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resumo I résumé /  abstract

Esse artigo desenvolve uma metodologia 
VAR estrutural baseada em modelos 
gráficos para identificar os choques de 
política monetária e medir os seus efeitos 
macroeconómicos. A vantagem desse 
procedimento é trabalhar com modelos 
sobre-identificados testáveis, cujas 
restrições são derivadas das correlações 
parciais entre os resíduos, adicionando-se 
algum conhecimento institucional. Isso 
permite testar algumas restrições sobre o 
mercado de reservas usadas em várias 
abordagens existentes na literatura. Os 
principais resultados são que nem as 
inovações VAR ligadas à federal funds 
rate nem as ligadas às reservas não- 
-emprestáveis (nonborrowed reserves) 
são bons indicadores de choques de 
política monetária.

Cet article élabore une méthodologie des 
VAR structurels basée sur les modèles de 
graphes pour identifier les chocs de la 
politique monétaire et mesurer leurs effets 
macro-économiques. L'avantage de cette 
procédure est la possibilité d'utiliser des 
modèles suridentifiés dont les restrictions 
sont dérivées par des corrélations partielles 
des résidus, en plus des connaissances 
institutionnelles. Ceci permet de tester 
certaines restrictions relatives au marché des 
réserves qui ont été utilisées par de 
nombreuses approches dans la littérature. 
Les principaux résultats indiquent que ni les 
innovations VAR introduites sur le taux des 
fonds fédéraux ni celles introduites sur les 
réserves non empruntées (non-borrowed 
reserves) sont de bons indicateurs des chocs 
de la politique monétaire.

This paper develops a structural VAR 
methodology based on graphical models to 
identify the monetary policy shocks and to 
measure their macroeconomic effects. The 
advantage of this procedure is to work with 
testable overidentifying models, whose 
restrictions are derived by the partial 
correlations among residuals plus some 
institutional knowledge. This permits to test 
some restrictions on the reserve market used 
in several approaches existing in the 
literature. The main findings are that neither 
VAR innovations to federal funds rate nor 
innovations to nonborrowed reserves are 
good indicators of monetary policy shocks.

1 I am grateful to Marco Lippi and Peter Spirtes for helpful advice, and to an anonymus referee for useful 
comments. The usual dislaimers apply.
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1. Introduction

A monetary policy shock is the portion of variation in central bank policy, that is not caused by 
the systematic responses to variations in the state of the economy. It is an exogenous shock, 
which may reflect innovations to the preferences of the members of the monetary authority (e.g. 
Federal Open Market Committee), measurement errors of the same members, and any other 
conceivable variation orthogonal to macroeconomic innovations. Vector Autoregressive (VAR) 
models have been extensively used to isolate and study the effects of a monetary policy shock. A 
VAR is given by

Y, = A ,VM + A2Yt_2 +. . . +  ApYt_p + u, , f = 1.....T (1)

where Yt \ s a k x ^  vector of data at date f = 1 -p , . .T ; A{ are coefficients matrices of size kxk\  
and ut is the one-step ahead prediction error with variance-covariance matrix Equation (1) is 
a “reduced form” model: it merely summarizes the statistical properties of the data. To study the 
dynamic effects of a monetary policy innovation, one needs an “identified” model, namely a 
model that has an economic interpretation. The problem of identifying a VAR consists in 
decomposing the prediction error ut into economically meaningful or “fundamental” innovations. 
Suppose that there is a vector vt of fundamental innovations of size k x 1, which are mutually 
independent. Therefore E[v tv t] =  D is a diagonal matrix. What is needed is to find a matrix r 
such that ut = Tvt. It turns out that:

I u = e  [UlL,'t] = TBWtJT =  r o r  (2)

The problem is that the k(k + 1)/2 non-zero elements, which can be obtained from the estimate of 
are not sufficient to specify r  and the diagonal of D. Therefore, one needs further restrictions 

