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Neste artigo estendemos a ideia base do
algorítmo de saturação de modelos com
variáveis indicadores a um tipo particular
de modelos dinâmicos. Demonstra-se que
o procedimento mantém o nível de
significância real correcto para processos
AR(1) estacionários, independentemente
do número de partições da amostra
usado. Derivamos a potência teórica em
face de um outlier de tipo aditivo e
apresentamos evidência de Monte Carlo
que demonstra uma boa taxa de rejeição
empírica da hipótese nula nesse caso. É
apresentado um conjunto extenso de
simulações de Monte Carlo que
evidenciam que o procedimento tem uma
potência apreciável quando existe quebra
na média condicional do processo nas
últimas rT% observações da amostra.
Este resultado não depende do nível de
autocorrelação das observações, nem da
utilização de um mal especificado modelo
do tipo location-scale, abrindo assim as
portas a uma nova classe de testes
automáticos de quebras de estrutura que
poderão revelar-se melhores que testes
do tipo de Bai-Perron em pequenas
amostras.
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Saturation in Autoregressive Models

In this paper, we extend the impulse satura-
tion algorithm to a class of dynamic models.
We show that the procedure is still correctly
sized for stationary AR(1) processes, inde-
pendently of the number of splits used for
sample partitions. We derive theoretical
power when there is an additive outlier in the
data, and present simulation evidence show-
ing good empirical rejection frequencies
against such an alternative. Extensive Monte
Carlo evidence is presented to document that
the procedure has good power against a level
shift in the last rT% of the sample observa-
tions. This result does not depend on the
level of serial correlation of the data and does
not require the use of a (mis-specified) loca-
tion-scale model, thus opening the door to an
automatic class of break tests that could out-
perform those of the Bai-Perron type.
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A key recent development in testing for parameter non-constancy is doing so by adding a
complete set of indicators to a model (see Hendry, Johansen and Santos, 2005). This new
technique came to be known as impulse or indicator saturation. Using general-to-specific (GETS)
procedures, the authors establish the null distribution of the mean and variance estimators in a
location-scale model, after adding T impulses, when T is the sample size, and retaining the
relevant ones. A two-fold process is investigated whereby half the indicators are added and the
significant ones recorded. Then, the other half is examined, and finally the two are combined in a
union model. Under the null hypothesis that no indicator matters, the average retention rate of
indicators is αT, matching the binomial result exactly, and showing that there is no overfitting3.
Moreover, Hendry at al. (2005) show that other splits (such as T/3, T/4, etc) do not affect the
retention rate of the model under the null. 

Hendry and Santos (2006) extend this procedure to break testing in location-scale models. What
under the null was a model selection problem, under the alternative becomes a test for breaks at
unknown dates, since an indicator is tested for every observation. Theoretical power of the
impulse saturation break test is derived, both for the case of a mean shift and for the case of a
variance shift. Results are shown to be remarkably close to Monte Carlo outcomes. 

Previous results on GETS model selection where there are more candidate indicator variables
than indicators are given in Hendry and Krolzig (2003). Notwithstanding, the theoretical analysis
for the general case treated there is hardly as developed as the analysis in Hendry et al. (2005)
for the case of a complete set of indicators. Clearly, the reason for this is that impulse dummies
are perfectly orthogonal to each others, so we do not have to cope with the problems of
collinearity faced in more general settings (see Hendry and Krolzig (2003), and Hendry and
Castle (2005)). Hendry (2000) advises orthogonalization of the regressors prior to model
selection as a way to reduce model uncertainty.

The objective of this paper is to extend the baseline impulse saturation results to a class of
dynamic models, namely that of stationary autoregressive models. We provide Monte Carlo
evidence that there are no size distortions in impulse saturating stationary autoregressive
processes, and that the procedure has good power properties in this class of models both to
detect additive outliers (AO) and to detect level shifts at unknown dates.

The paper is organized as follows. Section 2 presents Monte Carlo evidence of the null rejection
frequencies (NRFs) of indicators in saturated stationary AR(1) models. A pilot extension to a unit
root process is also documented. Section 3 derives analytical power of the procedure for the
additive outlier case, and compares such results with Monte Carlo evidence. Section 4 provides
simulation results for rejection frequencies of the null when there is a level shift on the last  of the
sample observations. Section 5 concludes. 

1. Introduction

1 Corresponding Author: csantos@porto.ucp.pt . Universidade Católica Portuguesa, Faculdade de Economia e
Gestão, Rua Diogo Botelho 1327, 4169-005 Porto. Phone contact: 00351226196200, ext. 180.
2 This research was conducted while the first author was a doctoral student at the University of Oxford, UK, and
is a part of his doctoral dissertation. Both authors acknowledge the invaluable contributions of Soren Johansen
and Bent Nielsen in several discussions. Several participants at the Royal Economic Society Annual Conference
2006 provided useful comments and suggestions. James Reade provided invaluable research assistance. The
authors are also most grateful for comments by the Editor and an anonymous referee. The usual disclaimer
applies. Financial Support from the Fundação para a Ciência e a Tecnologia, Lisbon, and from the ESRC under
a Professorial Fellowship, RES051270035, are acknowledged by the first and second authors respectively.
3 Hendry, Leamer and Poirier (1990) conclude that the tests have the same properties at each reduction stage
as when applied in the General Unrestricted Model. Hence, there is no need to adjust critical values for testing
in the union model. White (1991) and Mayo (1980) corroborate this. In particular Mayo (1980) argues that test
information is independent from sufficient statistics from which parameter estimates are derived. 



