil estratigráfico das fundações de Itaipu Binacional, adaptado de Itaipu (2013).

De acordo com Itaipu (2013), 2.400 instrumentos constituem o sistema de monitoramento da barragem, estando 1358 instalados no concreto, 881 nas fundações e 161 ao longo da barragem, com a finalidade de medição de deslocamentos por métodos geodésicos. Devido às grandes dimensões da obra e à presença das descontinuidades descritas, desde o início do projeto e da construção da barragem houve grande preocupação para que fosse assegurada a estanqueidade da fundação, visando a segurança da barragem. Por esse motivo, o fluxo através da barragem e do maciço de fundação tem sido constantemente monitorado através de instrumentação e de inspeções visuais. Entre os instrumentos com essa finalidade, podem ser citados os piezômetros e os medidores de vazão.

Além das medidas de vazão e de poropressão, outros parâmetros vêm sendo monitorados ao longo do tempo, como por exemplo os deslocamentos horizontais e verticais, movimentação de juntas e tensões. Entre os instrumentos, podem ser citados os pêndulos diretos, as bases de alongâmetro, os deformímetros, os tensômetros e os medidores de junta. Os instrumentos vêm sendo acompanhados desde 1982, compreendendo um grande banco de dados.

3.1 - Coleta e pré-processamento dos dados

Devido às grandes dimensões da barragem, foi necessário escolher uma região de interesse para o estudo. Dessa forma, a barragem de concreto principal de Itaipu, denomidada Trecho F, foi selecionada para análise (Figura 5, trecho 5). O Trecho F é considerado uma das áreas de maior responsabilidade, pois está locado imediatamente a montante da casa de força, além de estar sujeito às maiores solicitações de carga hidráulica. A Figura 7 apresenta uma fotografía da região da casa de força, Prédio dos Pesquisadores, dutos de tomada d'água e Trecho F ao fundo.

Fig. 7 – Fotografia da região da casa de força e barragem principal de Itaipu.

Para aplicação do método, primeiramente foi necessário definir os instrumentos que seriam estudados. Devido às condições geológico-geotécnicas do maciço de fundação, onde é verificada maior permeabilidade em determinadas camadas, considerou-se que os dados de piezometria seriam de grande relevância para elaboração deste trabalho. Salienta-se que o método aqui apresentado pode ser utilizado também para outros tipos de instrumentos.

Os piezômetros são utilizados com a finalidade de determinar a poropressão nos maciços de fundação e a subpressão nos encontros com as estruturas de concreto, os quais agem em sentido contrário ao do peso próprio da estrutura, responsável pelo equilíbrio em barragens de gravidade. Por esse motivo, esses esforços podem levar a deslocamentos desestabilizantes, como escorregamentos, tombamentos ou flutuação (Silveira, 2003).

O estudo utiliza os dados de 66 piezômetros locados no Trecho F de Itaipu Binacional, cuja locação em planta está apresentada na Figura 8. Os mesmos estão instalados em diferentes profundidades, com a finalidade de acompanhar as pressões neutras nas diferentes camadas que compõem a fundação da barragem. Detalhes acerca do tratamento de fundação através de cortina de injeção e do sistema de drenagem da área em questão podem ser consultados em Andraos *et al.* (2008), os quais apresentam um mapeamento geoestatístico relacionado aos dados de piezometria.

Fig. 8 – Locação dos piezômetros do Trecho F da barragem de Itaipu Binacional.

3.1.1 – Organização dos dados no período de tempo estudado

Os dados piezométricos estavam organizados em arquivos eletrônicos contendo o código do instrumento, dada e hora da leitura, leitura realizada em campo e carga hidráulica total. Dessa forma, foi necessária uma preparação dos dados anteriormente à análise.

O período de aquisição das leituras iniciou-se em Fevereiro/1981 e os dados disponíveis finalizam em Fevereiro/2006. Apesar de estarem disponíveis dados desde o enchimento, foram analisadas apenas as leituras compreendidas entre 1996 e 2006 ($\Delta t=10$ anos), como forma de eliminar a influência de fatores que não estão mais afetando o comportamento da barragem, conforme recomendação da equipe de Engenharia Civil da Itaipu. Entre os mesmos, pode ser citada a influência do enchimento do reservatório nas leituras piezométricas.

3.1.1.1 – Agrupamento de leituras para cada data disponível

Em função das grandes dimensões desta barragem, a equipe responsável pelas leituras dos instrumentos em campo está organizada em grupos de técnicos, sendo cada um dos quais responsável por um determinado tipo de instrumento e um trecho específico da barragem. Dessa forma, nem sempre é possível realizar as leituras de todos em uma mesma data.

O intervalo de tempo entre as leituras dos piezômetros não é constante. Durante o enchimento e a operação inicial da barragem, todos piezômetros eram monitorados com maior frequência para entendimento do comportamento inicial da barragem. Após esse período, a frequência entre as leituras diminuiu para os instrumentos que estavam apresentando comportamento constante e dentro de limites aceitáveis. Atualmente, os piezômetros do Trecho F de Itaipu possuem frequência de leitura semanal ou quinzenal. O número total de leituras por instrumento, relativas ao período compreendido entre 1996 e 2006, varia entre 269 e 552, como resultado das diferentes frequências de leitura.

Como consequência do exposto, em um grande número de casos não houve coincidência de datas das leituras dos piezômetros, sendo então necessário definir um procedimento de agrupamento das leituras para, posteriormente, proceder ao cálculo das correlações estatísticas. O estabelecimento de mecanismos para agrupamento de leituras parte do princípio de que o método deve se adequar aos dados, e não o contrário.

Para este trabalho o agrupamento de leituras foi feito baseando-se na obtenção de leituras faltantes através de interpolação. Isso significa que, quando da ocorrência de uma determinada data de interesse sem leitura de poropressão, foi possível obter a mesma através de interpolação. O *software* MatLab foi utilizado como ferramenta de interpolação, sendo todos os dados ajustados através de *spline* cúbica. Dessa forma, os dados reais foram complementados com dados artificiais nas datas onde essa informação não estava disponível. A interpolação através de *spline* cúbica se mostrou adequada para descrever o comportamento das leituras piezométricas, as quais são caracterizadas pela oscilação ao longo do tempo, apresentando picos que poderiam ser ocultados caso os dados fossem interpolados através de equações lineares.

Para aplicação do método de agrupamento proposto, foi necessário pré-determinar um grupo de datas para as quais seriam calculados dados artificiais, caso não houvesse dados de leituras de campo. Dessa forma, foi estabelecido um grupo de 879 datas para obtenção das leituras de poropressão. Este número compreende as leituras reais (que variam entre 269 e 552 leituras por piezô-metro) e demais datas escolhidas para interpolação. Como forma de possibilitar a análise qualitativa do ajuste, a Figura 9 apresenta os dados reais de carga hidráulica do piezômetro PS-F-001 ao longo do tempo, além dos dados artificiais interpolaçãos aos mesmos.

Fig. 9 - Carga hidráulica total real e artificial (piezômetro PS-F-001).

3.1.1.2 – Normalização de atributos

Os níveis piezométricos contidos nos arquivos texto inicialmente se referiam ao nível médio dos mares (NMM), ou seja, o valor de poropressão apresentado nas planilhas consistia na carga hidráulica total, sendo a mesma definida como a soma da carga potencial (de altitude) e da carga de pressão d'água no ponto de leitura (fundo do piezômetro). Como a carga de pressão é o valor de interesse na análise de segurança de barragens, foi descontado da carga hidráulica total o valor referente à carga potencial (elevação do fundo do piezômetro). A Figura 10 exemplifica o exposto, salientando também características presentes nas fundações de Itaipu.

Fig. 10 - Perfil esquemático das leituras piezométricas nas fundações de Itaipu.

Para comparação dos dados de poropressão dos diferentes piezômetros foi necessário harmonizar as leituras dos mesmos, como forma de salientar apenas a variação da poropressão ao longo do tempo, minimizando-se a importância da amplitude da variação. Dessa forma, utilizou-se a normalização de atributos para cada um dos piezômetros individualmente, conforme exposto no ponto 2.1.2. Como resultado, para cada um dos instrumentos, todas as leituras de poropressão/subpressão passaram a variar de 0 (menor leitura) a 1 (maior leitura).
3.1.2 – Aplicação do método de análise dos dados

Primeiramente, para adequada aplicação do método de análise dos dados, foi necessário definir qual o procedimento de cálculo das correlações estatísticas a ser adotado. A análise dos diagramas de dispersão entre os piezômetros mostrou que polinômios do 1° ou 2° grau poderiam se ajustar adequadamente aos dados. Por esse motivo, utilizou-se correlações lineares e quadráticas como forma de estudar a semelhança entre os instrumentos.

Foi necessário estabelecer um procedimento computacional através do *software* MatLab para cálculo das correlações estatísticas e verificação da representatividade das mesmas. Dessa forma, foi obtida uma matriz na qual são apresentados os coeficientes de correlação linear e outra matriz na qual são apresentados os coeficientes de correlação quadrática. Cada uma das matrizes citadas possui 66 linhas e 66 colunas, cada uma das quais representado um dos instrumentos em estudo, resultando em 4356 coeficientes de correlação por matriz.

3.1.3 – Análise dos resultados

Os resultados mostraram que os coeficientes obtidos através de correlação quadrática diferem significativamente daqueles obtidos através de correlação linear, sendo, dessa forma, capazes de descrever mais adequadamente o comportamento dos piezômetros, reduzindo os desvios entre os valores estimados e os valores reais. Por esse motivo, o agrupamento dos instrumentos foi feito com base nos dados obtidos através da correlação quadrática.

Visando o agrupamento dos instrumentos adotou-se um coeficiente de correlação mínimo igual a 50% para que um piezômetro venha a pertencer a uma determinada família de instrumentos com leituras correlacionáveis. Após a definição das famílias de comportamento correlato, foram investigados os principais fatores que resultaram na similaridade entre os instrumentos, fornecendo assim indícios acerca do desempenho da barragem. Os mecanismos estudados englobam aspectos relativos às características do subsolo e à eficiência do tratamento de fundação.

Dessa forma, foram formadas 8 famílias de comportamento similar, conforme apresentado no Quadro 4, o qual também resume os principais fatores que levaram à similaridade entre os instrumentos. Os instrumentos PS-F-007, PS-F-062, PS-F-103, PS-F-114, PS-F-124 e PS-F-126 não puderam ser integrados em nenhuma das famílias formadas, indicando que possuem comportamento independente dos demais.

Através da análise das características das famílias formadas, é possível perceber que há uma relação entre as características geológicas da fundação e o agrupamento dos piezômetros, mesmo que tais características não tenham sido consideradas anteriormente à divisão dos grupos. Também constituem fatores associados ao agrupamento dos piezômetros a localização dos mesmos em relação à cortina de drenagem e à cortina de injeção.

