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ABSTRACT
The cryptocurrency market has been growing frantically in number of  cryptocurrencies, 
online exchanges, and market capitalization, which has amplified the need for comprehensive 
and robust pricing models. Using a database of  all eligible cryptocurrencies listed on the 
CoinMarketCap website, we study the relationship between returns and several potential 
pricing factors, such as size (market capitalization), momentum, liquidity, and maturity. 
The analysis was conducted from December 27, 2013, to December 29, 2020, using weekly 
data for 3'667 cryptocurrencies. Results point out that portfolios of  cryptocurrencies with 
smaller market capitalization, higher reversal, lower liquidity, and lower maturity tend to 
offer higher returns. The 5-factor model that additionally includes illiquidity and maturity 
performs better than the 3-factor model previously proposed in the literature, meaning that 
illiquidity and maturity significantly help capture the cross-sectional cryptocurrency risk 
premia. The 5-factor model presented seems robust to different procedures to construct 
portfolios and factors.
Keywords: Bitcoin; cryptocurrencies; asset pricing; factor models.
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1. IntroductIon 

The growth of  the cryptocurrency market in terms of  number of  cryptocurrencies, 
online exchanges, and market capitalization has attracted more effective and potential in-
dividual and institutional investors. Consequently, the demand for financial studies has also 
increased, resulting in an exponential growth in the empirical finance literature applied to 
cryptocurrencies. Until 2017, the attention was focused on a few major cryptocurrencies, 
such as Bitcoin, Ethereum, Litecoin, Tether and Ripple. More recent papers consider bigger 
samples formed by more cryptocurrencies and longer periods. 

For traditional financial markets, namely the stock market, several studies have attempted 
to identify the main pricing factors. The Capital Asset Pricing Model (CAPM) that considers 
just one factor – the market portfolio – is the most simple and well-known of  such models. On 
this topic, Fama (1970), Fama and French (1993), Carhart (1997), Fama and French (2012), and 
Fama and French (2015) are pivotal references in the related literature. In the cryptocurrency 
market, this analysis is only beginning with an additional difficulty as some of  the factors 
designed for the stock market are not applicable. Shen et al. (2020) construct a 3-factor model 
for cryptocurrencies, which encompasses market, size, and momentum factors. Because the 
book-to-market factor does not apply to cryptocurrencies, the size factor has been constructed 
using size and momentum. More accurately, this last factor should be called reversal, as it 
seems that bad (good) past returns tend to be followed by good (bad) returns in the crypto-
currency market. Shahzad et al. (2020) elaborate on this model, adding a contagion factor.

This paper addresses the issue of  what market intrinsic factors are priced in the cryp-
tocurrencies market. The main objective of  this research is twofold. First, analyze several 
market features that may drive the prices of  cryptocurrencies. Second, use this information 
to derive a factor pricing model. 

The principal data and methodological novelties that this study brings to the literature 
are the following:

a) Handling a comprehensive dataset of  cryptocurrencies, employing all the informa-
tion in the CoinMarketCap website from April 30, 2013, to December 29, 2020.

b) Consideration of  several features of  the cryptocurrencies’ ecosystem, namely 
market return, size, momentum, and, most importantly, liquidity and maturity.

c) Application of  four different methodologies to construct the portfolios, namely, 
sequential and intersecting double-sort equally and value-weighted portfolios.

d) Presentation of  a 5-factor model that outperforms both the CAPM and the 3-fac-
tor model of  Shen et al. (2020).

The remainder of  this paper is organized as follows. Section 2 presents the arguments 
supporting additional factors in the pricing model and develop the additionally hypotheses 
contextualized in the literature. Section 3 explains the raw dataset, filtering procedures, and 
data aggregation. Section 4 presents the formulas used to compute the financial features 
of  cryptocurrencies, and the methodology to construct the factors and portfolios used in 
the regressions’ framework. Section 5 shows the main results and Section 6 performs some 
robustness checks. Section 7 concludes the paper.
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2. LIterature revIew and hypothesIs deveLopment

An important strand of  financial literature on cryptocurrencies focuses on the weak form 
of  market efficiency, according to which the price system should contain all the relevant 
information on historical prices and other market-related variables, so that future prices 
cannot be predicted using past information. 