to^achieve identification. In the literature, there exist three methods to impose the necessary 
restrictions. The first one consists in decomposing 2U according to the Choleski factorization, so 
that 2U = p p '> where P is lower-triangular, defining a diagonal matrix V with the same diagonal as 
P and choosing r  = PV~1. This is equivalent to impose a recursive ordering of the variables, 
called a “Wold causal chain”, as in Sims (1980). The second method consists in deriving from 
theoretical and institutional knowledge some “structural” relationships between the fundamental 
innovations vt i , i = 1,...,k and the one-step ahead prediction errors ut j , i = 1,...,k, as in 
Bernanke (1986), Blanchard and Watson (1986) and Sims (1986). Thé third method consists in 
separating transitory from permanent components of the innovations, as in Blanchard and Quah 
(1989) and King et al. (1991).
Any of these methods deals with a high degree of arbitrariness (for a criticism see Faust and 
Leeper (1997)). Indeed, imposing a set of restrictions corresponds to ascribing a particular 
causal relation, which is often difficult to be justified, to the variables. To address this problem 
some authors try several identification schemes and derive stylized facts from them. Thus, 
Christiano et al (1999) state that “there is considerable agreement about the qualitative effects of 
a monetary policy shock in the sense that inference is robust across a large subset of the 
identification schemes that have been considered in the literature. The nature of this agreement 
is as follows: after a contractionary monetary policy shock, short term interest rate rise, 
aggregate output, employment, profits and various monetary aggregate fall, the aggregate price 
responds very slowly, and various measures of wages fall, albeit by very modest amounts”.
These conclusions are often considered as “facts” and if a particular identification scheme does 
not accomplish them, it is sometimes seen as rejectable. Uhlig (1999) has persuasively argued
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that the way these restrictions are used may render the inference procedure circular (“we just get 
out what we have stuck in”) and proposes to identify the effects of a monetary policy shock on 
output by directly imposing sign restrictions on the dynamic responses of prices, nonborrowed 
reserves and interest rate to the same shock. Gordon and Leeper (1994), Bernanke and Mihov
(1998) and Bagliano and Favero (1998) emphasize the importance of taking account of different 
monetary policy regimes.
Another point of controversy is the choice of the indicator of the stance of policy. Bernanke and 
Blinder (1992) propose VAR innovation to the federal funds rate as measure of the monetary 
policy shock, basing their argument on prior information about the Fed’s operating procedures. 
However, Christiano and Eichenbaum (1992) have made the case for using the quantity of 
nonborrowed reserves as indicator of monetary policy. On the other hand, Strongin (1995) 
argues that the central bank has to accommodate in the short run total reserves demand, 
therefore monetary policy shocks are the shocks to nonborrowed reserves orthogonal to shocks 
to total reserves.
Since there is no consensus on which of the various measures is more appropriate to capture the 
stance of policy, many authors check the robustness of their results using a variety of indicators 
(see e.g. Christiano et al.,1999). In this paper, in the spirit of Bernanke and Mihov (1998), the 
indicator of monetary policy stance is not assumed but rather is derived from an estimated model 
of the Fed’s operating procedure. We employ a structural VAR model, but before imposing the 
restrictions derived from institutional knowledge, we narrow the number of acceptable causal 
structures using graphical models. The idea is that causal relationships can be inferred from the 
set of vanishing partial correlations among the variables that constitute such (unobserved) 
relationships. Graphs form a rigorous language for the “calculus” and representation of 
causation. This method, which is an extension of the method used in a previous paper (Moneta 
(2003)) associates a graph to the (unobserved) causal structure of the model and addresses the 
problem of identification as a problem of causal discovery from vanishing partial correlations. In 
particular, we infer the class of acceptable causal structures among contemporaneous variables 
from all the correlations and partial correlations among the residuals.
The goal of this paper is twofold. On the one hand, we want to analyze what are the effects of a 
monetary policy shock, when in the structural VAR the identification assumptions are derived by 
means of graphical models, using US macroeconomic and policy variables. The results are 
consistent with the stylized facts of Christiano et al. (1997) and Christiano et al. (1999), at least 
for the entire sample 1965-1996. However, the subsample 1979-1996 yields dynamic responses 
to monetary policy shocks which are qualitatively different from those stylized facts. On the other 
hand, we want to investigate which shock embeds better the exogenous monetary shock, in the 
spirit of Bernanke and Mihov (1998). The results cast some doubts on the practice of using the 
shock to the federal funds or the shock to nonborrowed reserves as a measure of an exogenous 
monetary policy shock, while they bring some support on the conjecture of Strongin (1995), that 
a good measure of monetary policy innovation is the shock to nonborrowed reserves orthogonal 
to the shock to total reserves.
The rest of the paper is structured as follows. The second section describes briefly the 
identification procedure of the structural VAR. The third section presents a standard model of the 
market for commercial bank reserves and central bank behaviors, which is a slight extension of 
the model used by Bernanke and Mihov (1998). The fourth section describes the data and the 
estimation procedure. The fifth section shows the application of the identification procedure. The 
sixth section summarizes the main empirical results. Conclusions are drawn in the seventh 
section.

2. Structural VAR and Graphical Models
Suppose that a structural model of the monetary transmission mechanism can be represented
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where Xf is a vector of macroeconomic (non-policy) variables (e.g. output and prices) and is a 
vector of variables (partially) controlled by the monetary policy-maker (e.g. interest rates and 
monetary aggregates). Yt = (X’f M\) ’ is a vector of length k, whose components are indicated as
( y »  y **)’ and v, =
The Structural VAR methodology suggests first to estimate the reduced form:

(5)-*(fcM*)-
where C, = A and

“ f=  ( 5 )  = A’1b"í ©

Then, one has to face the problem of recovering the structural shocks from the estimated 
residuals. If we call 2U the covariance matrix of the estimated residuals, the identification problem 
in this context consists in inferring A and B from ^ u. The model is overidentified if more than k + 
k(k + 1)/2 restrictions are imposed. In this case the validity of the restrictions can be tested via a 
likelihood ratio test statistic asymptotically distributed as a x2 with a number of degrees of 
freedom equal to the number of overidentifying restrictions (see Sims (1980), p. 17 and Doan 
(2000), p. 287).
The idea here is to use graphical models to strongly narrow the number of acceptable 
contemporaneous causal structures. Then, one can further discriminate using institutional 
knowledge, jointly with x2 tests on overidentifying restrictions. The advantage of this method with 
respect of the standard structural VAR approach is that eliminating the implausible causal 
structures significantly lowers the degree of arbitrariness. The method applied here is an 
extension of a search procedure that was developed in a previous paper (Moneta (2003)) and 
that we are going to describe briefly here, referring to the appendix for more detailed 
terminology.
Statistical models represented by graphs, in particular directed acyclic graphs (DAGs), have 
been proved to be useful to represent causal hypotheses and to encode independence and 
conditional independence constraints implied by those hypotheses (Pearl (2000), Spirtes et al. 
(2000), Lauritzen (2001), Lauritzen and Richardson (2002), see appendix for a definition of 
graph and directed acyclic graph). In this framework, algorithms have been developed to recover 
some features of the causal graph from (conditional) independence relations among the 
variables which constitute the unobserved causal structure. A set of algorithms starts from the 
assumption of direct causation, ruling out the possibility of feedbacks, loops and confounder (e.g. 
PC algorithm in Spirtes et al. (2000)). A more sophisticated version of it allows for latent variables 
(e.g. FCI algorithm in Spirtes et al. (2000)). An algorithm developed by Richardson and Spirtes 
(1999) deals with the problem of inferring features of the causal graph under the assumption that 
it may be cyclic (feedbacks and loops are allowed), but there are no latent common causes.
Here we apply a general algorithm, which is basically the first common part of the algorithms 
mentioned above. The algorithm has, as input, the covariance matrix among the VAR residuals 
and produces, as output, an undirected graph, which represents a class of possible causal 
relationships among the contemporaneous variables of the VAR model. The algorithm starts
connecting all the contemporaneous variables (y1t.....yw)’ in a complete graph and progressively
eliminates most of the edges among variables which are not associated neither by a causal link,
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nor by a feedback link, nor by a latent variable, which we interpret as a common shock (for a 
definition of edges, undirected and complete graph, see appendix).2
The procedure is based, first, on the fact that in a VAR model partial correlations among 
residuals are equivalent to partial correlations among contemporaneous variables, conditioned 
on all the past variables (see Proposition 1 in appendix).
Second, there are two fundamental assumptions relating causes and probability. Given a graph 
G and any three vertices A,B,C belonging to G: (i) Causal Independence Assumption: if A does 
not cause B, and B does not cause A, and there is no third variable that causes both A and B, 
then A and B are independent; (ii) Causal Faithfulness Assumption: if corr(A,B\C) is zero then A 
and B are d-separated by C on the graph G. For the definition of d-separation see appendix.
Assuming normality of the error terms, the search algorithm described in appendix permits to 
infer an undirected graph, which represents a pattern of directed graphs (feedbacks and loops 
are allowed), from Wald tests on vanishing partial correlations among the residuals.