Grupo		Instrumentos		Características
1	PS-F-004 PS-F-036 PS-F-077 PS-F-118	PS-F-024 PS-F-037 PS-F-116 PS-F-119	PS-F-026 PS-F-076 PS-F-117 PS-F-120	Relacionamento com o contato entre os derrames A e B e brecha basáltica pertencente ao derrame B. Locados a jusante da cortina de injeção, com exceção dos piezômetros PS-F-076 e PS-F-116.
2	PS-F-025	PS-F-066	PS-F-139	Locados a jusante da cortina de drenagem, estando relacionados a junta basáltica do derrame B e ao contato entre os derrames A e B.
3	PS-F-015	PS-F-018	PS-F-132	Os piezômetros PS-F-015 e PS-F-018 estão localizados na mesma feição geológica e a jusante da cortina de drenagem. O piezômetro PS-F-132, apesar de estar instalado em outra feição geológica e a montante da cortina de drenagem, apresentou comportamento similar ao dos outros instrumentos.
4	PS-F-001 PS-F-016 PS-F-104	PS-F-002 PS-F-065 PS-F-131	PS-F-011 PS-F-102	Locados entre a linha de drenos e a cortina de injeção, com exceção dos piezômetros PS-F-016, PS-F-102 e PS-F-104. Relacionados principalmente a brecha e descontinuidades presentes no derrame B, além de outras feições.
5	PS-F-010	PS-F-064	PS-F-133	Os piezômetros pertencentes a esse grupo possuem a característica de estarem locados entre a cortina de injeção e a cortina de drenagem, estando relacionados à brecha basáltica do derrame B e ao contato entre os derrames A e B.
6	PS-F-031 PS-F-134	PS-F-052	PS-F-115	Os instrumentos pertencentes a esse grupo estão localizados entre a linha de drenos e a cortina de injeção, com exceção do piezômetro PS-F-134. Relacionados a diferentes feições geológicas.
7	PS-F-006 PS-F-072 PS-F-111 PS-F-122 PS-F-136	PS-F-032 PS-F-075 PS-F-112 PS-F-123	PS-F-035 PS-F-101 PS-F-121 PS-F-135	Piezômetros locados a montante da cortina de injeção ou entre a linha de drenos e cortina de injeção, com exceção dos piezômetros PS-F-035 e PS-F-036. Relacionamento com várias feições do solo.
8	PS-F-008 PS-F-022 PS-F-051 PS-F-063 PS-F-074	PS-F-009 PS-F-033 PS-F-053 PS-F-071 PS-F-113	PS-F-021 PS-F-034 PS-F-061 PS-F-073	Piezômetros relacionados ao contato das estruturas de concreto com a rocha de fundação, com exceção dos piezômetros PS-F-053, PS-F-063 e PS-F-071, estando locados na região de montante da barragem.

Quadro 4 – Grupos ou famílias de piezômetros formados com base na correlação quadrática.

3.1.3.1 – Detecção de anomalias em instrumentos

Os coeficientes de correlação utilizados no agrupamento dos instrumentos, foram calculados para o período de tempo compreendido entre 1996 e 2006 (Δt =10 anos), ou seja, foi definido um único coeficiente de correlação para cada dupla de piezômetros considerando o período citado. Entretanto, a consideração de períodos de tempo menores no cálculo da correlação pode ser utilizada para detecção de comportamentos anômalos dos instrumentos.

Como exemplificação, este tópico aborda o estudo das correlações lineares entre os piezômetros PS-F-008 e PS-F-113, cujo coeficiente é de 82% para $\Delta t = 10$ anos. Conforme apresentado na Figura 11, foi feito o estudo da evolução dos coeficientes de correlação linear ao longo do período entre 1996 e 2006, considerando-se no cálculo intervalos de tempo menores ($\Delta t = 1$ ano).

Fig. 11 - Evolução da correlação linear entre os piezômetros PS-F-008 e PS-F-113.

Através da análise da Figura 11, é possível verificar que os coeficientes de correlação calculados para o intervalo de tempo pré-determinado ($\Delta t = 1$ ano) não são constantes, apresentando pequenas variações. Entretanto, entre os anos de 2005 e 2006 ocorre uma diminuição abrupta dos coeficientes de correlação. Dessa forma, a análise da evolução das correlações foi capaz de detectar um comportamento inesperado, podendo ser um indício de mau funcionamento do instrumento ou comportamento anômalo na barragem.

De acordo com os dados obtidos em campo, em junho/2005 foi feita a preparação para automação do piezômetro PS-F-113, a qual resultou em um alívio de pressão devido ao mau funcionamento do medidor instalado. Por esse motivo, o medidor foi substituído em agosto/2005, voltando o piezômetro a apresentar comportamento normal. Dessa forma, o comportamento inesperado entre as correlações dos instrumentos PS-F-008 e PS-F-113 observado entre 2005 e 2006 pode ser explicado pela instalação do medidor defeituoso.

Neste caso específico a mudança nos valores de coeficiente de correlação pode ser justificada pela substituição do instrumento de medição, sem maiores consequências para a segurança da barragem. No entanto, caso uma eventual mudança de comportamento das leituras do piezômetro estivesse ocorrendo devido a outros mecanismos, essa mudança também seria identificada de modo análogo.

3.1.3.2 – Estimativa de leituras

Como forma de verificar a eficiencia dos resultados obtidos, podem ser utilizada regressão estatística com o objetivo de estimar as leituras de um determinado piezômetro, a partir das leituras de outros instrumentos pertencententes ao mesmo grupo de comportamento. O procedimento descrito tem a finalidade de verificar se haveria perda significativa de dados caso fosse diminuida a frequência de leituras do instrumento selecionado, mantendo-se a frequência de leituras dos outros instrumentos. Procedimento similar ao descrito também pode ser utilizado na obtenção de dados artificiais que substituam leituras faltantes ou problemáticas.

Como exemplificação, são utilizados os dados da Família 7, selecionando-se os piezômetros PS-F-035, PS-F-075 e PS-F-122 como instrumentos de interesse devido aos altos coeficientes de

correlação quadrática apresentados entre os mesmos. O piezômetro PS-F-075 é adotado como variável dependente, ou seja, as leituras do mesmo são calculadas em função das leituras das variáveis independentes PS-F-035 e PS-F-122. A Equação 6, obtida através de regressão linear múltipla, tem a finalidade de descrever o comportamento das leituras do piezômetro em questão ao longo do período compreendido entre 1996 e 2006. O parâmetro *R* obtido indica que o modelo ajustado explica 98,1% da variabilidade do piezômetro PS-F-075.

$$L_{PS-F-075} = 4,13742 + 0,59763 \times L_{PS-F-035} + 0,06877 \times L_{PS-F-122}$$
(6)

 $L_{PS-F-075}$ – leitura calculada do piezômetro PS-F-075 em uma data t;

 $L_{PS-F-035}$ – leitura do piezômetro PS-F-035 em uma data t;

 $L_{PS-F-122}$ – leitura do piezômetro PS-F-122 em uma data t.

A Figura 12 mostra a comparação entre os dados reais e os dados ajustados ao piezômetro PS-F-075, no período de tempo compreendido entre 1996 e 2006. É possível perceber que a regressão estatística foi capaz de estimar leituras intermediárias do piezômetro escolhido, indicando que, caso houvesse interesse, a frequência de leituras do mesmo poderia ser diminuída sem perda considerável de informação.

Fig. 12 - Comparação entre os dados reais e as leituras calculadas do piezômetro PS-F-075.

4 – CONSIDERAÇÕES FINAIS

O monitoramento de barragens ao longo do ciclo de vida é de fundamental importância para a segurança das mesmas, uma vez que falhas ou imperfeições podem resultar em consequências desastrosas. Dessa forma, o presente trabalho apresenta um método de avaliação de desempenho de barragens por meio de agrupamento de instrumentos de comportamento similar, utilizando técnicas estatísticas como ferramenta de análise dos dados. Como forma de exemplificação, o método proposto é aplicado sobre dados de instrumentação da barragem de Itaipu Binacional, permitindo validar o método.

A análise estatística dos dados envolveu o cálculo de correlações entre os piezômetros pertencentes ao Trecho F da barragem principal de Itaipu, com a finalidade de avaliar a similaridade entre as leituras dos mesmos no período de tempo considerado. Como resultado, foi possível

organizar os instrumentos em famílias de comportamento correlato, as quais forneceram indícios dos mecanimos que influenciam nas leituras obtidas em campo, principalmente no que se refere às características do subsolo e à localização dos mesmos em relação ao tratamento de fundação.

O método proposto foi capaz de avaliar o desempenho dos instrumentos instalados no corpo da barragem, através da detecção de comportamentos anômalos e de defeitos em instrumentos, podendo servir como ferramenta para geração de critérios de alerta. Além disso, o método se mostra capaz de estimar leituras intermediárias para instrumentos que pertençam a mesma família de comportamento, podendo ser utilizado para recuperação de leituras falhas ou verificação de leituras problemáticas.

Para trabalhos futuros, sugere-se que o método exposto seja aplicado em diferentes instrumentos de monitoramento de barragens, buscando explicar os mecanismos que resultaram no comportamento similar ou heterogêneo entre os mesmos. No caso específico dos piezômetros, uma contribuição interessante seria a determinação das redes de fluxo dos maciços de fundação através de elementos finitos, com a finalidade de comparação com os resultados de agrupamento e leituras de campo.

5 – AGRADECIMENTOS

Os autores agradecem à equipe de engenharia da Itaipu Binacional por fornecer os dados aqui utilizados.

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- Andraos, N.C.; Sanchez, P.F.; Dyminski, A.S.; Ribeiro Jr., P.J.; Osako, C.I. (2008). Mapeamento geoestatístico de subpressões no maciço de fundação da barragem de Itaipu. XIV Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica – COBRAMSEG (RJ), Búzios.
- Bowles, D.S. (2004). ALARP evaluation: using cost effectiveness and disproportionality to justify risk reduction. ANCOLD Bulletin, vol. 127, pp. 73-88.
- Buzzi, M.F. (2007). Avaliação das correlações de séries temporais de leituras de instrumentos de monitoração geotécnico-estrutural e variáveis ambientais em barragens – Estudo de caso de Itaipu. Dissertação apresentada ao Programa de Pós-Graduação em Métodos Numéricos em Engenharia, Universidade Federal do Paraná (BR), Curitiba.
- Charles, J.A.; Tedd, P.; Warren, A. (2011). Evidence Report Lessons from historical dam incidents. Environment Agency (UK), Bristol.
- Chonghui, F.; Xiang, H.; Yahui, D.; Boqing, F. (2012). Analysis of dam-break case of concrete arch dam and forecast of failure scope based on point safety factor. Procedia Engineering, vol. 28, pp. 617-625.
- Cohen, J. (1992). Statistical Power Analysis. Current Directions in Psychological Science, vol. 1, no 3, pp. 98-101.
- Comitê Brasileiro de Barragens (2001). *Guia Básico de Segurança de Barragens*. Comissão Regional de Segurança de Barragens (BR), São Paulo.
- Dam Safety (2013). Association of State Dam Safety Officials. http://www.damsafety.org/
- Department of Natural Resources and Mines (2002). *Queensland Dam Safety Management Guidelines*. Queensland Government (AU), Brisbane.

- Dunnicliff, J. (1993). Geotechnical Instrumentation for Monitoring Field Performance. 2^a edição. John Wiley & Sons (US), New York.
- Graham, W.J. (1999). A Procedure for Estimating Loss of Life Caused by Dam Failure. Bureau of Reclamation, United States Department of Interior (US), Denver.
- He, X.Y.; Wang, Z.Y.; Huang, J.C. (2008). *Temporal and spatial distribution of dam failure events in China*. International Journal of Sediment Research, vol. 23, pp. 398-405.
- Itaipu (2013). Itaipu Binacional. http://www.itaipu.gov.br/
- Mata, J. (2010). Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, vol. 33, pp. 903-910.
- Papadrakakis, M.; Papadopoulos, V.; Lagaros, N.D.; Oliver, J.; Huespe, A.E., Sánchez, P. (2006). Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural networks. Structural Safety, vol. 30, pp. 217-235.
- Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. (2008). Reported tailing dam failures. A review of the European incidents in the worldwide context. Journal of Hazardous Materials, vol. 152, pp. 846-852.
- Salking, N.J. (2011). *Statistics for people who (think they) hate statistics*. 4^a edição. SAGE Publications Inc (US), Thousand Oaks.
- Silveira, J.F.A. (2003). Instrumentação e Comportamento de Fundações de Barragens de Concreto. Oficina de Textos (BR), São Paulo.
- Spiegel, M.R.; Stephens, L.J. (2011). *Statistics*. 4^a edição. The McGraw-Hill Companies Inc (US), New York.
- Tan, P.N.; Steinbach, M.; Kumar, V. (2005). Introduction to Data Mining. 1^a edição. Addison-Wesley Longman Publishing Co. (US), Boston.