Several studies, such as Urquhart (2016), Nadarajah and Chu (2017), Bariviera (2017), 
Bariviera et al. (2017), mainly conclude that Bitcoin was weakly inefficient, although it tends 
to be more efficient as the market evolves and matures.

More recently, other studies began testing the efficiency of  other cryptocurrencies 
besides Bitcoin. Wei (2018) analyses 456 cryptocurrencies in 2017, when the value of  the 
cryptocurrency market was skyrocketing. The author uses the Amihud illiquidity ratio 
(Amihud, 2002) to sort the cryptocurrencies into five groups and then applies the tests used 
in Urquhart (2016). Wei (2018) argues that, as more active and informed traders enter the 
market, liquidity increases while volatility decreases, creating fewer arbitrage opportuni-
ties, and hence, highly liquid cryptocurrencies tend to be more efficient. In the same line 
of  thought, Brauneis and Mestel (2018) use 73 cryptocurrencies from August 31, 2015, to 
November 30, 2017, and conclude that as the liquidity of  cryptocurrencies increases, they 
became less predictable and therefore more efficient. Al-Yahyaee et al. (2020) analyze six 
cryptocurrencies with the highest market capitalization during the period August 7, 2015, 
to July 3, 2018, showing that informational efficiency is directly linked to liquidity and that 
efficiency tends to increase as the market matures. 

Several studies have tried to directly identify variables that have a significant relationship 
with the returns of  cryptocurrencies, among these variables stand out size, momentum, trad-
ing volume, volatility, and maturity (Liu et al., 2022). Kyriazis & Prassa (2019) analyse 846 
cryptocurrencies from April 1, 2018, to January 31, 2019, when the market capitalization 
of  cryptocurrencies was decreasing. They argue that during downward market movements, 
cryptocurrencies with higher market capitalization are also the ones with higher liquidity. 
The reasoning is that during bearish periods, investors in most markets tend to prefer as-
sets with higher market capitalization and lower volatility. Brauneis et al. (2020) conclude 
that liquidity of  cryptocurrencies is mostly independent from other financial markets and 
depends mainly on intrinsic volatility and trading volume. Balcilar et al. (2017) show that 
trading volume can be used to predict Bitcoin returns but only when the market is performing 
around the median. Burggraf  and Rudolf  (2020), using data on 1'000 cryptocurrencies from 
April 28, 2013, to November 1, 2019, show that higher volatility produces higher returns.

In a nutshell, these studies indicate that volatility is higher in more illiquid and younger 
cryptocurrencies. As risk should be rewarded by the market, then we formulate the follow-
ing hypotheses:

H1: Illiquidity increases the returns of  cryptocurrencies; hence the illiquidity factor 
may be measured by a portfolio formed by a long position in illiquid cryptocurrencies and 
a short position in liquid cryptocurrencies.

H2: Maturity decreases the returns of  cryptocurrencies; hence the maturity factor may 
be measured by a portfolio formed by a long position in younger cryptocurrencies and a 
short position in older cryptocurrencies.
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3. data and preLImInary anaLysIs

The dataset was retrieved from https://coinmarketcap.com, which is one of  the most 
complete and reliable sources of  information on cryptocurrencies. The legitimacy of  this 
website derives from its use by many financial studies on cryptocurrencies. This website uses 
objective criteria according to which cryptocurrencies and online exchanges must comply 
to be listed.1 

The sample covers the period from April 30, 2013, to December 29, 2020. The raw 
dataset is formed by 5’763 cryptocurrencies. For each cryptocurrency we retrieved the daily 
close prices, trading volume, and market capitalization, in USD, recorded at 00:00:00 UTC. 
According to CoinMarketCap, the close prices are volume-weighted index prices and daily 
volumes are the simple sum of  the trading volume considering several listed online exchanges. 