3. A Model of the Reserve Market
The undirected graph resulting from the search algorithm permits to narrow considerably the 
class of causal structure, but seldom this is enough for a reliable identification. Background 
knowledge about the way the central bank sets the monetary policy is very useful at this stage. 
More detailed institutional assumptions, associated with causal hypotheses, can then be tested.
Following Christiano et al (1999), a general model of the monetary authority behavior can be 
written as:

S( = /(£2() + v f , (6)

where Sf is the instrument of the monetary authority, say the federal funds rate or some 
monetary aggregate, /  is a linear function that represents the central bank’s feedback rule, Q, is 
the monetary authority’s information set and vf is a monetary policy shock.
Bernanke and Mihov (1998) model the banks’ total demand for reserves as: 

TRt = f TR(Q*t ) -aFFRt +iPt , (7)

where Q?t is the information set that comprehends only current and past macroeconomic 
variables. According to (7), the demand for total reserves TRt depends on and is affected 
negatively by the federal funds rate (FFRt). The demand for borrowed reserves is:

BFIt =  f e d #  ) +  & F F R t -  D ls c t) -  yN B R t +  ■ W

where BRt is the portion of reserves that banks choose to borrow at the discount window. 
According to (8), BRt is affected positively by the federal funds rate -  discount rate differential

2 There are some (recognizable) cases in which an edge in the output of the algorithm does not correspond to 
the presence of an edge in the causal graph representing the data generating process (for details see Moneta 
(2004), p. 43). So, the output graph may contain more edges than the unobserved “true” graph. In general, the 
algorithm gives a graph that represents a class of causal structures, not a unique causal structure. It is possible 
to show that if there is a “true” causal structure which has generated the data, such causal structure is included 
in the class of causal structures represented by the output graph of the algorithm (see Moneta (2004) for details).
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and negatively by the nonborrowed reserves (NBRt). Bernanke and Mihov (1998) assume that 
innovation to the discount rate is zero, which means that fluctuations in the discount rate are 
completely anticipated, so that DISCt does not enter in (8).
As far as the parameter y is concerned, Christiano et al. (1999) give two reasons for including 
NBRt in equation (8). The first one is that, if we would be willing to include expected values in the 
equation describing demand for BRt, we should include expected values of FFRt among the 
variables affecting BRt, because of the existence of nonprice costs of borrowing at the Federal 
Reserve discount window. (These costs rise for banks that use too much or too frequently the 
discount window). Indeed, for example, when Et(FFRt)t+1 is high, banks want BRt to be low so 
that they can take full advantage of the high expected federal funds rate in next period without 
having to suffer large nonprice penalties at the discount window. Since NBRt helps forecast 
future values of FFRt, it should enter on equation (8).

The second reason is that a bank that possesses a large amount of NBRt and is using the 
discount window is simply trying to profit from the spread between the federal funds rate and 
discount rate. In that case, the bank would suffer a higher nonprice marginal cost of borrowing. 
So, NBRt should enter the equation describing demand for BRt.

However, Bernanke; Mihov (1998) assume y  = 0, presumably in order to achieve overidentified 
and testable identification scheme.3
The following equation describes the behavior of the Federal Reserve:

NBRt = f  NBR(&[ ) + cf)diPt + (jPiPt + v> (9)

According to (9), the Fed, by means of open-market operations, can change the amount of 
nonborrowed reserves supplied to banks in response to shocks to the total demand for reserves 
and to the demand for borrowed reserves. The coefficients <£d and (fP denote the strength of the 
responses and i?t represents the monetary policy shock.
Since TRt = NBRt + BRt, we can derive from (8) (omitting the discount rate) the following 
equation:

FFRt=  ^ f r NBRt - j i ' pt (10)

From (7), (9) and (10), we can derive restrictions on the contemporaneous variables, which 
correspond to zero coefficients on the matrix A of equations (3) and (5), as we will see in section 5.

4. Data and Estimation
The data set used is the same as that of Bernanke and Mihov (1998) and consists of 6 series of 
monthly US data (1965:1-1996:12)4. We refer to the non-policy macroeconomic variables as 
GDPt: real GDP (log); PGDPt\ GDP deflator (log); PSCCOMt\ Dow-Jones index of spot 
commodity prices (log). The policy variables are: TRt\ total bank reserves (normalized by 36- 
month moving average of total reserve); NBRt: nonborrowed reserves plus extended credit 
(idem); FFRt: federal funds rate.