CLASSIFICAÇÃO DE RISCO DE BARRAGENS POR ÍNDICES DE RISCO – UM ESTUDO DE CASO

Risk classification of dams for risk indices - a case study

Sandra Keila de Oliveira Baima* José Nilson Bezerra Campos**

RESUMO – No Brasil a Lei Federal nº 12 334/2010, estabeleceu a Política Nacional de Segurança de Barragens (PNSB), cujo objetivo é estabelecer a linha de base para avaliação e acompanhamento da implementação da referida política, servindo como ferramenta de análise de sua efetividade na redução de acidentes e na melhoria da gestão da segurança das barragens brasileiras. A lei esclareceu e reforçou a responsabilidade legal do empreendedor em manter as condições de segurança de sua barragem, bem como definiu o respectivo órgão fiscalizador, em função do uso que é dado ao barramento. Definiu também uma série de instrumentos de gestão da segurança, tornando-os obrigatórios a partir de então, e dentre os instrumentos, estabeleceu, através da resolução CNRH nº 143/ 2012, o sistema de classificação por categoria de risco e de dano potencial associado. Neste sistema de classificação, certas características técnicas da barragem e do vale à jusante, chamadas de descritores, deverão ser pontuadas, resultando em valores que auxiliam na classificação da barragem em função do risco. Esta metodologia é conhecida como índice de risco. Neste trabalho dois destes índices, o índice global de risco e o índice da resolução CNRH Nº 143/ 2012, são aplicados a uma barragem de terra. Os resultados obtidos permitem realçar que estes métodos se relacionam diretamente com o tipo de barragem em questão e com as condições locais e ambientais em que as obras se inserem.

SYNOPSIS – In Brazil, the Federal Law No. 12 334/2010, established the National Policy on Safety of Dams (NPSD), whose goal is to establish a baseline for evaluation and monitoring of the implementation of this policy, serving as an analysis tool of its effectiveness in reducing accidents and improving safety management of the Brazilian dams. The law clarified and strengthened the legal responsibility of the entrepreneur to maintain the dam safety conditions, as well as set the supervisory body, depending on the use that is given to the structure. Also it has defined a set of tools for security management, making them mandatory from now on, and among the instruments established by the resolution CNRH No. 143/2012 is the classification system by risk category and associated potential harm. In this classification system, certain technical characteristics of the dam and of the downstream valley, called descriptors, should be rated resulting in values that assist in the classification of the dam according to risk, this approach being known as a risk index. In this work, two of these indices, the overall risk index and the index of resolution CNRH No. 143/2012, are applied to an earth dam. The results obtained show that these methods are directly related to the type of dam in question and with the local and environmental conditions in which the works are located.

PALAVRAS CHAVE - Barragens, segurança, análise de risco, índices de risco.

^{*} Engenheira Civil do Departamento Nacional de Obras Contra as Secas (DNOCS). E-mail: sandra.baima@dnocs.gov.br

^{**} Professor Doutor da Universidade Federal do Ceará. E-mail: nilson@ufc.br

1 – INTRODUÇÃO

No Brasil a Lei nº 12 334, sancionada em 20 de setembro de 2010, estabeleceu a Política Nacional de Segurança de Barragens, criou o Sistema Nacional de Informações sobre Segurança de Barragens (SNISB), e define:

(a) as características das barragens que se enquadram na nova política;

(b) a competência dos fiscalizadores;

(c) as responsabilidades do empreendedor da barragem;

(d) as sanções no caso de descumprimento da lei.

Com a publicação da lei de segurança de barragens, houve uma mudança de paradigma, eliminando o vácuo institucional e estabelecendo uma cadeia de responsabilidades relacionadas à segurança das barragens construídas no Brasil. A lei esclareceu e reforçou a responsabilidade legal do empreendedor em manter as condições de segurança de sua barragem, bem como definiu o respectivo órgão fiscalizador, em função do uso dado ao barramento. Definiu também uma série de instrumentos, todos eles previstos na literatura técnica do setor e considerados "boas práticas" de gestão da segurança, tornando-os obrigatórios a partir de então. Dentre os instrumentos, estabeleceu o sistema de classificação por categoria de risco e de dano potencial associado, o plano de segurança de barragens, que engloba importantes elementos como as inspeções periódicas e especiais, plano de ações de emergência (PAE) e revisão periódica de segurança.

A lei 12 334/2010 define órgão fiscalizador como a autoridade do poder público responsável pelas ações de fiscalização da segurança da barragem de sua competência. São quatro as entidades federais fiscalizadoras de segurança de barragens:

- ANA Agência Nacional de Águas, responsável pela fiscalização de barragens para acumulação de água, localizadas em rios federais;
- ANEEL Agência Nacional de Energia Elétrica, responsável pela fiscalização de barragens para geração de energia;
- IBAMA Instituto Brasileiro do Meio Ambiente, responsável pela fiscalização de barragens para fins de disposição de resíduos industriais, exceto os nucleares;
- DNPM Departamento Nacional de Produção Mineral, responsável pela fiscalização de barragens para contenção de rejeitos.

A lei 12 334/2010 define empreendedor como o agente privado ou governamental com direito real sobre as terras onde se localizam a barragem e o reservatório ou que explore a barragem para beneficio próprio ou da coletividade, sendo também o responsável legal pela segurança da barragem, cabendo-lhe o desenvolvimento de ações para garanti-la.

No universo das barragens com empreendedores conhecidos, 43 empreendedores detêm o total de 1744 barragens, sendo, portanto, responsáveis por 13% do total de barragens cadastradas. Em número de barramentos cadastrados destacam-se a Companhia Energética de Minas Gerais (CEMIG) na geração hidrelétrica, a Companhia de Desenvolvimento do Vale do São Francisco (CODEVASF) com barragens de irrigação, o Departamento Nacional de Obras contra as Secas (DNOCS) com barragens para usos múltiplos e a Mineradora Vale com barragens de rejeito de mineração. Esses quatro empreendedores representam, em conjunto, cerca de 6% das barragens cadastradas, com empreendedor conhecido no Brasil (ANA, 2012).

Como pela lei o empreendedor obriga-se a prover os recursos necessários à garantia da segurança da barragem e observando o montante de barragens da Fig. 1 pode-se concluir que, para entrarem em conformidade com a nova lei, estes empreendedores deverão passar por adequações não só de ordem técnica, mas também orçamentárias.

Fig. 1 – Maiores empreendedores brasileiros em número de barragens.

2 – PORTFÓLIO DE BARRAGENS DO DNOCS

O DNOCS foi criado em 21 de outubro de 1909, sob a denominação de Inspetoria de Obras Contra as Secas (IOCS). Em 1919 recebeu o nome de Inspetoria Federal de Obras Contra as Secas (IFOCS), antes de assumir sua denominação atual, DNOCS, que lhe foi conferida em 28 de dezembro de 1945. É um órgão público, autarquia federal, ligado ao Ministério da Integração, com atuação na zona semiárida.

A zona semiárida é caracterizada, sobretudo, por uma precipitação pluviométrica média anual inferior a 800 mm, uma evapotranspiração potencial acima de 2000 mm e rios, em sua maioria, intermitentes. Nesta zona diferenciam-se nitidamente duas estações regionais: os períodos chuvosos, inverno, e os de estiagem, verão. Esta zona abrange oito estados da região Nordeste e o norte do estado de Minas Gerais (Fig. 2).

O DNOCS, a partir de 1945 e mais especificamente nas décadas de 50 e 60, intensificou suas ações no desenvolvimento dos recursos hídricos, com a ampliação da oferta de água, com destaque para a construção de três das quatro maiores barragens do estado do Ceará: Araras (1958), Orós (1962) e Banabuiú (1966). Em 2002, também no Ceará, foi inaugurada a barragem Castanhão, cuja capacidade de acumulação de 6,7 bilhões de m³ de água o coloca como o maior reservatório do país, não ligado ao sistema de geração de energia elétrica, podendo sua área molhada chegar a 33 225 km² quando atingir sua capacidade máxima.

Até 1920, o DNOCS havia construído 61 barragens, em 1930 este total subia para 96, em 1940 já contava com 128 barragens. De 1940 até 1981, o número de barragens aumentou para 263, estando atualmente, 2013, com 311 barragens construídas, armazenando um total de 26.2×10^9 metros cúbicos d'água (Quadro 1).

A lei 12 334/2010 define as características das barragens às quais se aplica:

- i. Altura do maciço, contada do nível mais baixo da fundação à crista, maior ou igual a 15 m;
- ii. Capacidade do reservatório maior ou igual a 3 000 000 m3;
- iii. Reservatórios que contenham resíduos perigosos;
- iv. Categoria de dano potencial associado, médio ou alto todas as barragens serão classificadas pelo órgão fiscalizador, segundo critérios estabelecidos pela resolução do Conselho Nacional de Recursos Hídricos - CNRH nº 143/2012.

Observa-se que os principais critérios de enquadramento da barragem são suas dimensões altura e volume, porém barragens menores que forem classificadas, pelo órgão fiscalizador, com dano potencial médio ou alto, também se enquadram na Lei nº 12 334/10. O DNOCS não possui nenhuma barragem em seu registro que contenha resíduos perigosos.

Fig. 2 – Delimitação do semiárido brasileiro (IBGE, 2007).

Estado	Barragens Construídas				
Alagoas	22				
Bahia	34				
Ceará	84				
Maranhão	2				
Minas Gerais	5				
Paraíba	42				
Pernambuco	38				
Piauí	20				
Rio Grande do Norte	53				
Sergipe	11				

Quadro 1 – Distribuição de barragens construídas por estado.

A Fig. 3 mostra o número de barragens do DNOCS, por estado, que se enquadram nos critérios capacidade altura da lei 12 334/10.

Fig. 3 – Barragens que se enquadram nos critérios capacidade e altura.

A sustentabilidade pelo conhecimento técnico proporcionou a construção de barragens cada vez mais altas o que implica em maiores volumes armazenados e aumento substancial de estruturas e infra-estruturas no vale à jusante, potencialmente atingidos por uma ruptura. Na Fig. 4 observa-se a evolução das alturas das barragens construídas pelo DNOCS e também a predominância das barragens com altura entre 10 e 30 m. A barragem de Jucazinho, construída em CCR, com 63 m de altura é a mais alta, seguida pela barragem do Castanhão, mista de terra e concreto, com 60 m e pela barragem Banabuiú, de terra zonada, com 57 m de altura.

No histograma da Fig. 5, observa-se que muitas das barragens, construídas pelo DNOCS, já atingiram um razoável período da respectiva vida útil e pretende-se (em geral) que as mesmas sejam exploradas por mais 50 anos (pelo menos), podendo exigir intervenções de reabilitação ou de reforço.