Given that we use the complete set of  listed cryptocurrencies, it is important to men-
tion that the data does not suffer from survival bias, as some cryptocurrencies did not reach 
the last day in the sample. The number of  cryptocurrencies increased steadily from 7 on 
April 30, 2013, to 4’073 on December 29, 2020, but during the overall period covered, 
5’763 cryptocurrencies were listed, hence 1’690 cryptocurrencies ceased to exist or were 
removed from the CoinMarketCap listing. This means that only around 70% survived until 
December 29, 2020.

The second step in preparing the dataset was filtering the raw data. This was conducted 
using three filter rules: (1) Trading volume is missing from April 30, 2013, to December 27, 
2013. So, the sampling period begins in this last date. The period between these dates is only 
used to compute the maturity of  cryptocurrencies. (2) Some cryptocurrencies had missing 
days, probably due to communication failures between the exchanges and the CoinMarketCap 
website. If  a particular day was missing, the gap was fulfilled by linear interpolation. We 
proceeded in this way when there was a maximum of  three days missing in a row. Larger 
gaps, mainly due to provisionally listing on the CoinMarketCap website, were treated as if  
the cryptocurrency was nonexistent during that period. (3) When a cryptocurrency was added 
to CoinMarketCap, usually the information on market capitalization for the first few days 
is not complete or has clear mistakes. These days were ignored for these cryptocurrencies 
until they had information on all variables of  interest.

After applying these filters, we end up with 3’667 cryptocurrencies, 2’562 days, corre-
sponding to 366 weeks. This daily database was then aggregated weekly, using Wednesday-
to-Wednesday prices, volumes, and market capitalizations.2

1  The complete listings criteria can be accessed at https://support.coinmarketcap.com/hc/en-us/
articles/360043659351-Listings-Criteria.

2  Besides data on the cryptocurrency market, we also collected data on the risk-free rate. Following the literature, 
and since cryptocurrencies data are expressed in USD, we collected from https://fred.stlouisfed.org/data the yield-
to-maturity of  1-month US Treasury bills.
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4. methodoLogy 

This section explains the construction of  the time series of  returns and other features, 
namely size, illiquidity, momentum, and maturity, for each cryptocurrency. It explains the 
construction of  portfolios and presents some preliminary results that point out how to con-
struct the pricing factors. Finally, it presents the procedures used to compute the pricing 
factors and the factor models.

4.1. Returns and other features

Since cryptocurrencies are studied cross-sectionally in aggregated terms, i.e., using port-
folios, we use discrete returns which are aggregable in the asset space. The close-to-close 
prices were used to compute the weekly returns of  cryptocurrency i as:
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where Pi,t and Pi,t–7 represent the close price on Wednesday t and seven days before, respectively. 
The series of  returns present massive extreme values, with some cryptocurrencies hav-

ing returns over 104. To winsorize the outliers but still maintain the main features of  the 
data, namely volatility, we used an interquartile distance to identify and rescale outliers. 
We consider as an outlier any observation outside the interval of  [p25 – k(p75 – p25), p75 + 
k(p75 – p25)], where p25 and p75 are the 25th and 75th percentiles, respectively, and k is a 
multiplier factor. We tested several multipliers, k = 1.5, 3, 4.5, 6 and 7, and decided to use 
k = 6. Using this criterium, 99.81% and 89.96% of  cryptocurrencies have less than 5% 
and 1% of  outliers, respectively, which were rescaled to the limits of  the above interval.