3 This is an important limitation, as underlined by Christiano et al. (1999). Indeed, in the Bernanke and Mihov 
(1998) approach, one can always interpret an alleged rejection of an identification scheme as evidence against 
the maintained hypothesis 7 = 0  and save the identification scheme. An advantage of our approach is that, 
thanks to the pre-selection of graphical models, we do not need to assume y = 0 to reach overidentification and 
we can assess whether y = 0 is in fact rejected or not by the data.
4 The data set was downloaded from Ben Bernanke’s home page.
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We estimate the model both in the vector error correction model parameterization and in levels 
(equation-by equation OLS)5. Since the results of the two estimations are very close, we report the 
results of the level estimation, in order to have a clear comparison with the results of Christiano 
et al. (1999) and Bernanke and Mihov (1998), who estimate the model in level. The number of 
lags used to estimate the VAR is 13 in the full sample (the same used by Bernanke and Mihov 
(1998). The covariance matrix among the residuals obtained by OLS estimation is the following:

L r

322 4 -31 -4 3473 42

4 26 16 15 650 26

-31 16 1682 660 -19341 -388

-4 15 660 802 7652 -46

3473 650 -19341 7652 2236763 10530

k 42 26 -388 -46 10530 2670

x10-7

5. Identification of the Structural Shocks
The search algorithm mentioned in section 2 and reported in appendix is employed to derive the 
class of admissible causal structures among the contemporaneous variables of the structural 
model (represented in equation (3)). The input of the search algorithm is the covariance matrix 
among residuals and the output is a pattern of directed graphs, which is represented by an 
undirected graph. Figure 1 displays the output of the algorithm for the full sample.6

Figure 1 -  Contemporaneous structure for the full sample (time subscrips are removed 
for convenience)

GDP FFR TR

NBR

PGDP

PSCCOM

The graph in Figure 1 has to be read according to the following criterion. An undirected edge 
between any two vertices A and B of the graph corresponds to one or more of the following 
alternatives: (i) there is a direct causal relationship from A to B; (ii) there is a direct causal 
relationship from B to A\ (iii) there is a common shock affecting both A and B.7 It should be 
emphasized that a lack of edges between any two variables does not mean that there is no 
correlation at all (in fact there is usually correlation through lagged variables affecting both), but 
just that all of the three options listed above are excluded. Thus, since in the graph of Figure 1 
there is no edge starting from PGDP, prices (measured by the GDP deflator) do not affect

5 The estimation via VECM parameterization does not imply any difference in the way the identification problem 
is faced, since, once the covariance matrix among the residuals is estimated, the model is reconverted in levels.
6 The significance level employed in the vanishing partial correlation tests is 0.05. We remove time subscripts.
A variable without time subscripts should be interpreted as a variable at time t.
7 Actually, there is also a fourth possibility. If there are feedbacks and common shocks in the data generating 
graph, the output of the algorithm may contain edges that do not correspond to any of the associations 
mentioned. Such configurations are however recognizable, as mentioned in footnote 1 (see Moneta (2004), p. 
43 for more details).
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instantaneously any other variable, prices are not affected instantaneously by any other variable, 
and that there is no common shock affecting contemporaneously PGDP and any other variable.
From the mere analysis of correlations and partial correlations it is very difficult to infer which 
structure, among (i), (ii) and (iii), holds. One needs to incorporate background knowledge, which, 
if it implies overidentifying constraints, can be tested.
One set of assumptions can be derived by prior knowledge about the nature of interaction 
between policy variables and macroeconomic non-policy variables. A common interpretation of a 
contemporaneous association between macroeconomic variables and policy variables is that the 
monetary authority monitors continuously prices and output, so that there are causal effects from 
non-policy macroeconomic variables to policy variables within the period (one month). A further 
possible identifying assumption (used e.g. in Bernanke and Mihov (1998)) is that there is no 
feedback from policy variables to the economy within the period.8 This corresponds to ruling out 
causal relationships from any of the policy variables NBR, BR and FFR to any of the 
macroeconomic variables GDP, PGDP and PSCCOM. In the following we will consider and 
assess the hypothesis of orthogonality of the policy shock to the macroeconomic variables, which 
we call recursiveness assumption, against the alternative hypothesis of correlation between 
policy shock and these variables (non-recursiveness assumption).9 Under the recursiveness 
assumption, the undirected edges of Figure 1 between GDP and FFR and between NBR and 
PSCCOM are interpreted as directed edges from GDP and PSCCOM to FFR and NBR 
respectively. Under the non-recursiveness assumption the same edges are interpreted as bi- 
-directed.10
Institutional knowledge can be used to impose identifying restrictions concerning the interactions 
among the policy variables {NBR, TR and FFR). From the considerations of section 3 about the 
model of the reserve market, it results that the relationships between VAR residuals and 
structural disturbances can be represented as follows, as far as the monetary policy block is 
concerned:

uTR = -  auFFR+V* (11)

UFFR =  UTR + UNBR ~  ^  ( 12 )

8 The length of “the period” is crucial here. For example, the assumption of no feedback from policy variables to 
the economy is more difficult to defend at the quarterly frequency and easier to defend at the weekly frequency. 
The opposite occurs with the assumption of causal effects from the economy to policy variables, which is more 
reliable at low than at high frequencies. Notice also that we do not use, consistently with the studies quoted, 
real-time data, and that measurement errors, which are common in the first data releases, are embedded in the 
exogenous monetary shock. How the identification results would change with the use of real-time data is an 
interesting open research question.
9 The scheme of identification associated with the recursiveness assumption should in general be distinguished 
from the recursive VAR identification scheme, which is derived by the Choleski factorization of the residuals 
covariance matrix and is associated with a Wold causal chain.
10 Indeed, it is possible to show that under the Faithfulness condition, the recursiveness assumption implies an
absence of contemporaneous direct causes from non-policy to policy variables and an absence of a direct 
cause from the policy shock to non-policy variables (and an absence of any latent variable caused by the policy 
shock and causing non-policy variables). Moreover, under the Causal Independence condition, the non- 
-recursiveness assumption implies that either policy variables cause non-policy variables within the period, or 
that the policy shock is a common shock affecting both non-policy and policy variables (or that there is a latent 
variable affected by policy variables and affecting non-policy variables). To put it in another way, the economic 
content of the recursiveness assumption is that non-policy variables do not respond within the period to
realization of the policy shock, while the economic content of the non-recursiveness assumption is just the 
opposite.
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UNBR =  +  V* ( 1 3 )

The system of equations (11)-(12)-(13) corresponds to a set of causal restrictions, as illustrated 
below. The restrictions on the relationships among macroeconomic variables (GDP, PGDP and 
PSCCOM) and on the relationships between macroeconomic variables and policy variables, that 
are derived by the graph output of the search algorithm, are numerous enough, so that the 
system can be identified. We also consider further restrictions on the policy block, which 
correspond to five alternative models, the same considered by Bernanke and Mihov (1998), with 
the difference that we allow 7 to be different from zero.