Fig. 4 – Evolução das alturas das barragens.

Fig. 5 - Histograma das idades das barragens do DNOCS.

O desenvolvimento técnico científico associado à grande versatilidade das barragens de terra, seja no que se refere à morfologia do vale de implantação, às condições de fundação ou à possibilidade de integração, no seu perfil tipo, de uma variedade de materiais naturais, generalizaram a construção deste tipo de obra pelo DNOCS. Como conseqüência o órgão possui, entre as suas atuais 311 barragens construídas, uma predominância quase absoluta de barragens de terra como mostra o Quadro 2. São barragens de terra, homogêneas ou zonadas, sendo estatisticamente irrelevantes as executadas em blocos de pedra, concreto ciclópico ou em concreto. Naturalmente, outras tecnologias foram sendo desenvolvidas, como, por exemplo, a do concreto compactado com rolo (CCR), empregado na construção das barragens do Castanhão (CE) e Jucazinho (PE).

Material	Percentual
Terra homogênea ou zonada	87,7%
Terra - enrocamento	0,6%
Enrocamento	1,0%
Alvenaria de pedra	5,8%
Concreto	3,5%
Terra - concreto	1,4%

Quadro 2 - Tipo de barragem conforme o material de construção.

Segundo Zuffo (2005), com base em registros históricos de Mccully (2001), pode-se afirmar que as barragens mais sujeitas a *falhas* são as de terra (47%), seguidas pelas de enrocamento (21%), concreto de gravidade (12%), rejeitos (9%), em arco (7%), contrafortes e mista de arcos múltiplos e concreto de gravidade, ambas com cerca de 2%. Somente as barragens de arcos múltiplos não apresentaram acidentes.

Segundo Baptista (2009), a palavra falha merece destaque particular, pois, trata-se de um termo de grande utilização no âmbito das análises de riscos e caracteriza, de uma maneira geral, uma deficiência com capacidade para comprometer a função atribuída a um determinado componente ou subsistema.

A principal vulnerabilidade das barragens de aterro é que elas podem sofrer danos ou serem destruídas se a altura da barragem ou a capacidade do vertedouro forem insuficientes a ponto de levarem ao transbordamento e consequente erosão do maciço, ou ainda, se uma fuga de água descontrolada resultar em erosão interna do maciço ou da fundação (Miranda, 2011).

Araújo (1990), Menescal *et al.* (2004) e Miranda (2011) apresentam relatos de acidentes e incidentes ocorridos em barragens construídas pelo DNOCS (Quadro 3).

	Barragem/ Açude	UF	Tipo	Acidente/Incidente	Causa provável	Fase
1	Orós (1960)	CE	BTZ	Galgamento e consequente ruptura	Atraso no cronograma associado a cheia acima da média histórica para o período	Construção
2	Armando Ribeiro Gonçalves/Açú (1981)	RN	BTZ	Escorregamento do talude de montante na sua parte central provocando um desmorona- mento de grandes proporções, da ordem de 1,5 milhão de m ³	Poro-pressão no período de construção	Final de construção
3	Engenheiro Ávidos/Piranhas (1963)	PB	BTZ	Recalques e movimentos que provocaram a abertura de algumas juntas	Sangria com lâmina máxima d'água de 0,30m	Operação
4	Arrojado Lisboa/ /Banabuiú (1961)	CE	BTZ	Escorregamento do talude de montante	Rebaixamento rápido do nível d'água para dar vazão à cheia	Construção
5	Eugênio Gudin/ /Acarape do Meio (1912)	CE	BAP	Barragem de desvio transbordou e rompeu uma das ombreiras	Intensas precipitações	Construção

Quadro 3 – Barragens	do DNOCS com	acidentes	e incidentes,	compilado	a partir d	e Araújo ((1990)
	Menesc	al (2009) e	Miranda (20	011).			

Quadro 3 (Cont.) – Barragens do DNOCS com acidentes e incidentes, compilado a partir de Araújo (1990), Menescal (2009) e Miranda (2011).

	Barragem/ Açude	UF	Tipo	Acidente/Incidente	Causa provável	Fase
6	Trairí (1981)	RN	BTH	Transbordamento por sobre o maciço com lâmina máxima de 1,1m durante 5h	Precipitações intensas e arrombamento do açude Santa Cruz, a montante	Operação
7	Santa Cruz (1981)	RN	BTH	Ruptura do maciço devido ao seu transbordamento	Rompimento de seis pequenos açudes a montante liberando um volume estimado de 5 000 000 m ³	Operação
8	Epitácio Pessoa/ /Boqueirão de Cabaceiras (1956)	РВ	BTH	Pouco tempo depois de sua conclusão, a barragem recebeu grande volume de água (320 milhões de m ³), após o que o reservatório foi esvaziado. Seguiu-se a este fato o aparecimento de trincas no maciço da barragem, junto à ombreira direita, e de recalque da crista junto à margem esquerda	Os trabalhos de recuperação não estão descritos na documentação técnica disponível	Operação
9	Cocorobó (1967)	BA	BTH	Escorregamento do talude de montante, cerca de 45 000m ³ de terra deslocados numa extensão aproximada de 100m	Poro-pressão no período de construção	Final de construção
10	Caldeirão (1956)	PI	BTZ	Depressões no talude de montante. Fuga d'água com carreamento de material, cinco surgências com altos valores	<i>Piping</i> através da fundação. Fundações em arenito com planos de estratificação com juntas de material alterado	Operação
11	Barreiras (1974)	PI	BTH	Fenda longitudinal no talude de jusante, aproximadamente 2m abaixo do coroamento; abatimentos no rip-rap de montante; levantamento do revestimento em pedra rejuntada das banquetas e ressurgência no pé de jusante, próximo à tomada d'água e no dreno de pé		Operação
12	Sta Maria (1924)	CE	BT	Arrombamento	Cheia superior à capacidade do sangradouro	
13	Patos (1924)	CE	BT	Arrombamento	Cheia superior à capacidade do sangradouro	
14	Ema (1940)	CE	BTH	Deslizamento do talude de jusante e ruptura total	Piping	Operação
15	General Sampaio (1940)	CE	BTZ	Percolação pelo túnel da tomada d'água com carreamento de material do maciço	Caminho preferencial de percolação no contato do maciço com a estrutura da tomada d'água não interceptado pelo sistema interno de drenagem	Operação
16	Caxitoré (1961)	CE	BTH	Trinca transversal no contato do maciço com a ombreira esquerda quando o maciço estava com 15m de altura	Dificuldade de compactação devido à inclinação elevada da ombreira	Construção

	Barragem/ Açude	UF	Tipo	Acidente/Incidente	Causa provável	Fase
17	São Mateus (1981)	CE	BTH	Erosões de grandes dimensões	Deficiência do sistema de drenagem associado a fortes chuvas	Operação após 5 anos
18	Farias de Souza (1986)	CE	BTH	Surgência a jusante numa extensão de 120m por três de largura		Primeiro enchimento (parcial)
19	Roberto Costa/ /Trussú (1997)	CE	BTH	Trincas longitudinais sobre o coroamento		Primeiro enchimento (parcial)
20	Piaus (2009)	PI	BTZ	Trincas transversais profundas junto às ombreiras, após o primeiro enchimento parcial do reservatório	Forma do vale muito estreito; fundação, no vale do rio, mais compressível que as ombreiras; alta velocidade de construção (50% do maciço executado em 4 meses e 80% em 7 meses), o material do aterro compactado no ramo seco (média de 1% abaixo da umidade ótima) e solo com índice de plasticidade inferior a 15%	Primeiro enchimento (parcial)

Quadro 3 (Cont.) – Barragens do DNOCS com acidentes e incidentes, compilado a partir de Araújo (1990), Menescal (2009) e Miranda (2011).

BTZ – Barragem de terra zoneada

BTH – Barragem de terra homogênea

BAP - Barragem de alvenaria de pedra

3 - METODOLOGIAS DE AVALIAÇÃO DE RISCO PARA BARRAGENS

Baptista (2009) apresenta algumas definições atuais do vocabulário *risco*, no entanto, conclui que há um consenso, quase generalizado atualmente, de que risco é o produto da probabilidade de ruptura pelas respectivas consequências, ou de outro modo, uma quantificação matemática que deverá traduzir, em determinado instante, o conhecimento e estado da barragem, a expectativa de seu desempenho futuro e as consequências de uma eventual ruptura.

Segundo Salmon e Hartford (1995), uma avaliação de risco recorre a três perguntas fundamentais:

- a) Que pode dar errado? (Ameaça);
- b) Quanto isso é provável? (Probabilidade de ruína);
- c) Que danos isso causará? (Consequência de ruína).

O propósito da avaliação de risco é determinado por muitos aspectos, incluindo tipo, nível e rigor. Cummis (2003) enumera alguns propósitos de estudos de avaliação de risco:

- a) modelar o risco para um portfólio de barragens;
- b) assinalar prioridades para investigações sobre a segurança de barragens;
- c) ajudar na avaliação da segurança de uma barragem existente;
- d) ajudar na decisão sobre o nível de segurança requerido para uma barragem;
- e) avaliar opções de redução de risco;

- f) assinalar prioridades para um programa de ações remediadoras;
- g) auxiliar na decisão sobre os níveis de segurança para barragens em análise;
- h) apoiar as decisões sobre ações preventivas em segurança durante a construção de uma barragem;
- i) formar requisitos de operações e manutenção de barragens;
- j) determinar procedimentos de gerenciamento de situações de emergência;
- k) compor um programa de monitoramento e supervisão;
- 1) estabelecer necessidades de garantia de qualidade e treinamento de pessoal.

Segundo Caldeira (2008), avaliações de risco em Portfólio são úteis para melhorar o conhecimento dos riscos relativos associados a um conjunto de obras, barragens, permitindo estabelecer os aspectos a incluir em um programa de segurança de barragens e as prioridades de investigações complementares e de aplicação de medidas de redução do risco. Este tipo de análise procura determinar onde se pode atingir a máxima utilidade na redução do risco associado às obras incluídas no Portfólio, em face do montante limitado de investimento.

Os índices de risco constituem, atualmente, no domínio das barragens, os métodos de maior aplicação no âmbito das análises de risco. De uma maneira geral, estes índices visam a classificação da barragem (e do seu risco), tendo por base, na maioria dos casos, fontes de perigo, vulnerabilidades e consequências. As consequências que tradicionalmente se inserem nas preocupações deste tipo de método se reportam, essencialmente, ao vale a jusante potencialmente inundado em situação de cheia, resultante da ruptura da barragem (Baptista, 2009).

Os índices de risco (e os índices parciais que os compõe) constituem valores numéricos obtidos com base em regras de agregação aplicadas a descritores previamente definidos e classificados. Os descritores incidem, de uma maneira geral, sobre fontes de perigo, condicionantes ambientais, condições de vulnerabilidade, confiabilidade dos subsistemas principais e consequências no vale a jusante (Caldeira, 2008).

O desenvolvimento de índices tem sido impulsionado pela necessidade de transmitir, de forma simples e objetiva, informação que possa ser incorporada em um processo de apoio à decisão (Ott, 1979). Os índices são normalmente descritos como instrumentos capazes de agregar uma grande quantidade de dados.

Em termos práticos, o cálculo de um índice de risco consiste:

- Na definição do objetivo do índice;
- Na seleção de descritores que sejam os mais representativos de determinadas características da barragem ou do vale a jusante (descritores);
- Na atribuição de pesos a cada descritor segundo um sistema de quantificação da respectiva importância;
- Na normatização dos indicadores em uma escala comum (estes geralmente são expressos em unidades ou escalas distintas);
- Na agregação dos indicadores, visando uma medida (ou um valor simples do impacto);
- Na validação do índice.