Size was simply proxied by the market capitalization.
For the momentum we followed Shahzad et al. (2020) and Shen et al. (2020), which 

conclude that the best strategy, i.e., the one with the higher t-statistic, results from forming 
buy-sell portfolios based on the previous returns for a one-time holding period. This means 
constructing the portfolios at time t – 7, based on the returns of  the cryptocurrencies from  
t – 14 to t – 7, and holding it until Wednesday t, which translates into 

Momi,t = Ri,t–7, (2)

where, Ri,t–7 is the weekly return of  cryptocurrency i at t – 7.
Brauneis et al. (2021) explore high and low frequency data for Bitcoin and Ethereum, 

testing different liquidity measures, and concluding that one of  the best measures to describe 
the liquidity of  cryptocurrencies was the Amihud illiquidity ratio (Amihud, 2002). Hence, 
illiquidity was measured by this ratio, which assesses the price impact of  1USD of  trading 
volume on the returns. Theoretically, the ratio ranges from 0 (most liquid) to +∞ (most il-
liquid). For a given cryptocurrency i, the illiquidity ratio was computed as:
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where Ri,τ and Vi,τ are the arithmetic return and the volume traded in USD at day τ,  
respectively. 

For measuring the maturity of  a cryptocurrency, we considered the number of  weeks 
with valid data from its launching until day t. To compute this measure, we use all the data 
available since April 30, 2013. On this date only seven cryptocurrencies were listed, hence 
for all other cryptocurrencies, there is no measurement error. 

4.2. Portfolios

We consider four features: size (market capitalization), momentum, measured by the 
previous weekly return, illiquidity, measured by the Amihud illiquidity ratio, and maturity, 
measured by the number of  weeks since launching. These portfolios are constructed on  
t – 7 and held until t. Table 1 enables a first glance at the importance of  each feature and 
the way that portfolios should be combined to compute the pricing factors. 

Table 1: Weekly mean returns of  quintile portfolios 

Quintiles

1 2 3 4 5

Size 0.0914 0,0506 0.0308 0.0167 0.0130

Momentum 0.0294 0.0064 0.0055 0.0182 0.0106

Illiquidity 0.0128 0,0018 0.0066 0.0327 0.0915

Maturity 0.0132 0.0150 0.0030 0.0191 -0.0073

Notes: This table presents the weekly mean returns of  value-weighted quintile portfolios. Each week, all cryptocur-
rencies were sorted by a given feature (size, measured by market capitalization, momentum, measured by the previous 
weekly return, illiquidity, measured by the Amihud illiquidity ratio, and maturity, measured by the number of  weeks 
since launching) and are partitioned into quintiles. Then, the value-weighted portfolio, where the weight of  each 
cryptocurrency is given by its relative market capitalization, is computed for each quintile. The sample is from January 
1, 2014, to December 29, 2020 (365 weeks).
Source: Authors’ own calculations.

The patterns in Table 1 suggest that portfolio returns increase inversely with size, 
momentum, liquidity, and maturity. The size and momentum effects are in accord-
ance with the literature (see, for instance, Shahzad et al., 2020; Shen et al., 2020; Liu 
et al.,2022). The reported illiquidity and maturity effects support our hypotheses H1 
and H2, respectively.  

To form double-sorted portfolios of  cryptocurrencies we use a sequential procedure. 
This procedure is as follows: (1) At each t – 7, all cryptocurrencies are sorted based on 
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the market capitalization (i.e., size) and are grouped into quintiles, (2) within each size  
quintile, cryptocurrencies are then sorted by the second feature and once again clustered into  
quintiles, (3) we then form value-weighted portfolios, using market capitalization as the weight-
ing scheme, and compute their returns from t – 7 to t, which are then used to compute the 
excess returns in relation to the risk-free rate (1-month US Treasury bill). Hence, according 
to each pair size/other feature we obtain 25 value-weighted portfolios. This approach is 
different from Fama and French (1993, 2012, 2015), that form 25 value-weighted portfolios 
by intersecting quintiles from a sort on size with the quintiles from an independent sort on 
the second feature. Our procedure produces portfolios with the same number of  cryptocur-
rencies (except the last quintile portfolios which include the remaining cryptocurrencies, if  
the total number is not a multiple of  5), whilst the Fama-French approach gives portfolios 
with a variable number of  cryptocurrencies. Another approach, such as the one used by 
Carhart (1997), is to construct equally weighted portfolios. 