We consider the stationary AR (1) process with zero mean as the Data Generating Process
(DGP):

(1)

We assume that εt ~ IN(0;1) and that |r| <1. We consider adding T impulses in partitions of T/2
and T/3 to (1). Hence, the two General Unrestricted Models (GUMs) would be the DGP
augmented by T/2 indicators, in the first case studied. In the second case, the three GUMs would
match (1) augmented with T/3 indicators. 

That is, for T/2 we consider the intermediate econometric models:

and

A partition of T/3 would naturally imply three intermediate regressions.

We allow r to vary across the Monte Carlo experiments, taking values from 0.1 to 0.9. The
objective of considering this range for the autoregressive parameter is to check if the null
properties of the model depend on the degree of first order serial correlation in the sample. 

The sample sizes considered are T = 100, T = 200 and T = 3005. Individual significance tests on
the impulse indicators are conducted for a range of significance levels α, taking values from the
set {0.1; 0.05; 0.025; 0.01}6.

It should be noticed that the computed t-ratios are constructed using the standard normal
approximation to the distribution of the individual significance test statistics. M = 10000
replications are conducted in each experiment and the empirical rejection frequency is the
average across all experiments of the ratio of indicators retained in the union model to the
sample size. Table 1 reports the results for T = 300 and a split of T/2.
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4 All the Monte Carlo simulations conducted in this paper were written using Ox 3.4 (Doornik, 2001). In
particular, autoregressive series were generated using the armagen function within the ARMA package. All
codes written for this paper are available from the authors on request.
5 In practice we have generated samples of sizes 120, 220 and 320 and we have disregarded the first 20
observations in each case, in order to eliminate dependence on the initial values.
6 Santos (2006) shows the results are not sensitive to changes to in the innovation variance.

Table 1 – Null Rejection Frequencies, T = 300, T/2

0.1

0.05

0.025

0.01

2. Null Rejection Frequencies in the Impulse Saturated Stationary AR(1) Process4

α \ ρ

0.101

0.051

0.026

0.01

0.1

0.109

0.051

0.026

0.01

0.2

0.101

0.051

0.026

0.01

0.3

0.101

0.051

0.026

0.010

0.4

0.101

0.051

0.026

0.01

0.5

0.101

0.051

0.026

0.01

0.6

0.101

0.051

0.026

0.01

0.7

0.101

0.051

0.0257

0.011

0.8

0.101

0.051

0.026

0.011

0.9
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Table 1 shows that for such a sample size, the nominal significance level is close to the empirical
rejection frequency: the two are never apart by more than two tenths of a percentage point. Table
2 refers to the T = 200 case. Again the split considered is T/2. In spite of the reduction in the
sample size, the empirical rejection frequency is still close to the nominal significance. Table 3
reports the results for the case T = 100. Nominal and real significance levels diverge as the
sample size decreases, as was to be expected given the asymptotic approximation used.
Nonetheless, for T = 100, such a divergence is still small: in nearly all cases never greater than
four tenths of a percentage point.