A Comissão Internacional de Grandes Barragens é responsável pela divulgação de um destes índices, o índice global de risco (CIGB, 1982), cuja utilização é contemplada nas Normas de Observação e Inspeção de Barragens Portuguesas (SRB, 1993). Este índice, desenvolvido inicialmente como elemento de apoio à definição e exploração dos sistemas de observação de barragens, foi, posteriormente, utilizado no âmbito de avaliações preliminares de risco (Baptista, 2009).

3.1 – Índice Global de Risco

O boletim 41 da CIGB (CIGB, 1982) traz uma proposta de cálculo das condições de risco para apoio à definição do sistema de observação e sua exploração. Na proposta a avaliação das condições de risco é efetuada, de forma simplificada, atribuindo valores a um conjunto de descritores (α_i) agrupados em três classes, associadas a fatores exteriores ou ambientais (E), à confiabilidade da obra (F) e a fatores humanos e econômicos afins à sua ruptura (R).

Índice parcial relativo a fatores externos ou ambientais (E)

$$E = \frac{1}{5} \sum_{i=1}^{5} \alpha_i \tag{1}$$

Índice parcial relativo à confiabilidade da obra (F)

$$F = \frac{1}{4} \sum_{6}^{9} \alpha_i \tag{2}$$

Índice parcial relativo a fatores humanos e econômicos (R)

$$R = \frac{1}{2} \sum_{i=1}^{11} \alpha_i$$
 (3)

A classificação dos descritores é feita utilizando uma escala qualitativa, que pode assumir valores entre 1 e 6, de acordo com algumas regras previamente definidas e tendo em conta a análise da informação específica afim da obra em questão.

O índice global de risco, α_{g} , é determinado pelo produto dos três índices parciais:

$$\alpha_g = E * F * R \tag{4}$$

As Normas de Observação e Inspeção de Barragens (NOIB) (SRB, 1993) utilizam esta proposta, de cálculo das condições de risco, para apoio à definição do sistema de observação e sua exploração e prevêem, também, a utilização do índice global de risco e dos índices parciais para o estabelecimento de prioridades de inspeção de barragens (existentes à data de publicação das normas) com vistas à sua adequação ao Regulamento de Segurança de Barragens (RSB). Neste enquadramento foram definidas três classes de barragens:

- classe A, barragens que têm pelo menos um descritor com classificação 6;
- classe B, barragens que têm o índice global de risco, α_g, superior a 20 e o índice parcial R maior ou igual a 3;
- classe C, as barragens restantes;

A ordenação das barragens dentro de cada uma das classes atende às seguintes regras:

- na classe A, o número de descritores com classificação 6, devendo em caso de empate, considerar, sucessivamente, o valor de α_g , o valor de R e o valor de α_i (que se refere à sismicidade);
- nas classes B e C, o valor de α_{g_s} o valor de R e o valor de α_{η} .

Caldeira e Silva Gomes (2006) introduziram modificações ao índice global de risco que deram origem ao índice global de risco modificado (Quadro 4). Estas modificações visaram contribuir para uma harmonização na classificação dos descritores bem como para eliminar classificações divergentes.

Na sequência, Baptista (2009) identifica algumas diferenças entre o índice global de risco inicial e o modificado:

- a) O descritor α₁ passa a ter apenas duas classificações possíveis, 2 e 3, 2 para acelerações máximas entre 0,05g e 0,10g e 3 para acelerações máximas entre 0,10g e 0,20g;
- b) Os descritores α₂, α₃, α₆ α₉ passam a poder assumir todas as classificações entre 1 e 6 e o descritor α₄ entre 1 e 5;
- c) O conteúdo do descritor α₄ é alterado, passando a caracterizar, especificamente, a velocidade de variação do nível da água do reservatório, tendo em conta as características de permeabilidade dos materiais constituintes dos maciços estabilizadores de montante das barragens de aterro com órgãos de estanqueidade no seu interior;
- d) Os descritores α_2 e α_4 passam a ter classificações em função do tipo de barragem;
- e) Os descritores α_s e α_{II} , passam a poder assumir classificação 6, que as NOIB atribuem a condições anormais, implicando intervenção técnica indispensável.

A classificação 6 do descritor α_{II} reporta a existência de grandes aglomerados populacionais ou vias de comunicação importantes no vale potencialmente inundável, próximo a barragem (menos de 5 km, no caso de barragens de aterro e menos de 10 km, no caso de barragens de concreto e alvenaria).

Quadro 4 - Regras gerais de classificação para cálculo do índice global de risco modificado (INAG, 2001).

SSOCIADA HUMANOS ĴMICOS	Instalações a jusante	α	Muito reduzida	Pequena	Média	Grande	Elevada	Muito elevada
CLASSE AS A FATORES E ECONO	Volume do reservatório (m³)	α ^{io}	<105	$10^{5} - 10^{6}$	$10^{6} - 10^{7}$	$10^{7} - 10^{9}$	10°	
DE DA OBRA	Manutenção	ά	Muito boa	Boa	Satisfatória	Aceitável	Mediocre	Inaceitável
NFIABILIDAI	Órgãos de descarga	$lpha_{s}$	Elevada confiabilidade	Média confiabilidade	Baixa confiabilidade	Reduzida confĭabilidade	Não confiáveis	Inexistentes ou inoperacionais
OCIADA A CO	Fundação	α,	Muito boa	Boa	Satisfatória	Aceitável	Mediocre	Inaceitável
CLASSE ASSO	Dimensio- namento estrutural	ά	Adequado	Adequado sob o ponto de vista estático	Satisfatório	Aceitável	Mediocre	Inadequado
MBIENTAIS	Ações agressivas	ά,	Mínimas	Fracas	Médias	Fortes	Muito fortes	Associadas a danos estruturais
RIORES OU A	Gestão do reservatório	$lpha_4$	Muito boa	Boa (barragens de concreto e alvenaria)	Média (barragens de aterro)	Aceitável (barragens de concreto e alvenaria)	Mediocre (barragens de aterro)	
TORES EXTE	Cheias superiores à do projeto	ά	Baixa (barragens de concreto e alvenaria)	Baixa (barragens de aterro)	Média (barragens de concreto e alvenaria)	Média (barragens de aterro)	Grande	Elevada
OCIADA A FA	Escorregamen to de taludes	ď	Mínima ou nula	Baixa (barragens de concreto e alvenaria)	Baixa (barragens de aterro)	Média (barragens de concreto e alvenaria)	Média (barragens de aterro)	Elevada
CLASSE ASS	Sismicidade	ά		Muito baixa 0,5g <a<0,1g< th=""><th>Baixa 0,1g<a<0,2g< th=""><th></th><th></th><th></th></a<0,2g<></th></a<0,1g<>	Baixa 0,1g <a<0,2g< th=""><th></th><th></th><th></th></a<0,2g<>			
		Valor	1	7	ю	4	5	9

3.1.1 – Exemplo de aplicação

O método do índice global de risco modificado foi aplicado à barragem Cocorobó, construída pelo DNOCS, com a finalidade de irrigação das terras de jusante, onde se destaca o projeto irrigado de Vaza Barris com 460 ha, controle das cheias, piscicultura, aproveitamento das áreas de montante e abastecimento d'água da vila. As características técnicas da barragem encontram-se descritas no Quadro 5.

Tipo	Terra homogênea			
Altura máxima (com fundação)	33,5 m			
Extensão da barragem principal	643 m			
Largura da barragem principal	7 m			
Capacidade	245 375 950 m ³			
Vertedouro	Lâmina livre em arco			
Tomada d'água	Galeria dupla			
Ano de conclusão	1967			
Coordenadas	9°52'54,6'' lat. Sul/ 39°02'21,4'' long. Oeste			

Quadro 5 - Características técnicas da barragem Cocorobó.

O maciço da barragem, como mencionado no Quadro 3, sofreu um escorregamento ao final da construção e após a reconstrução desta parte, foram instalados 24 piezômetros, três medidores de nível d'água e marcos para a observação de recalque e deslocamentos horizontais. As observações feitas indicaram o aparecimento de trincas no talude da barragem e pressões piezométricas consideradas elevadas. Entretanto, após um período de observação e diversas análises, o comportamento da barragem foi considerado aceitável.

O resultado da aplicação do índice global de risco a esta barragem encontra-se no Quadro 6.

Quadro 6 – Aplicação do método do índice global modificado à barragem Cocorobó.

FATORES EXTERIORES OU AMBIENTAIS

	Classificação	Valor	Comentário/ Justificativa
Sismicidade (periodo de retorno)	Probabilidade muito baixa	2	Boletim sísmico brasileiro IAG-USP
Escorregamento de taludes (probabilidade)	Mínima	1	Não possui taludes íngremes no entorno do reservatório
Cheias superiores a do projeto (probabilidade)	Probabilidade grande	5	Sem informação
Gestão da albufeira (reservatório)	Muito boa	1	Exploração sem esvaziamento ou enchimento brusco
Ações agressivas (clima, água, etc.)	Muito fortes	5	Formação de ravinas, sulcos profundos no talude de jusante

Quadro 6 (Cont.) - Aplicação do método do índice global modificado à barragem Cocorobó.

CONFIABILIDADE DA OBRA

	Classificação	Valor	Comentário		
Dimensionamento estrutural	Adequado	2	A barragem exibe comportamento estrutural satisfatório		
Fundações	Trincheira de vedação sobre xisto medianamente alterado	5	Surgência no encontro da ombreira à cota 343m (pouco abaixo da 1ª berma)		
Órgãos de descarga	Soleira livre com canal revestido	3	Trincas na soleira e vegetação de médio porte no canal de restituição		
Manutenção	Aceitável	4	Vegetação de médio porte nos taludes, entupimento das canaletas		
E – 2.5					

F = 3,5

FATORES HUMANOS E ECONÔMICOS

Volume da albufeira (m ³)	245 380 000	2	
Instalações à jusante Elevada		4	Há um aglomerado urbano a cerca de 5km a jusante da barragem
		R = 3	
	IG = 29,4 (Classe B	IG maior que 20 e R igual a 3

3.2 - Método da resolução CNRH nº 143

No Brasil a Política Nacional de Segurança de Barragens (PNSB), instituída pela Lei Nº 12 334/2010, objetiva garantir a observância de padrões de segurança das barragens, através da fiscalização do poder público sobre os empreendedores, de maneira a reduzir a possibilidade de acidentes e suas conseqüências, em especial, à população potencialmente afetada. Basicamente a PNSB define: as características das barragens que se enquadram na nova política, os instrumentos de controle e monitoramento, a competência dos fiscalizadores, e as responsabilidades do empreendedor da barragem.

O processo de regulamentação da Lei inclui ainda algumas resoluções complementares:

a) Resolução ANA nº 742, de 17 de outubro de 2011

Estabelece a periodicidade, qualificação da equipe responsável, conteúdo mínimo e nível de detalhamento das Inspeções Regulares de Segurança de Barragem, conforme art. 9° da Lei nº 12 334 de 20 de setembro de 2010.