The first case we consider is the model of equations (11), (12) and (13), without further 
restrictions, which we call Model 0. The graph connected to this model is represented in Figure 2. 
In this case the monetary policy shock 1? is related with the VAR residuals in the following way:

*  = - ( ^ +  cfP)uTR + ( 1 + ^ ( 1  -  y))uNBR-  (a4fi -  Pcffi)uFFR, (14)

which is obtained solving (11)-(12)-(13) for 1?.
The second case is Model 0 plus the restriction a = 0. The graph for this model, which we call 
model a = 0, is represented in Figure 3. It corresponds to assuming that the demand for total 
reserves is inelastic in the short run. Strongin (1995) presents institutional arguments to support 
this assumption.
In the third case we impose to Model 0 the restrictions 4>d = and <fP = - 7 7 7  ■ This 
corresponds to the assumption that the central bank uses NBR to neutralize borrowing and 
demand shocks and targets the federal funds rate. Indeed the monetary policy shock turns out to 
be proportional to the innovation to the federal funds rate:

iP =  -  (a  +  P)UFFR (15 )

The graph related with this model, which we call model FFR, is represented in Figure 4.
Bernanke and Blinder (1992) presented arguments in support of the federal funds rate as a 
measure of policy instrument.
In the next case the following restrictions are imposed: ¢0 = 0 and (fP = 0. In this case the 
monetary policy shock coincides with the VAR innovation to the nonborrowed reserves:
^  = unbr- The 9raPh related with this model, which we call model NBR, is represented in 
Figure 5. The argument that innovations to nonborrowed reserves primarily reflect shocks to

Figure 2 -  Model 0. It is the model of equations (11), (12) and (13), without further 
restrictions

NBR
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monetary policy was defended by Christiano and Eichenbaum (1995) and Christiano et al. 
(1996).
The fifth case we consider is the model which imposes the restrictions a = 0 and (jP = 0 on 
Model 0. The implied monetary policy shock \s i f  = -  (f)duTR + uNBR. This corresponds to 
assuming that shocks to total reserves are purely demand shocks (tP), which the central bank 
has to accommodate immediately (either through open-market operations or the discount 
window). Therefore monetary policy shocks (ï^) are the shocks to NBR orthogonal toiA 
Moreover, this specification, defended by Strongin (1995), does not consider the possibility that 
the central bank reacts to borrowing shocks. Figure 6 represents the graph associated with this 
model, which is called Model NBR/TR.
The last case we consider is the model which corresponds to assuming that the central bank 
targets borrowed reserves. The restrictions imposed are cfid and cfP ■ This implies
that

^  =  “  a y  (UT R 'u NBr ) = ~  UBR ( 1 6 )

Figure 7 represents the graph associated with this model, which is called Model BR.

Figure 3 -  Model a = 0. The demand for total reserves is inelastic in the short run, so that 
there is no causal effect from FFR to TR

Figure 4 -  Model FFR. The weights refer to the case y  = 0. The Fed fully offsets shocks to 
total reserves demand and borrowing demand and targets the federal fund rate

Figure 5 -  Model NBR. Nonborrowed reserves respond only to policy shocks, so that 
borrowing and demand shocks do not affect NBR

iP FFR

A
iP

NBR
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Figure 6 -  Model NBR/TR. Monetary policy shocks are shocks to NBR orthogonal to 
demand shocks &

Figure 7 -  Model BR. The weights refer to the case y = 0. The Fed targets borrowed 
reserves (TR-NBR)

The set of restrictions implied by each model corresponds to a set of restrictions on the matrices 
A and B of equation (3). Equation (5) can be written as:

Aut = Bvt (17)

Imposing the restrictions of Model 0 (without recursiveness), we can write (17) as:11 

(18)

1 0 0 0 0 0
0 1 0 0 00
0 0 1 ^34 b 35 0

0 0 0 1 0 0
0 0 0 0 «54 0
0 0 0 0 0 1

11 Notice that the theoretical restrictions that we impose do not include interactions with non-policy variables. 
The only restrictions about such interactions are derived from the graph-search procedure (with the exception of 
the general restriction embedded in the recursiveness assumption). This is because, first, we have more 
reliable and precise background knowledge about policy variables, than about the relations between policy and 
non-policy variables. Indeed, we may call the theoretical knowledge about policy variables “institutional 
knowledge”, because is based more on assumptions about the procedures followed by the banking system, 
than on economic theory. Second, each set of restrictions on the policy variable comprises a precise 
interpretation of the exogenous monetary policy shock. Since we can easily test each set of restrictions, we can 
get information as to which measure represents better the exogenous monetary shock.

r 1 0 0 0 «15 0 >

0 1 0 0 0 0

0 0 1 0 0 «36

0 0 0 1 «45 0

«51 0 COin
$

«54 1 0

0 0 COCD
a 0 0 1 y
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The restrictions on the elements of A and B for each model of the bank reserves are reported in 
Table 1 . The relations among the parameters of equation (18) and a, /3, y, cfrd and (fP are the 
following: <\P =  b34, (}P =  b35, a  =  a 45 , ( 3 = - ^ ,  y =  1 + - J 3-- The key to interpret equation (18) is 
looking at equation (3), where matrix A represents the structural relations among 
contemporaneous variables.
Each model is estimated by maximum likelihood estimation, using a RATS procedure based on 
the hill-climbing BFGS method (see Doan (2000) for details).12

Estimates of the parameters a, (3, y, (fP and (jP for each model are reported in Table 4. Each 
model is overidentified and produces a likelihood ratio test for the restrictions. In the same table 
p values for such tests are also reported, that indicate whether a model has been rejected or not.
We do not have space here to give specific comments on the estimates of y, a, (3, (fP and (jP (for 
a detailed analysis see Moneta (2004)). The substance of these results is reported in the next 
section.
We have also investigated the robustness of the results across subsamples. We do not have 
space here to report the results (Moneta (2004) contains a wider illustration of the results and the 
method to deal with small samples), whose substance is reported in the next section.