The weekly excess returns of  these portfolios are presented in Table 2. Most portfolios 
excess returns are significant at the 1% level, and portfolios with cryptocurrencies of  small, 
illiquid, with lower momentum (higher reversal) and lower maturity have higher excess 
returns. From all the different portfolios, it is quite visible that portfolios with smaller size 
offer higher excess returns. 

Table 2: Average excess returns of  sequential double sorted value-weighted portfolios 

Size and momentum

Down - 1 2 3 4 Up - 5 D - U

Small - 1 0.3120*** 0.0926*** 0.0590*** 0.0540*** -0.0324*** 0.3443***

2 0.1882*** 0.0552*** 0.0365*** 0.0301*** -0.0466*** 0.2346***

3 0.1187*** 0.0313*** 0.0243*** 0.0222*** -0.0354*** 0.1540***

5 0.0738*** 0.0131* 0.0089 0.0077 -0.0180** 0.0916***

Big -5 0.0041 0.0033 0.0111* 0.0176** 0.0151 -0.0111

S - B 0.3078*** 0.0891*** 0.0477*** 0.0362*** -0.0476***

Size and illiquidity

Liquid - 1 2 3 4 Illiquid - 5 I - L

Small - 1 0.0476*** 0.0877*** 0.0888*** 0.1149*** 0.1529*** 0.1051***

2 0.0210** 0.0464*** 0.0401*** 0.0573*** 0.1007*** 0.0795***

3 0.0151* 0.0233*** 0.0217*** 0.0277*** 0.0733*** 0.0580***

4 0.0108 0.0121* 0.0155** 0.0172** 0.0303*** 0.0193**

Big - 5 0.0132** -0.0019 0.0136 0.0034 0.0152 0.0019

S - B 0.0343*** 0.0895*** 0.0750*** 0.1113*** 0.1375***
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Size and maturity

Young - 1 2 3 4 Old - 5 Y – O

Small - 1 0.0850*** 0.0895*** 0.0975*** 0.0767*** 0.1052*** -0.0203

2 0.0519*** 0.0565*** 0.0453*** 0.0442*** 0.0523*** -0.0006

3 0.0277*** 0.0418*** 0.0330*** 0.0274*** 0.0224** 0.0051

4 0.0181** 0.0238*** 0.0116 0.0158** 0.0145 0.0034

Big - 5 0.0129** 0.0098 0.0097 0.0125 -0.0022 0.0150*

S - B 0.0719*** 0.0796*** 0.0876*** 0.0640*** 0.1072***

Notes: In each week t – 7, all active cryptocurrencies were sorted into quintiles by size (market capitalization) and 
then, within these quintes were sorted by a second feature. The excess returns of  week t were computed using the 
yield-to-maturity of  the 1-month US Treasury bills. Portfolios are updated on a weekly basis (there are 365 weekly 
observations, from January 1, 2014, to December 29, 2020). The last column is obtained by subtracting in each week 
the portfolios in quintiles 1 and 5. Line S-B is obtained in each column by subtracting the line Big from line Small. 
***, **, * indicates significance at the 1%, 5 % and 10% level, respectively. 
Source: Authors’ own calculations.

4.3. Pricing factors and models

The pricing factors are built on the previous portfolios, conditional on the pair size/other 
feature. For the market factor, like in CAPM, we consider the value-weighted total market 
index (MKT) using all the cryptocurrencies in our filtered database as:

MKT R
MarketCap

MarketCap
t it

iti
N

it

i

N

1
1

=
=

= /
/ , (4)

where Rit is the return and MarketCapit is the market capitalization of  cryptocurrency i at 
the beginning of  week t , and N is the number of  cryptocurrencies.

Since cryptocurrencies do not have a book-value, to construct the size factor, we follow 
the approach suggested by Shen et al. (2020) and use momentum as the second sort. From 
these two sorts, and similar to Fama and French (2015), we divide the size sort by percentile 
[0%, 10%] (Small) and percentile [90%, 100%] (Big), and the momentum sort by percentile 
[0%, 30%] (low momentum, denoted by Down), percentile  ]30%, 70%[ (Medium momen-
tum) and percentile [70%, 100%] (higher momentum, denoted by Up). Then we intersect 
the size and momentum partitions, creating six value-weighted portfolios, respectively, SD, 
SM, SU, BS, BM, and BU. 