- b) Resolução ANA nº 91, de 2 de abril de 2012 Estabelece a periodicidade de atualização, a qualificação do responsável técnico, o conteúdo mínimo e o nível de detalhamento do Plano de Segurança da Barragem e da Revisão Periódica de Segurança da Barragem.
- c) Resolução CNRH nº 143, de 10 de julho de 2012
 Estabelece critérios gerais de Classificação de Barragens por Categoria de Risco, Dano Potencial Associado e pelo volume do reservatório.

d) Resolução CNRH nº 144, de 10 de julho de 2012 Estabelece diretrizes para implementação da Política Nacional de Segurança de Barragens, aplicação de seus instrumentos e atuação do Sistema Nacional de Informações sobre Segurança de Barragens.

No Brasil as barragens serão classificadas pelos órgãos fiscalizadores, por categoria de risco, por dano potencial associado e pelo seu volume, com base em critérios gerais estabelecidos na Resolução CNRH nº 143, esta constitui, portanto a base para a análise de segurança da barragem e para fixar níveis apropriados de monitoramento, inspeção e planos de segurança.

Os critérios avaliados são divididos em quatro grupos: características técnicas, estado de conservação, plano de segurança e dano potencial. A cada um dos critérios, também chamados, no âmbito da avaliação de risco, de descritores, são atribuídos valores constantes nos Quadros 7 a 10.

No total o método utiliza 21 descritores, cujos valores são somados para a definição da classe de risco e da classe de dano.

classe de risco =
$$\sum_{1}^{6} CT + \sum_{7}^{12} EC + \sum_{13}^{17} PS$$
 (5)

classe de dano =
$$\sum_{19}^{21} DPA$$
 (6)

CARACTERÍSTICAS TÉCNICAS								
Altura (a)	Comprimento (b)	Tipo de barragem quanto ao material de construção (c)	Tipo de Fundação (d)	Idade da Barragem (e)	Vazão de Projeto (f)			
H ≤ 15m (0)	L ≤ 200m (2)	Concreto convencional (1)	Rocha sã (1)	Entre 30 e 50 anos (1)	CMP (Cheia Máxima Provável) ou Decamilenar (3)			
15m < H < 30m (1)	L > 200m (3)	Alvenaria de pedra/concreto ciclópico/concreto rolado - CCR (2)	Rocha alterada dura com tratamento (2)	Entre 10 e 30 anos (2)	Milenar (5)			
$30m \le H \le 60m$ (2)		Terra homogênea /enrocamento/terra enrocamento (3)	Rocha alterada sem tratamento /rocha alterada fraturada com tratamento (3)	Entre 5 e 10 anos (3)	TR = 500 anos (8)			
H > 60m (3)			Rocha alterada mole/saprolito /solo compacto (4)	< 5 anos ou > 50 anos ou sem informação (4)	TR < 500 anos ou Desconhecida/ Estudo não confiável (10)			
			Solo residual/ aluvião (5)					

Quadro 7 - Regras gerais para classificação das características técnicas (Resolução 143 CNRH).

	ESTADO DE CONSERVAÇÃO							
Confiabilidade das estruturas extravasoras (g)	Confiabilidade das estruturas de adução (h)	Percolação (i)	Deformações e recalques (j)	Deterioração dos taludes/ paramentos (k)	Eclusa (l)			
Estruturas e eletromecânicas em pleno funcionamento / canais de aproximação ou de restituição ou vertedouro (tipo soleira livre) desobstruídos (0)	Estruturas civis e dispositivos eletromecânicos em condições adequadas de manutenção e funcionamento (0)	Percolação totalmente controlada pelo sistema de drenagem (0)	Inexistente (0)	Inexistente (0)	Não possui eclusa (0)			
Estruturas e eletromecânicas preparadas para a operação, mas sem fontes de suprimento de energia de emergência / canais ou vertedouro (tipo soleira livre) com erosões ou obstruções, porém sem riscos a estrutura vertente (4)	Estruturas civis comprometidas ou dispositivos eletromecânicos com problemas identificados, com redução de capacidade de vazão e com medidas corretivas em implementação (4)	Umidade ou surgência nas áreas de jusante, paramentos, taludes ou ombreiras estabilizadas e/ou monitoradas (3)	Existência de trincas e abatimentos de pequena extensão e impacto nulo (1)	Falhas na proteção dos taludes e paramentos, presença de arbustos de pequena extensão e impacto nulo (1)	Estruturas civis e eletromecânicas bem mantidas e funcionando (1)			
Estruturas comprometidas ou dispositivos eletromecânicos com problemas identificados, com redução de capacidade de vazão e com medidas corretivas em implantação/ canais ou vertedouro (tipo soleira livre) com erosões e/ou parcialmente obstruídos, com risco de comprometimento da estrutura vertente (7)	Estruturas civis comprometidas ou dispositivos eletromecânicos com problemas identificados, com redução de capacidade de vazão e sem medidas corretivas (6)	Umidade ou surgência nas áreas de jusante, paramentos, taludes ou ombreiras sem tratamento ou em fase de diagnóstico (5)	Existência de trincas e abatimentos de impacto considerável gerando necessidade de estudos adicionais ou monitoramento. (5)	Erosões superficiais, ferragem exposta, crescimento de vegetação generalizada, gerando necessidadede monitoramento ou atuação corretiva (5)	Estruturas civis comprometidas ou dispositivos hidroeletrome- cânicos com problemas identificados e com medidas corretivas em implantação (2)			
Estruturas civis comprometidas ou dispositivos eletromecânicos com problemas identificados, com redução de capacidade de vazão e sem medidas corretivas/ canais ou vertedouro (tipo soleira livre) obstruídos ou com estruturas danificadas (10)		Surgência nas áreas de jusante, taludes ou ombreiras com carreamento de material ou com vazão crescente (8)	Existência de trincas, abatimentos ou escorregamentos expressivos, com potencial de comprometi- mento da segurança (8)	Depressões acentuadas nos taludes, escorregamentos, sulcos profundos de erosão, com potencial de comprometi- mento da segurança (7)	Estruturas civis comprometidas ou dispositivos eletromecânicos com problemas identificados e sem medidas corretivas (4)			

Quadro 8 - Regras gerais para classificação do estado de conservação (Resolução 143 CNRH).

Ouadro 9 -	Regras ge	rais para	classificação	do plano	de segurança	(Resolução	143 CNRH)
Quanto >	itegius ge	nuis puiu	orassificação	uo piuno	ue segurunçu	(ItesoIuçuo	i i o ci di di j.

	PLANO DE SEGURANÇA DA BARRAGEM							
Existência de documentação de projeto (m)	Estrutura organizacional e qualificação técnica dos profissionais da equipe de segurança da barragem (n)	Procedimentos de roteiros de inspeções de segurança e monitoramento (o)	Regra operacional dos dispositivos de descarga da barragem (p)	Relatórios de inspeção de segurança com análise e interpretação (q)				
Projeto executivo e "como construido" (0)	Possui estrutura organizacional com técnico responsável pela segurança da barragem (0)	Possui e aplica procedimentos de inspeção e monitoramento (0)	Sim ou vertedouro tipo soleira livre (0)	Emite regularmente os relatórios (0)				
Projeto executivo ou "como construido" (2)	Possui técnico responsável pela segurança da barragem (4)	Possui e aplica apenas procedimentos de inspeção (3)	Não (6)	Emite os relatórios sem periodicidade (3)				
Projeto básico ou parte do projeto executivo/ "como construído" (4)	Não possui estrutura organizacional e responsável técnico pela segurança da barragem (8)	Possui e não aplica procedimentos de inspeção e monitoramento (5)		Não emite os relatórios (5)				
Anteprojeto ou Projeto conceitual (6)		Não possui e não aplica procedimentos para monitoramento e inspeções (6)						
Inexiste documentação de projeto (8)								

Quadro 10 - Regras	gerais para	classificaçã	ão do dano	potencial associado	(Resolução	143 CNRH).
--------------------	-------------	--------------	------------	---------------------	------------	------------

DANO POTENCIAL ASSOCIADO								
Volume total do reservatório (r)	Potencial de perda de vidas humanas (s)	Impacto ambiental (t)	Impacto sócio econômico (u)					
Pequeno ≤ 5 milhões m ³ (1)	INEXISTENTE (não existem pessoas permanentes/residentes ou temporárias/transitando na área afetada a jusante da barragem) (0)	SIGNIFICATIVO (área afetada da barragem não representa área de interesse ambiental, áreas protegidas em legislação especifica ou encontra-se totalmente descaracterizada de suas condições naturais) (3)	INEXISTENTE (não existem quaisquer instalações e serviços de navegação na área afetada por acidente da barragem) (0)					
Médio 5 milhões a 75 milhões m ³ (2)	POUCO FREQUENTE (não existem pessoas ocupando permanentemente a área afetada a jusante da barragem, mas existe estrada vicinal de uso local) (4)	MUITO SIGNIFICATIVO (área afetada da barragem apresenta interesse ambiental relevante ou protegida em legislação especifica) (5)	BAIXO (existe pequena concentração de instalações residenciais e comerciais, agrícolas, industriais ou de infraestrutura na área afetada da barragem ou instalações portuárias ou serviços de navegação) (4)					
Grande 75 milhões a 200 milhões m ³ (3)	FREQUENTE (não existem pessoas ocupando permanentemente a área afetada a jusante da barragem, mas existe rodovia municipal, estadual, federal ou outro local e/ou empreendimento de permanência eventual de pessoas que poderão ser atingidas) (8)		ALTO (existe grande concentração de instalações residenciais e comerciais, agrícolas, industriais, de infraestrutura e serviços de lazer e turismo na área afetada da barragem ou instalações portuárias ou serviços de navegação) (8)					
Muito grande > 200 milhões m ³ (5)	EXISTENTE (existem pessoas ocupando permanentemente a área afetada a jusante da barragem, portanto, vidas humanas poderão ser atingidas) (12)							

A partir dos valores resultantes destes somatórios classifica-se a barragem quanto à sua categoria de risco e dano potencial associado, Quadros 11 e 12.

Quadro 11 – Mat	riz categori	a de risco.
-----------------	--------------	-------------

Categoria de Risco	CRI
Alto	≥60 ou EC*≥8
Médio	35 a 60
Baixo	≤ 35

(*) Pontuação ≥8 em qualquer coluna de Estado de Conservação (EC) implica automaticamente CATEGORIA DE RISCO ALTA e necessidade de providências imediatas pelo responsável da barragem.

Dano Potencial Associado	DPA
Alto	≥ 16
Médio	10 a 16
Baixo	≤ 10

Quadro 12 – Matriz de dano potencial associado.

O resultado combinado dos Quadros 11 e 12 é traduzido na matriz de classificação, apresentada no Quadro 13.

Quadro 13 – Matriz de categoria de risco e dano potencial associado.

		Classe de dano potencial associado				
	Darragem	Alto	Médio	Baixo		
Classe de Risco	Alto	А	В	С		
	Médio	А	С	D		
	Baixo	А	С	Е		

A matriz de classificação (Quadro 13) é, na verdade, uma matriz de risco (probabilidade *versus* consequências), pois os descritores que definem classe de risco referem a quantificação, da probabilidade de ocorrência de um colapso estrutural, baseado nas características técnicas, estado de conservação da barragem e procedimentos de segurança adotados, enquanto os danos são as consequências de uma eventual ruptura.

O Quadro 14 apresenta a aplicação do método à barragem Cocorobó.