12 The results of the restrictions of Model FFR and Model BR with the non-recursiveness assumption should be 
taken with caution, because they do not take into account policy parameters that enter in the equation of the 
monetary policy shock via non-policy variables. This does not change, however, the substance of the results 
(see next section).! thank an anonymous referee for having raised this issue. Estimates of the parameters of 
model 0 are displayed in Tables 2 and 3.
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Table 1 -  Restrictions on A and B. Each of the six models considered implies zero 
restrictions on some elements of the matrices A and B of equation (17). Each model has 
four versions, depending on the recursiveness assumption and the assumption on y (in 
one case y  is free, in the other is zero)

r e c u r s iv e n e s s re c . +  y = 0 I n o n - r e c u r s iv e n e s s  n o n - r e c .  +  y = 0

«15 =  0 «15 =  0 a 53 “  " a 54

M o d e l 0 “ 63 =  0 «63 =  0

a 53 =  ~a 54

« 1 5 = 0

M o d e l a  = 0 “ 15 = ° «45 = 0 a 53 =  " a 54

“ 63 =  0 «63  = 0 « 4 5 = 0 « 4 5 = 0

“ 4 5 = ° a 53 = ~a 54

“ 15 =  ° «15 = 0

“ 63 =  0 a 53 ~  ~a 54 634  = ~a 54 /  a 53 a 53 =  " a 54

M o d e l FFR ^ 3 4  =  " “ 54 /  “ 53 «63  =  0 b 35 =  a 54 /  a 53 6 34  =  ‘ a 54 /  a 53

COtoaIDaiiLOCO
-Q Ò 34 =  1

b 35 =  _1

6 3 5  =  a 54 ^ a 53

«15 =  ° «15 =  0

«63 =  0 a 53 =  ~a 54 634 =  0 a 53 =  ~a 54

M o d e l NBR ^ 3 4  =  0 a 63 =  0 6 3 5  =  0 634  =  0

b 35 =  0 0 34 =  0 

b 35 =  0

6 3 5  =  0

«15 =  ° «15 =  0

«63  =  0 a 53 =  ~a 54 «45 =  0 a 53 =  ~a 54

M o d e l NBR/TR *>45 =  0 a 63 =  0 6 3 5  =  0 «45 =  0

b 35 =  0 0 45 =  0 

^3 5  =  0

6 3 5  =  0

«15 =  ° «15 =  0 634  = “ 53 = ‘ a 54

<*63 =  0 a 53 =  ' a 54 0 - ^ 45( ^ 53+ ^ 54)) 6 34  =  1

M o d e l BR Ò34 =  1 / « 6 3 = 0 6 3 5  =  ( ^ 45^ 54) / 6 3 5  =  a 45a 54

(1 -« 4 5 (« 5 3 + « 5 4)) Ò34 =  1 ( ^ 45( ^ 53+ ^ 54) - 1 )

b 35 =  ( a 45a 54)/ b 35 =  «4 5 ^5 4

(« 4 5 (« 5 3 + « 5 4 )-1 )
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Table 2 -  Estimation Model 0 recursive (full sample): 
ML estimation by BFGS. Convergence in 84 Iterations 
Observations 371. Log Likelihood 9614.0525 
Log Likelihood Unrestricted 9620.7327 
Chi-Square(8) 13.605. Significance Level 0.1000

I Parameter Coeff Std Error T-Stat Signif

«36 0.1360 0.0386 3.5241 0.0004

«45 0.0013 0.0056 0.2411 0.8094

«51 -8.7989 3.6417 -3.4161 0.0156

«53 30.6270 10.0566 3.0454 0.0023

«54 -37.0140 13.2387 -2.7959 0.0051

£>34 0.7608 0.2393 3.1791 0.0014

^35 -0.1810 0.2790 -0.6490 0.5163

Table 3 -  Estimation Model 0 non-recursive (full sample): 
ML estimation by BFGS. Convergence in 233 Iterations 
Observations 371. Log Likelihood 9614.7285 
Log Likelihood Unrestricted 9620.7327 
Chi-Square(6) 12.0084. Significance Level 0.0617

Parameter Coeff Std Error T-Stat Signif

«15 -0.0021 0.0007 -2.9976 0.0027

«36 0.0000 0.0035 0.0017 0.9986

«45 -0.0180 0.0019 -9.0292 0.0000

«51 0.0007 0.4462 0.0017 0.9985

«53 68.9252 2.1444 32.1408 0.0000

«54 -55.4529 2.6953 -20.5736 0.0000

«63 0.2305 0.0658 3.5036 0.0004

bz 4 0.8046 0.0697 11.5274 0.0000

-£35-------------------- -0.8045 0.0504 -15.9625 0.0000
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Recursive
assmption:

Model 0 0.0014 0.0270 0.1726 0.7609 -0.1811 0.1000
a = 0 0 0.0290 0.1216 0.8148 -0.1939 0.1444
FFR 0.0118
NBR 0.0253
NBR/TR 0 0.0358 0.2019 0.8148 0 0.1659
BR -0.0051 0.0532 -0.2510 0.9767 -0.0929 0.1189
Model 0, y = 0 -0.0022 0.0326 0 0.8861 -0.2220 0.1282

p n o ii o 0.0002
FFR, y = 0 0.0000
NBR, y = 0 0.0000
NBR/TR, y = 0 0.0450
BR, 7 = 0 -0.0035 0.0436 0 1.0000 -0.0794 0.1223
Non-Recursive
Model 0 -0.0180 0.0180 -0.2429 0.8046 -0.8045 0.0617

p n o 0 0.0270 0.0977 0.8165 -0.2716 0.0903
FFR 0.0428
NBR 0.0435
NBR/TR 0 0.0358 0.1999 0.8165 0 0.1070
BR -0.0055 0.0552 -0.3175 0.9696 -0.0957 0.0952
Model 0, 7 = 0 -0.0269 0.0112 0 0.5927 -0.9691 0.1013