From the evidence presented in Table 1 and Table 2, Small portfolios offer higher returns 
than Higher portfolios, hence the size factor is defined as Small minus Big (SMB):

SMB
SD SM SU BD BM BU

3 3t
t t t t t t=

+ +
-

+ + . (5)
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For the remaining factors, we proceeded in the same way but dropping the medium 
interval on the second feature. Our factors, were, respectively, Down momentum minus 
Up momentum (DMU), Illiquid minus Liquid (IML), and Young minus Old (YMO). That is: 

DMU
BD SD BU SU

2 2t
t t t t=

+
-

+ , (6)

IML
BI SI BL SL

2 2t
t t t t=

+
-

+ , (7)

YMO
BY SY BO SO

2 2t
t t t t=

+
-

+ , (8)

With all the portfolios and factors constructed, we proceeded with the estimation of  the 
factor models using Ordinary Least Square (OLS). 

The first model only considers the market factor, similar to CAPM, with the market 
portfolio proxied by the value-weighted market index, MKT.

Rp,t – Rft = a + b1 (MKTt – Rft) + εp,t, (9)

where Rp,t, Rft, and MKTt are the  return of  portfolio p, the risk-free interest rate, and the 
market return at time t, respectively. 

As in Shen et al. (2020), the 3-factor model is defined by: 

Rp,t – Rft = a + b1 (MKTt – Rft) + b2SMBt + b3DMUt + εp,t, (10)

where SMB and DMU are respectively the size and momentum factors previously defined. 
Our more encompassing model is a 5-factors model, defined as:

Rp,t – Rft = a + b1 (MKTt – Rft) + b2SMBt + b3DMUt + b4IMLt + b5YMOt + εp,t, (11)

where IML and YMO are the illiquidity and maturity factors, respectively.
As in Fama and French (2012), we defined the Sharpe ratio as:

’SR a a
1 2

1
X= -] g  (12)

where a is the column vector of  the intercepts of  the regressions and Ω is the covariance 
matrix of  the error terms.

5. maIn empIrIcaL resuLts

Table 5 presents a summary of  the average statistics for the CAPM, 3-factor, and 5-factor 
models. This table highlights that the 5-factor model improves on the CAPM and on the 
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3-factor model. The average absolute intercept decreases and the GRS statistic (Gibbons 
et al., 1989) on the null hypothesis that the intercepts are jointly equal to zero, although 
still significant at the 1% level, decrease substantially. The average standard error of  the 
intercepts decreases and the adjusted R2 increases. Notice that although the additional 
factors are important in explaining the returns of  cryptocurrencies, the market factor is 
undoubtedly the most important one.

Table 5: Summary statistics on CAPM, 3-factor and 5-factor models

|a| R2 s(a) SR GRS

CAPM 0.0319 0.3432 0.0076 1.0521 15.124***

3-factor 0.0214 0.4074 0.0093 0.9181 7.0763***

5-factor 0.0204 0.4170 0.0094 0.7663 5.0777***

Notes: This table presents the summary statistics from regressions on CAPM, 3-factor and 5-factor models. Each 
column corresponds to the average statistics for the regressions on sequential double-sort value-weighted portfolios. 
|a| is the average absolute intercept, R2 is the average adjusted determination coefficient, s(a) is the average standard 
error of  the intercepts. SR is the Sharpe ratio computed according to Equation (12). GRS is the statistics on the 
null hypothesis that the intercepts are jointly zero (Gibbons et al., 1989). The significance at the 1%, 5% and 10% 
is denoted by ***, **, *, respectively. Regressions were performed using 365 weekly observations, from January 1, 
2014, to December 29, 2020.
Source: Authors’ own calculations.