Comentário	Altura máxima acima do TN (28,85m relativamente ao talvegue)	Barragem principal - 643m, barragem auxiliar - 677m		Fundação xisto medianamente a pouco alterado, no leito do rio o mesmo é recoberto por um pacote aluvionar	Concluída em 1967	Vertedouro está dimensionado para uma descarga de 1824 $\mathrm{m^{3/S}}$	
Valor	2	3	3	3	1	10	
Fonte	DNOCS	DNOCS	DNOCS	DNOCS	DNOCS	DNOCS	
Classificação	33,5	1320	Terra homogênea	Trincheira de vedação	46	Sem informação	
	Altura (m)	Comprimento (m)	Tipo de barragem	Tipo de fundação	Idade (anos)	Vazão de projeto (anos)	

Quadro 14 – Resultado da aplicação do método da Resolução 143 a barragem Cocorobó. CARACTERÍSTICAS TÉCNICAS - CT ſ

CT 22

ESTADO DE CONSERVAÇÃO

1								
	Comentário	Trincas na soleira e vegetação de médio porte no canal de restituição	O sistema hidromecânico de controle de vazão da barragem foi recuperado em 2008	No local da surgência têm ocorrido abatimentos	Ondulações na crista devido ao tráfego	Entupimento das canaletas das bermas		
	Valor	7	0	5	∞	7	0	27
	Fonte	DNOCS	DNOCS	DNOCS	DNOCS	DNOCS	DNOCS	EC
	Classificação	Soleira livre com canal revestido	Torre de comando, comportas planas e galeria tubular revestida em concreto armado	Surgência no encontro da ombreira à cota 343m (pouco abaixo da 1ª berma)	Abatimentos no alinhamento da surgência de diâmetro 1,5m no rip-rap, 5m abaixo da crista, preenchido com material	Vegetação de médio porte nos taludes, formação de ravinas com sulcos profundos no talude de jusante	Não existe	
		Confiabilidade das estruturas extravazoras	Confiabilidade das estruturas de adução	Percolação	Deformações e recalques	Deterioração dos taludes	Eclusa	1

Qua	adro 14 <i>(Co</i>	<i>nt.</i>) – Resul	ltado da aplicaç	ão do métod	lo da Resol	ução 143 a barragem Cocorobó.	
		Id	LANO DE SEG	GURANÇA	DA BARF	AGEM	
		Classificaçã	0	Fonte	Valor	Comentário	
	Projet	o como cons	struído	DNOCS	5		
Pos	ssui estrutura esponsável p	ı organizacio ela seguranç	onal com técnico sa da barragem	DNOCS	0	Portaria 312 DG / CRH 25/07/2013	
	Possui e apli	ica apenas pi de inspeção	rocedimentos	DNOCS	ŝ	Instrumentação defeituosa e desativada há muitos anos	
		Soleira livre		DNOCS	0		
nça	Emite reg	ularmente os	s relatórios	DNOCS	0		
-				PS	S		
			DANO PO'	FENCIAL	ASSOCIAI	00	
Class	sificação	Fonte	Valor			Comentário	
54	45,38	DNOCS	5	Sem b	arragens em	cascata (considerando só as barragens reguladas pela ANA)	
exi	istente	ANA	12 Casa	s muito disper	rsas, 2 urban	izações , 1 rodovia (BR 235) 4 transversais locais, 1 instalação de laze	
signi	ificativo	ANA	3				
	alto	ANA	~		Há um aglo	merado urbano cerca de 5 km a jusante da barragem	
		DPA	28				
			CLAS	SIFICAÇÃ	0 CNRH		

Classe da Barragem A

54

 $EC \ge 8$

Alto

Categoria de risco

28

 $DPA \ge 16$

Alto

Dano potencial associado

4 – CONSIDERAÇÕES FINAIS

Este artigo descreve dois métodos simplificados de análise de risco, o do índice global de risco e o da legislação brasileira, Resolução 143 do CNRH. A utilização destes métodos constituem meios de apoio à tomada de decisões no que se refere a medidas estruturais ou não estruturais de controle de riscos. Quando aplicados a um portfólio de barragens permitem sua hierarquização e definição de prioridades de intervenção.

Os métodos baseados em índices podem diferir bastante uns dos outros, não se encontrando, na bibliografia especializada, tentativas de uniformizar os índices divulgados. Os resultados obtidos, pela aplicação prática destes dois métodos a uma barragem de terra, permitiram realçar que estes métodos, de simples aplicação, se relacionam diretamente com o tipo de barragem em questão e com as condições locais e ambientais em que as obras se inserem. Salienta-se, por exemplo, o caso da sismicidade, a qual determina a possibilidade de liquefação, cuja relevância é particular em alguns países, em face às condicionantes geomorfológicas.

Em cada caso a seleção dos descritores, é influenciada pelos modos potenciais de ruptura considerados, por exemplo, o método do índice global de risco considera a probabilidade de ocorrência do movimento de grandes massas, induzido pela instabilização de encostas do reservatório, considera também a ocorrência de instabilizações causadas pelo esvaziamento rápido do reservatório. Por outro lado, não leva em consideração explicitamente os danos ambientais, hoje reconhecidos como um fator crítico.

No que se refere ao método da resolução brasileira, este possui um maior número de descritores, e requer um nível maior de informação sobre algumas características técnicas da barragem, como é o caso da vazão de projeto e da existência de documentação de projeto. Este grau de detalhamento da informação assume especial dificuldade no caso de barragens muito antigas cuja informação é indisponível. Outro aspecto observado é o da adoção de descritores muito particulares, como é o caso das eclusas. A consideração das atividades ligadas à segurança também é bastante detalhada, considerando a estrutura organizacional e qualificação técnica, roteiros de inspeção, monitoramento, relatórios e regras operacionais. Uma análise mais profunda dos descritores adotados poderia identificar superposições de informações, como por exemplo, se a barragem não dispõe de informações de projeto, é improvável que disponha de informação sobre a vazão de projeto.

Ainda sobre a legislação brasileira, uma lacuna a ser preenchida trata da inexistência de terminologia para alguns conceitos fundamentais, cujos vocábulos podem assumir significados diversos e imprecisos.

Finalmente, o que se pode concluir através do que foi apresentado neste artigo, é que as avaliações de risco por índices, são indicadas para conseguir uma hierarquização inicial, em barragens que constam em um mesmo portfólio, seja de um mesmo proprietário, dentro de um mesmo curso d'água, bacia hidrográfica ou estudo. São ferramentas úteis para nortear a ordem das barragens que necessitam de estudos posteriores mais aprofundados ou para ajudar a estabelecer requerimentos de vigilância e monitoramento. Para situações onde se pretende estudar uma barragem em particular existem métodos mais apropriados, detalhadamente descritos em Baptista (2009).

5 - REFERÊNCIAS BIBLIOGRÁFICAS

- ANA (2012). Relatório de Segurança de Barragens 2011. Brasília-DF.
- Araújo, J.A.A. (coord.) (1990). Barragens no Nordeste do Brasil: experiência do DNOCS em barragens na região Semi-Árida. Fortaleza, DNOCS, 328p.
- Baptista, M.L.P. (2009). Abordagens de riscos em barragens de aterro. Tese LNEC. Lisboa, Portugal.
- Caldeira, L. (2008). *Análise de Risco em Geotecnia. Aplicação a Barragens de Aterro*. Programa de Investigação para obtenção de Habilitação para funções de Coordenação Científica, LNEC, Lisboa, 238 p.
- Caldeira, L.; Silva Gomes, A. (2006). *Portfolio Safety Assessment of Portuguese Fill Dams*. Proc. 22nd International Congress on Large Dams, Question 86, volume III, pp 271-290, Barcelona.
- CIGB (1982). Automated observation for the safety control of dams. Boletim 41.
- CNRH (2012). Resolução nº 143/2012. Seção 1 do D.O.U de 4 de setembro de 2012.
- Cummis, P. (2003). *Guidelines on risk assessment*. ISBN: 0 731 027 620, Sydney, Austrália: Ed. Australian National Committee on Large Dams Inc. ANCOLD, 156 p.
- INAG (Instituto da Água) (2001). Elementos de base para realização dos estudos do "Plano especial de inspecção 2001", Lisboa, Portugal.
- Menescal, R.A. (2009). Gestão da segurança de barragens no Brasil Proposta de um sistema integrado, descentralizado, transparente e participativo. Tese. Universidade Federal do Ceará, Departamento de Engenharia Hidráulica e Ambiental, Fortaleza.
- Miranda, A.N.; Malveira, V.T.C.; Jardim, W.F. (2011). Correção de trincas transversais na barragem Piaus. XXVIII Seminário Nacional de Grandes Barragens. Rio de Janeiro, Brasil.
- Miranda, A.N. (2011). *Notas de aula sobre segurança de barragens*. Capacitação de profissionais integrantes dos órgãos gestores de recursos hídricos do estado do Ceará para o PISF. ANA. Brasília-DF.
- Ott, W. (1979). *Environmental indices theory and practice*. Ann Arbor Science Publishers, Michigan, USA.
- Salmon, G.M.; Hartford, D.N.D. (1995). *Risk Analysis for Dam Safety*. International Water Power & Dam Construction, March, pp. 42-47.
- SRB Subcomissão dos Regulamentos de Barragens (1990). *Regulamento de Segurança de Barragens*. Decreto-Lei Nº 11/90. Portugal.
- SRB Subcomissão dos Regulamentos de Barragens. (1993). Normas de observação e inspecção de barragens. Portaria 847/93, Portugal.
- Zuffo, M.S.R. (2005). Metodologia para a Avaliação de Segurança de Barragens. Campinas: Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas. Dissertação, Mestrado, 291 p.

15

Deutsche Technologie e um toque brasileiro.

15

Fundada há mais de 150 anos na Alemanha, a Huesker é hoje uma referência mundial em geossintéticos. Aqui no Brasil, adicionamos um toque bem brasileiro a toda a qualidade e tecnologia dos nossos produtos. Proximidade, envolvimento e flexibilidade são os fatores que, nestes 15 anos, nos permitiram desenvolver soluções sob medida para cada caso e manter relações duradouras com nossos clientes.

Isso é a **tecnologia alemã** e o **abraço brasileiro** a seu serviço.

Fale com a Huesker: www.huesker.com.br huesker@huesker.com.br (12) 3903 9300

CONSULTORES DE ENGENHARIA E AMBIENTE

GEOLOGIA E GEOTECNIA

Hidrogeologia • Geologia de Engenharia • Mecânica das Rochas • Mecânica de Solos Fundações e Estruturas de Suporte • Obras Subterrâneas • Obras de Aterro Estabilidade de Taludes • Geotecnia Ambiental • Cartografia Geotécnica

Planeamento de Recursos Hídricos

- **Aproveitamentos Hidráulicos**
- Produção e Transporte de Energia Eléctrica
- Sistemas de Abastecimento de Água e de Águas Residuais e Pluviais
- Agricultura e Desenvolvimento Rural
- Infra-estruturas Rodoviárias, Ferroviárias e Aeroportuárias Ambiente
- **Estruturas Geotécnicas**
- Cartografia e Cadastro
- Controle de Segurança e Reabilitação de Obras
- Gestão e Fiscalização de Empreendimentos

RTUGAL GIÃO CENTRO E SUL

Dutubro, 323 LISBOA 210 125 000, (351) 217 925 000 217 970 348

ICP

arqués de Tomar, 9, 6° 152 LISBOA (351) 217 925 000 (351) 213 537 492

REGIÃO NORTE

Aouzinho de Albuguerque, 744, 1°. -203 MATOSINHOS 351) 229 380 421 351) 229 373 648

ANGOLA

difício nº 27, 27-A - 2º Dto inha Lei do Maculusso, LUAN ax: (244) 222 338 513

MOCAMBIQUE

tro de Escritórios. Pestana Rovuma Hotel. da Sé nº114, 4º Andar - 401 A, MAPUTO (258) 21 328 813

ARGÉLIA

ARGELIA 09, Rue des Frères Hoc El Biar - 16606, ARGEL Tel.: (213) 21 922 802 Fax: (213) 21 922 802

RPASH

68, 25° heiro, RJ - CEP 20.070-022

io Távora 1701, Sala 403 a CEP 60170 - 251 ota - Fortaleza CEP 6 (55 85) 3244 32 85 (55 85) 3244 32 85

EMIRATOS ÁRABES UNIDOS

LLJ Business Center, Al Jazeera Sta PO Box 38360, Abu Dhabi – U.A.E Tel: (971) 2 495 0675 Fax: (971) 2 4454672

SOILS AND ROCKS PROBLEMS? WE HAVE THE SOLUTION

BRASIL Phone: 55 (11) 4525-5000 Fax: 55 (11) 4599-4275 maccaferri@maccaferri.com.br www.maccaferri.com.br PORTUGAL Phone: (351) 218 968 282 Fax: (351) 218 968 078 portugal@abianchini.pt www.abianchini.es

MACCAFERRI Engineering a better solution

www.cenor.pt

GEOLOGIA - GEOTECNIA - FISCALIZAÇÃO DE OBRAS GEOTÉCNICAS

BARRAGENS DE ATERRO - OBRAS SUBTERRÂNEAS - ESTRUTURAS DE SUPORTE

FUNDAÇÕES ESPECIAIS - TRATAMENTO DE TERRENOS - GEOMATERIAIS

CENOR Consultores, S. A.