p ii o n o 0 0.0209 0 0.8054 -0.5945 0.1109
FFR, 7 = 0 -0.0036 0.0119 0 1.0000 -1.000 0.0868
NBR, 7 = 0 0.0000
NBR/TR, 7 = 0 0.0261
BR, 7 = 0 -0.0035 0.0433 0 1.000 -0.0805 0.0890
Notes: The estimates are functions of the ML estimates of the coefficients of the matrices A and B of equation (17), obtained by 
the RATS procedure based on the BFGS method (see Doan (2000) for details). The last column gives p-values from likelihood 
ratio tests of overidentifying restrictions. If p-value > 0.05, the restrictions implied by the particular model cannot be rejected at 
the 5 percent level of significance. We do not report estimates of the models which have been rejected. Models that have been 
not rejected and the corresponding p-values are displayed in bold text.

6. Main Results
Our analysis permits to give some answers to the following questions.
What happens after a monetary policy shock?
If we consider the full sample 1965-1996, the qualitative responses of output, prices and interest 
rate are consistent with the stylized facts presented by Christiano et al. (1999) and with the 
results of Bernanke and Mihov (1998). After an expansionary monetary policy shock, output has 
an uncertain behavior in the first 2-3 months, then it increases rapidly, reaching its peak around 
the 15th month. The response of output in the long run is almost null, that means that money is 
close to being neutral in the long run.13 Price level responds slowly in the first year, after that 
increases. Short term interest rate falls immediately (showing the so called “liquidity effect”), but 
after 10-12 months returns to its previous value. Impulse response functions of GDP, GDP 
deflator and federal funds rate to a monetary policy shock are displayed in Figures 8-9 for the full 
sample. The impulse response functions are calculated for those models which have passed the

Table 4 -  Parameters Estimates (full sample):
Model a /3 y p-value

13 This does not mean that the equation, in which GDP is dependent variable, is stationary (indeed it contains a 
unit root, according to the standard tests).
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likelihood ratio test (whose results are displayed in Table 4). The results about the effects of a 
monetary policy shock are quite robust across different assumptions about the central banks 
operating procedures and are approximately repeated in the sub-sample 1965:1-1979:9. 
However, in the sub-sample 1979:10-1996:12 we obtain slightly different results. Output still rises 
after a monetary policy shock, but much more moderately. Price levels responds positively, 
expecially at the beginning, but very slowly. The impulse response functions for the two sub
samples are displayed in the Figures 10-11.
Which indicator most accurately captures the monetary policy shock?
Generally speaking, neither VAR innovation to the federal funds rate, nor VAR innovation to 
nonborrowed reserves turns out to be good indicator of monetary policy shocks. This is in the 
spirit of some results of Strongin (1995), Thornton (2001) and Sarno et al. (2002). Bernanke and 
Blinder (1992) employ innovations to interest rate as indicators of monetary policy shocks and 
obtain results consistent with the stylized facts (output and money rise in response to a positive 
monetary policy shock). Table 4, however, shows that the different specifications of FFR model 
always fail the likelihood ratio test (with one exception). Indeed there are some problems in 
measuring monetary policy with federal funds rate. First, as argued by Strongin (1995), “without 
any demonstrated empirical linkage between Federal Reserve actions and interest rate 
movements, it is unclear how innovations in interest rates can be reasonably be attributed to 
monetary policy.” Second, there could be non-policy omitted variables which explain movements 
in interest rates. Third, Sarno et al. (2002) argue that the practice of identifying monetary policy 
shocks as shocks to federal funds rate should be taken with caution, because of the “information 
equivalence hypothesis” (all interest rates contain the same information about monetary policy 
and the other aggregate shocks that determine the state of the economy).
Christiano and Eichenbaum (1992) suggest that innovation in nonborrowed reserves is the 
correct measure of monetary policy. Analogously to what happens with the federal funds rate, 
Table 4 shows that the different specifications of NBR model are always rejected by the data. 
This result corroborates the argument of Strongin (1995) that a significant proportion of the 
movements in nonborrowed reserves is due to the Fed’s accommodation of innovations in the 
demand for reserves, rather than policy-induced supply innovation. Indeed a good indicator of 
the monetary policy shock seems to be the measure suggested by Strongin (1995), which is the 
part of innovation to nonborrowed reserves orthogonal to innovation to total reserves. Table 4 
shows that the NBR/TR model is rejected by the data only in the case of y = 0.14

Does the recursiveness assumption hold?
The recursiveness assumption is about the orthogonality of the policy shock to the 
macroeconomic variables. It implies that policy variables do not influence macroeconomic non- 
-policy variables within the period and that the monetary policy shock is not affecting 
simultaneously the two sets of variables (ruling out latent variables affected by the policy shock 
and affecting non-policy variables). We do not obtain strong results about this issue, even though 
the empirical evidence does not reject the hypothesis of non-recursiveness (see Table 4). The 
assumption of recursiveness, however, does not bring much difference for the only scope of 
measuring the effects of monetary policy shocks.

14 Furthermore, the model NBR/TR is the only model which is never rejected in the sub-samples. Model BR is 
also not rejected in the full sample, but the estimates of y obtained are significantly negative (also in the sub- 
-samples). This fact casts doubt on the reliability of this model. These results can be seen in detail in Moneta 
(2004).
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Figure 8 -  Responses of GDP, PGDP, and FFR to one-standard-deviation monetary shock 
for the sample 1965:1-1996:12 and with the recursiveness assumption
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Figure 9 -  Responses of GDP, PGDP, and FFR to one-standard-deviation monetary shock 
for the sample 1965:1-1996:12 and w ithout the recursiveness assumption
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Figure 10 -  Sample 1965:1-1979: 9. The graphics on the first line refer to models identified 
under the recursiveness assumptions, the graphics on the second line under the non
recursiveness assumption _____________
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Figure 11 -  Sample 1979:10-1996:12. The graphics on the first line refer to models 
identified under the recursiveness assumptions, the graphics on the second line under the 
non-recursiveness assumption