6. robustness checks

The results presented in the previous section may be sensitive to the way that factors 
and portfolios are constructed, hence we conduct several robustness checks on the CAPM, 
3-factor and 5-factor models. 

Procedure 1 – The same sequential double-sort procedure but instead of  using value-
weighted portfolios when grouping the cryptocurrencies, we consider equally-weight portfolios. 

Procedure 2 – For each pair size/another feature, portfolios are created using Fama and 
French (1993, 2012, 2015) procedure, that is, by intersecting the independent sort on size 
with an independent sort on another feature. From these intersections we formed both (2.1) 
value-weighted and (2.2) equally weighted portfolios. Table 6 shows the summary statistics 
of  Procedure 1 and Procedure 2.

Table 6: Robustness checks on the portfolio construction

Procedure 1 – Sequential double-sort equally weighted portfolios

|a| R2 s(a) SR GRS

CAPM 0.0371 0.3484 0.0074 1.1521 17.966***

3-factor 0.0227 0.4268 0.0089 0.7575 5.4514***

5-factor 0.0221 0.4286 0.0091 0.7502 5.2012***
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Procedure 2.1 – Double-sort intersection value-weighted portfolios

|a| R2 s(a) SR GRS

CAPM 0.0313 0.3249 0.0081 1.0408 14.833***

3-factor 0.0215 0.3856 0.0100 0.8865 6.6357***

5-factor 0.0206 0.3960 0.0101 0.7600 5.0160***

Procedure 2.2 – Double-sort intersection equally weighted portfolios

|a| R2 s(a) SR GRS

CAPM 0.0355 0.3266 0.0078 1.1855 18.977***

3-factor 0.0219 0.4006 0.0094 0.9079 7.7592***

5-factor 0.0214 0.4039 0.0096 0.9149 7.6476***

Notes: This table presents the summary statistics for regressions on CAPM, 3-factor and 5-factor models consider-
ing different ways to construct the portfolios. Alternatives are the sequential double-sort but with equally weighted 
portfolios, the double-sort intersection value-weighted portfolios of  Fama and French (1993, 2012, 2015), and the 
double-sort intersection but with equally weighted portfolios. Each column corresponds to the average statistics for 
the regressions. |a| is the average absolute intercept. R2 is the average adjusted determination coefficient, s(a) is the 
average standard error of  the intercepts. SR is the Sharpe ratio computed according to Equation (12). GRS is the 
statistics on the null hypothesis that all the intercepts for a set of  regressions are jointly zero (Gibbons et al., 1989). 
The significance at the 1%, 5% and 10% is denoted by ***, **, *, respectively. Regressions were performed using 365 
weekly observations, from January 1, 2014, to December 29, 2020.
Source: Authors’ own calculations.

Procedure 3 –On the previous factors we used the percentile [0%, 10%] as small size 
cryptocurrencies and the interval [90%, 100%] as big size cryptocurrencies. Here we use 
percentiles [0%, 50%] and ]50%, 100%], i.e., the median to divide the cryptocurrencies 
into Small and Big. The breakpoints on the second feature are the same as before using 
the intervals [0%, 30%], ]30%, 70%[ and [70%, 100%]. Using these factors, we estimate 
the 3 models for the following portfolios: (3.1) sequential double-sort value-weighted, (3.2) 
sequential double-sort equally weighted, (3.3) double-sort intersection value-weighted, and 
(3.4) double-sort intersection equally weighted. Table 7 shows the summary statistics of  
Procedure 3.

Table 7: Robustness checks on the portfolio and factor constructions

Procedure 3.1 – Sequential double-sort value-weighted portfolios

|a| R2 s(a) SR(a) GRS

CAPM 0.0319 0.3432 0.0076 1.0521 15.124***

3-factor 0.0271 0.4828 0.0079 1.1510 12.935***

5-factor 0.0247 0.5093 0.0082 0.9796 8.7113***
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Procedure 3.2 - Sequential double-sort equally weighted portfolios