PORTUGAL | ANGOLA | ARGÉLIA | BRASIL | CABO VERDE | COLÔMBIA MALAWI | MARROCOS | MOÇAMBIQUE | TIMOR LESTE | VENEZUELA

Rua das Vigias, 2. Piso 1 l Parque das Nações 1 1990-506 LISBOA . PORTUGAL T. +351.218 437 300 l F. +351.218 437 301 l E. cenor@cenor.pt

PROVA DE CARGA ESTÁTICA Célula Expansiva Hidrodinâmica®

DISPENSA SISTEMA DE REAÇÃO

• Ideal para qualquer capacidade de carga.

• Economia, segurança e rapidez na execução.

• Indicado para todos os tipos de fundação.

 Pioneira mundial em prova de carga estática bidirecional.

"Há 44 anos desenvolvendo nossas tecnologias, soluções inteligentes e criativas dentro da engenharia de solos."

REFORÇO DE FUNDAÇÕES MICROESTACA ARCOS[®]:

• Ideal para reforço de fundações e cravação

- de estacas em locais de difícil acesso.
- Economia, segurança e rapidez na execução.

+55 31 3274.0155 | www.arcos.eng.br de 1969 Belo Horizonte - MG - Brasil

e.mail: mail@geocontrole.pt www.geocontrole.pt

Geotecnia e Estruturas de Fundação SA

• Sede

• Sede Lagoas Park – Edifício 2 2740-265 Porto Salvo - Portugal Tet.:[+351] 217 912 300 Fax: [+351] 217 941 120/21/26

Angola

Alameda Manuel Van Dunen 316/320 - A Caixa Postal 2857 - Luanda TeL:[+34] 915 550 903 Fax: [+34] 915 972 834 • Argélia Parc Miremont - Rua A, Nº136 - Bouzareah 16000 Alger Tet.: [+213] 219 362 83 Fax: [+213] 219 365 66

• Brasil Rua Iguatemi, nº488 - 14º - Conj. 1401 CEP 01451 - 010 - Itaim Bibi - São Paulo Tet.: 1+551 112 144 5700 Fax: (+551 112 144 5704 • Espanha Avenida Alberto Alcocer, nº24 - 7º C 28036 Madrid Tel:..1+34) 915 550 903 Fax: (+34) 915 972 834

• Moçambique Avenida Julyus Nyerere, 130 – R/C Maputo Tel.:1<238) 214 914 01 Fax: (+258) 214 914 00

www.teixeiraduarte.pt

- 1. TECCO[®] SYSTEM³ teste em escala real, Suiça, outubro 2012
- 2. TECCO[®] SYSTEM³ instalação, B462, Alemanha
- 3. Ângulo máximo de inclinação de 85° durante o teste de campo

TECCO[®] SYSTEM³ – Seu talude estabilizado

... validado por teste em escala real com inclinação do talude de até 85°.

A malha de aço de alta resistência TECCO[®], as placas de ancoragem e garras de conexão TECCO[®], juntas, estabilizaram com sucesso 230 toneladas de cascalho com 85º de inclinação em um ensaio em escala real.

- moldura de teste com dimensões 10 x 12 x 1.2m
- espaçamento dos grapmos 2.5m x 2.5m, utilizando Gewi 28mm

Para um estudo preliminar de solução de estabilização ou de riscos de desastres naturais nas obras em que você atua, entre em contato conosco através do e-mail <u>info@geobrugg.com</u>

Assista ou escaneie nosso filme com instalação TECCO³⁶ em www.geobrugg.com/slopes

Geobrugg AG, Geohazard Solutions Rua Visconde de Pirajá, 82 sl.606 Ipanema - Rio de Janeiro - 22410-003 Fone: +55 21 3624.1449 Cel: +55 21 39979.1288 www.geobrugg.com

SPECIALISTS IN GEOTECHNICAL IN-SITU TESTS AND INSTRUMENTATION

GEOTECHNICAL SERVICES (onshore and offshore)

IN-SITU TESTS Seismic CPT Cone Penetration Testing Undrained-CPTu (cordless system) Vane Shear Testing (electrical apparatus) Pressuremeter Testing (Menard) Flat Dilatometer Test-DMT (Machetti) Standard Penetration Test-SPT-T

INSTRUMENTATION Instrumentation, installation and direct import Routine Monitoring Operation and Maintenance Engineering analyses Consultancy, design & geotechnical engineering services

SAMPLING Soil sampling and monitoring Groundwater sampling and monitoring Field and laboratory testing

ENVIRONMENTAL Environmental Services Soil and groundwater sampling and monitoring Field and laboratory testing

0800 979 3436

São Paulo: +55 11 8133 6030 Minas Gerais: +55 31 8563 2520 / 8619 6469 www.deltageo.com.br deltageo@deltageo.com.br

A maior carteira de clientes privados do Brasil, e o maior índice de repetição absoluta.

> Dentre os tipos de serviços, destacam-se projetos de controle ambiental tais como: recuperação de solos degradados; confinamento de lençol freático contaminado; construção de filtros e captação de material; contenção de poluentes.

> > Pionerismo que se traduz em confiança e qualidade para sua obra.

www.geofix.com.br

Por detrás de uma grande obra está sempre uma grande empresa.

A tgeotecnia, apresenta-se no mercado nacional e espanhol com um vasto leque de soluções, dotada da mais avançada tecnologia e quadros competentes, indispensáveis à elaboração de estudos, projectos e obras geotécnicas. Actualmente, a tgeotecnia dedica-se a todo o tipo de trabalhos desde a prospecção geológico-geotécnica, desenvolvimento de projectos da especialidade até à execução de obras de estabilização de taludes, contenções, tratamento de terrenos e fundações especiais.

As obras realizadas e a satisfação de tantos clientes, bem como inúmeros projectos em crescimento, são a prova de que compensa fazer da inovação a alavanca do desenvolvimento.

tgeotecnia. Na génese da construção. a dst group company

a cargroup company

t + 351 253 307 285 geral@tgeotecnia.pt www.dstsgps.com

APRESENTAÇÃO DE ORIGINAIS

Os trabalhos a publicar na revista Geotecnia são classificados como "Artigos", "Notas Técnicas" e "Discussões" de artigos anteriormente publicados na revista. Artigos que descrevam o estudo de casos de obra envolvendo trabalho original relevante na prática da engenharia civil são particularmente encorajados.

A decisão de publicar um trabalho na revista compete à Comissão Editorial, competindo-lhe também a respetiva classificação. Cada trabalho será analisado por pelo menos três revisores. Os pareceres dos revisores serão apresentados no prazo de um mês.

As Instruções para os Autores e o "Template" para formatação de originais podem ser obtidos de http://www.spgeotecnia.pt.

A submissão dos trabalhos à revista Geotecnia é efetuada através da página eletrónica com o endereço http://www.revistageotecnia.com/. Através dessa plataforma, far-se-á a comunicação entre a direção da revista, o corpo editorial e os autores para a revisão dos trabalhos. Outras informações e esclarecimentos adicionais podem ser pedidos a:

Direção da Revista Geotecnia SPG, a/c LNEC Av. Brasil, 101 1700-066 Lisboa Portugal E-mail: editor@revistageotecnia.com

PRESENTACIÓN DE ORIGINALES

Los trabajos para publicar en la revista Geotecnia se clasifican en "Artículos", "Notas Técnicas" y "Discusiones" de artículos anteriormente publicados en la revista. Se recomiendan especialmente artículos que describan el estudio de casos de obra que incorporen trabajos originales relevantes en la práctica de la ingeniería civil.

La decisión de publicar un trabajo en la revista compete a la Comisión Editorial, correspondiéndole también la respectiva clasificación. Cada trabajo será analizado por al menos tres revisores. Los revisores presentarán sus pareceres sobre los artículos en el plazo de un mes.

Las Instrucciones para los Autores y el "Template" para formatear originales pueden ser obtenidos en http://www.spgeotecnia.pt.

La remisión de los trabajos a la revista Geotecnia se efectúa a través de la página electrónica con la dirección http://www.revistageotecnia.com/. A través de esta plataforma se realizará la comunicación entre la dirección de la revista, el cuerpo editorial y los autores para la revisión de los trabajos. Informaciones y esclarecimientos adicionales pueden solicitarse a:

> Dirección de la Revista Geotecnia SPG, a/c LNEC Av. Brasil, 101 1700-066 Lisboa Portugal E-mail: editor@revistageotecnia.com

- 3 Editorial José Couto Marques
- 5 Caracterização e modelação numérica da rugosidade de descontinuidades rochosas Ana Luísa Ramos, Eduardo Fortunato, Ricardo Resende, José Muralha
- 23 Influência da forma da superfície de cedência do solo no comportamento de um túnel. Avaliação de danos *Catarina Cota, Ana Vieira, João R. Maranha*
- 41 Estudo da durabilidade de RCD e do ASIC para aplicação na camada de drenagem e recolha dos lixiviados em aterros de resíduos *Gonçalo Manuel Rodrigues, António José Roque, A. Paula F. da Silva*
- 69 Acções sobre muros de suporte em consola Guilherme Loureiro, Nuno Guerra, Jorge Almeida e Sousa
- 93 Desenvolvimento de novas tecnologias para inclinômetros aplicados ao monitoramento de obras geotécnicas *Rodrigo Siqueira Penz, Adriano Luís Toazza, Maurício Tonello Vargas, Francisco Dalla Rosa*
- 107 Variação dos efeitos das quedas de rochas em seções rodoviárias por modificações na seção transversal e nos elementos de proteção Jorge Hernán Flórez Gálvez, Luiz Antônio Bressani
- 131 Método de avaliação de desempenho de barragens por meio de agrupamento de instrumentos – aplicação em Itaipu *Rodrigo César Pierozan, Sidnei Helder Cardoso Teixeira, Andrea Sell Dyminski, Celso Romanel*
- 151 Classificação de risco de barragens por índices de risco um estudo de caso Sandra Keila de Oliveira Baima, José Nilson Bezerra Campos