7. Conclusions

This paper proposed a method to identify the exogenous monetary policy disturbances in a VAR 
model. Since the crucial issue to identify a VAR is to differentiate between correlation and 
causation, graphical models permitted to impose overidentifying restrictions on the 
contemporaneous causal structure, in particular on the relationships among macroeconomic 
variables and between macroeconomic variables and policy variables. These restrictions have 
the advantage of being derived from the statistical properties of the data, without using auxiliary 
assumptions. Once we have narrowed the set of possible contemporaneous causal relationships 
among the variables which constitute the VAR, we have imposed restrictions derived from 
institutional and theoretical knowledge. Since the number of possible contemporaneous causal 
relationships is a finite (and relatively narrow) number, it was possible to check the robustness of 
our results under alternative schemes of the Fed’s operating procedure and to appraise the 
alternative measures of monetary policy shocks used in the literature. The empirical results cast 
doubt on the soundness of those researches which assume that VAR innovations to federal 
reserve rate or nonborrowed reserves are good indicators of exogenous monetary policy shocks.
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Appendix: Graphical models terminology

Graphs. A graph is an ordered pair G = (V, E), where Visa  nonempty set of vertices, and F is a 
subset of the set V x V of ordered pairs of vertices, called the edges of G. If one or both of the 
ordered pairs (Vv V2), (V2,VA) belong to E, ^  and V2 are said to be adjacent. If both ordered pairs 
(Vv V2) and belong to E, we say that we have an undirected edges between V̂  and V2,
and write ^  -  V2. We also say that and V2 are neighbors. If all the edges of a graph are 
undirected, we say that it is an undirected graph. If (Vv V2) belongs to E, but (V2,VJ does not 
belong to E, we call the edge directed, and write V̂  -» V2. We also say that V  ̂ is a parent of V2 
and that V2 is a child of Vv If all the edges of a graph are directed, we say that it is a directed 
graph. A path of length n from VQ to Vn is a sequence {\/0,..., Vn] of distinct vertices such that 
(Vi v Vj) EE  for all / = 1,..., n. A directed path is a path such that (VfhVV) E  E, but (VitVM) £  E for 
all7 = 1,..., n. A cycle is a directed path with the modification that the first and the last vertex are 
identical, so that V0 = Vn. A graph is complete if every pair of its vertices are adjacent. A directed 
acyclic graph (DAG) is a directed graph which contains no cycles. Given a directed graph, the set 
of the vertices Vt such that there is a directed path from Vt to Vj are the ancestors of Vj and the set 
of vertices Vj such that there is a directed path from V- to Vt are the descendants of Vy The graph 
Ga = (A, Ea) is called a subgraph of G = {A, E) if /A ç  V and EA C E n (A x A). Besides, if EA = E n 
(A x A), Ga is called the subgraph of G induced by the vertex set A.
D-separation. In a directed graph G a vertex X is a collider on a path a if and only if there are 
two distinct edges on a both containing X and both directed on X. In a directed graph G a vertex 
X is =1 active on a path /3 relative to a set of vertices Z of G if and only if: (i) X is not a collider on 
/3 and X £  Z; or (ii) X is a collider on 13, and X or a descendant of X belongs to Z. A path /3 is active 
relative to Z if and only if every vertex on /3 is active relative to Z. In a directed graph G two 
vertices X and Y are d-separated by Z if and only if there is no active path between X and Y 
relative to Z. X and Y are d-connected by Z if and only if X and Y are not d-separated by Z.
Proposition 1: Let uw be the residuals of k OLS regressions of y1f,...yw on the same
vector JM = (y1(M),-.-, y*(M).-. Ykit-p))' Let uitand ujt (' *  i) be anVtwo dlstinc*
elements of {u^p..., uM}, Ut any subset of {u } \ {ujt, Ujt} and Yt the corresponding subset 
of {y1p..., yw } \ {yit, yjt}, so that ugt is in Ut iff ygt is in Yt, for g = 1,..., k. Then it holds that:

corr(uit, ujt I Ut) = corr(yit, yjt I Yt, JM)

Proof in Moneta (2003).
From Proposition 1 and Faithfulness Condition it follows that if corr(uht, ujt I ujv..., ult) = 0, then 
corr(yht, yit I yjt,..., ylv JM) = 0 (where JM is defined as in Proposition 1 ) and yht and yit are 
d-separated b yy f,...,y/f, JtA in the graph induced by y1fl...,yw, Jt.v Then it follows quite 
intuitively (see for a rigorous proof Proposition 2 in Moneta (2003)) thatyw and yjt are 
d-separated by yjt,..., yjt in the sub-graph induced by yw ...,yM. The search algorithm is displayed 
in Table 5.
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From the estimated covariance matrix among the VAR residuals test all the possible partial 
correlations among the residuals (using the Wald test procedure described in Moneta (2003)).

Form the complete undirected graph C on the vertex sety1t,..., ykt. Let Adjacencies (C, yjt) be the 
set of vertices adjacent to yit in C and let Sepset (yht, yjt) be any set of vertices S so that yht and yjt 
are d-separated by S;

n = 0 
repeat: 

repeat:

select an ordered pair of variables yht and yjt that are adjacent in C such that Adjacencies (C, 
y ht) \ {/it) has cardinality greater than or equal to n, and a subset S of Adjacencies (C, yht) \ {yjt} 
of cardinality n, and if yht and yit are d-separated by S in GYt delete edge yht — yjt from C;
until all ordered pairs of adjacent variables yht and yjt such that Adjacencies(C, yht) \ {yjt} has 
cardinality greater than or equal to n and all subsets S of Adjacencies (C, yht) \ {yjt} of 
cardinality n have been tested for d-separation;
n = n + 1;

until for each ordered pair of adjacent variables yht, yjt, Adjacencies (C, yht) \ {yjt} is of cardinality 
less than n;

Note: Adapted from common steps of PC-FCI-CCD algorithms of Spirtes etal. (2000) and Richardson and Spirtes (1999).

Table 5 -  Search algorithm I
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