|a| R2 s(a) SR(a) GRS

CAPM 0.0371 0.3484 0.0074 1.1521 17.966***

3-factor 0.0315 0.4921 0.0077 1.0112 10.378***

5-factor 0.0295 0.5079 0.0080 1.0130 9.4491***

Procedure 3.3 – Double-sort intersection value-weighted portfolios

|a| R2 s(a) SR(a) GRS

CAPM 0.0313 0.3249 0.0081 1.0408 14.833***

3-factor 0.0271 0.4579 0.0086 1.1264 12.366***

5-factor 0.0246 0.4846 0.0088 0.9625 8.4596***

Procedure 3.4 – Double-sort intersection equally weighted portfolios

|a| R2 s(a) SR(a) GRS

CAPM 0.0355 0.3266 0.0078 1.1855 18.977***

3-factor 0.0304 0.4627 0.0082 1.1039 12.329***

5-factor 0.0287 0.4796 0.0085 1.1220 11.500***

Notes: This table presents the summary statistics from regressions on CAPM, 3-factor and 5-factor models considering 
different ways to construct the portfolios and to construct the pricing factors. Now, factors are constructed using the 
median to divide the cryptocurrencies into Small and Big. The breakpoints on the second attribute are kept as before 
using the intervals [0%, 30%], ]30%, 70%[ and [70%, 100%]. The alternatives for the portfolios are the sequential 
double-sort with equally and value-weighted portfolios, the double-sort intersection with equally and value-weighted 
portfolios. Each column corresponds to the average statistics of  the regressions. |a| is the average absolute intercept 
for a set of  regressions, R2 is the average adjusted determination coefficient, s(a) is the average standard error of  the 
intercepts, and SR is the Sharpe ratio computed according to Equation (12). GRS is the statistics on the null hypoth-
esis that all the intercepts for a set of  regressions are jointly zero (Gibbons et al., 1989). The significance at the 1%, 
5% and 10% is denoted by ***, **, *, respectively. Regressions were performed using 365 weekly observations, from 
January 1, 2014, to December 29, 2020.
Source: Author’s own calculations.

The results of  the several alternative procedures are similar to the ones of  the baseline 
framework, implying that our main results and inferences are robust to the procedures used 
to construct the portfolios and pricing factors. These results also reinforce the claim that 
adding liquidity and maturity as pricing factors improves the 3-factor model of  Shen et al. 
(2020) and, in fact, this is especially true when using the median as the partition point for 
the size factor.

7. concLusIons

This study explores several pricing factors of  the cryptocurrencies market, for the period 
from December 27, 2013, to December 29, 2020, using weekly frequency. The methodol-
ogy is like the one used for the stock market by Fama and French (1993, 2012, 2015), with 
some nuances on the portfolio and factor constructions. Noticeably, our baseline approach, 
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contrary to Fama and French (2015) and Shen et al. (2020), who produce the value-weighted 
portfolios by intersecting two independent sorts, is a sequential double-sort procedure that 
produces portfolios with the same cardinality. However, our main results are not sensitive 
to the way that portfolios or even pricing factors are constructed.

We were able to identify two additional pricing factors: illiquidity and maturity. Clearly 
the returns of  cryptocurrencies are directly related to the evolution of  the overall market, 
the most important pricing factor. However, there is compelling evidence that cryptocurren-
cies with lower market capitalization (small size), more illiquid, with higher reversals, and 
less mature present higher returns. 

Our 5-factor pricing model considers the market portfolio, size (Small minus Big – SMB), 
momentum (Down minus Up – DMU), illiquidity (Illiquid minus Liquid – IML), and maturity 
(Young minus Old (YMO). The inclusion of  illiquidity and maturity improves the results in 
relation to the 3-factor model of  Shen et al. (2020).  

We should highlight that we are only dealing with native factors of  the cryptocurrency 
market, i.e., factors that use the information intrinsic to the market. Other external factors 
such as the investor’s attention, proxied for instance by Google searches may be important 
as it seems to be the case for Bitcoin (see, for instance, Kristoufek, 2015, Dastgir et al., 2019, 
Anastasiou et al., 2021).
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