Table 2 – Null Rejection Frequencies, T = 200, T/2

0.1

0.05

0.025

0.01

α \ ρ

0.10168

0.051341

0.026

0.011

0.1

0.10164

0.051351

0.026

0.011

0.2

0.10167

0.051349

0.026

0.011

0.3

0.10171

0.051385

0.026

0.011

0.4

0.10171

0.051438

0.026

0.011

0.5

0.10169

0.051471

0.026031

0.011

0.6

0.10179

0.05147

0.2601

0.011

0.7

0.10195

0.051535

0.0261

0.011

0.8

0.10227

0.051742

0.0262

0.011

0.9

Table 3 – Null Rejection Frequencies, T = 100, T/2

0.1

0.05

0.025

0.01

α \ ρ

0.103564

0.052848

0.027064

0.011362

0.1

0.103651

0.052858

0.027092

0.011374

0.2

0.10369

0.052987

0.027159

0.01378

0.3

0.10373

0.053026

0.027163

0.011419

0.4

0.10375

0.053085

0.027212

0.011439

0.5

0.103926

0.053176

0.027237

0.011491

0.6

0.10404

0.053321

0.027297

0.011553

0.7

0.10445

0.053539

0.027487

0.011606

0.8

0.10532

0.054259

0.02799

0.011871

0.9

Table 4 – Null Rejection Frequencies, T = 300, T/3

0.1

0.05

0.025

0.01

α \ ρ

0.10072

0.050676

0.0255

0.010299

0.1

0.10073

0.050676

0.025487

0.010295

0.2

0.10074

0.050671

0.025474

0.010306

0.3

0.10076

0.050691

0.025465

0.010291

0.4

0.10082

0.050697

0.025454

0.010295

0.5

0.10081

0.050694

0.025447

0.010308

0.6

0.10085

0.050716

0.025439

0.01029

0.7

0.10092

0.050746

0.025439

0.0103

0.8

0.10091

0.050789

0.025537

0.010347

0.9

Table 5 – Null Rejection Frequencies, T = 200, T/3

0.1

0.05

0.025

0.01

α \ ρ

0.10118

0.05096

0.025689

0.010533

0.1

0.10123

0.050947

0.025725

0.01053

0.2

0.010114

0.051013

0.025726

0.010533

0.3

0.10117

0.051028

0.025726

0.010554

0.4

0.010119

0.051061

0.025698

0.010552

0.5

0.10119

0.051083

0.025726

0.010537

0.6

0.10127

0.051092

0.025748

0.010537

0.7

0.10134

0.051124

0.025781

0.010562

0.8

0.10157

0.05117

0.025885

0.01059

0.9

Tables 1, 2 and 3 also confirm that divergence between nominal and real significance levels are
slightly more pronounced as ρ becomes closer to unity. In any case, the fundamental conclusion
from the three tables is that nominal and real significance levels are close, overcoming most of
the effects introduced by dynamics.

We now turn to investigate the impact of a different sample split on the empirical rejection
frequency, under the null. The same defaults apply. Table 4 refers to the T = 300 case and table
(5) to the T = 100. 



As was already the case with the Monte Carlo evidence in the IID location-scale model, the
change in the split from T/2 to T/3 does not alter the main result that nominal and real
significance levels are close for the sample sizes considered.

In conclusion, the Monte Carlo analysis conducted suggests that it is possible to implement
impulse saturation algorithm in a stationary AR(1) model, under the null hypothesis of no
indicators in the DGP. NRFs distortions are, for the sample sizes considered, very small.

2.1. Rejection Frequency under the null: Unit Root Case

We have also run a pilot experiment to check whether there would be any significant NRFs
problems in a random walk model. We considered the DGP:

(2)

We assume that εt ~ IN(0;1). Hence there are no dummies in the DGP, but there is a unit root.
We consider the average across the Monte Carlo replications of the ratio of retained indicators to
the sample size, at each replication as our measure of empirical NRFs. Results are reported on
table 6 and confirm closeness of nominal and empirical NRFs. T/2 is used.
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Table 6 – Null Rejection Frequencies Unit Root Case, T/2

0.1

0.05

0.025

0.01

α \ T

0.10402

0.052895

0.027025

0.011227

T = 300

0.106

0.054478

0.028076

0.011949

T = 200

0.11056

0.058025

0.030874

0.0113675

T = 100

Although there is a slight increase in the discrepancy between real and nominal sizes, at all
significance levels, it is our view that these are not sufficient to preclude the saturation of a unit
root model like (2). Nonetheless, the analysis of the unit root case would require considerable
more evidence, whilst all we are doing here is to suggest that it would be possible to use dummy
saturation in such models as well.

3.1 Monte Carlo evidence on power

In order to evaluate the use of a GETS modelling strategy for the inclusion of indicators in a
stationary AR(1), we shall look at the problem under H1, that is when the indicator’s coefficient of
some impulse is not zero. We shall do this by imposing an additive outlier in the DGP, that is now
given by:

(3)

where we assume that εt ~ IN(0;1) and that |ρ| <1. Hence, at t = t* there is an additive outlier. We
assume that this is an exogenous shock to yt* such that,

(4)

3. The additive outlier case



In our Monte Carlo experiments, we allow  to take values from the set {2; 2.5; 3; 4; 5}.
Furthermore, it is known that the additive outlier has an effect in two periods in the residuals of
the stationary AR(1) model: t* and t* + 1. If the effect of the additive outlier at the time when it
occurs is δ, on the following period it has an effect ρδ. Hence, for the relevant impulse indicators’
coefficients estimators to be unbiased they should have expectations equal to δ and -ρδ. For 
|ρ| <1, this means that the second coefficient is smaller than the first in absolute value: the
individual significance test statistics will have lower non-centralities implying lower power (see
the analysis of theoretical power in the next subsection).

Table 7 reports the empirical rejection frequencies of the null, for the indicator at t*, when the
sample size is T = 100, and an additive outlier occurs at T = 80. A significance level of 0.025 is
used for impulse saturation, and the split is T/2. Table 8 refers to the t* + 1 indicator.
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7 Additional evidence as to the unbiasedness of the indicators’ coefficients in the two periods and as to the
positive effect from impulse saturation, reducing the bias of ρ̂, could also be given and is available upon request.

Table 7 – AO: Empirical Rejection Frequencies for the indicator at t*, T = 100, T/2

δ = 2

δ = 2.5

δ = 3

δ = 4

δ \ ρ

0.4063

0.6013

0.7729

0.9574

0.1

0.4057

0.6017

0.7721

0.9578

0.2

0.4065

0.6014

0.7726

0.958

0.3

0.4066

0.6009

0.7726

0.9577

0.4

0.4069

0.6011

0.7728

0.9571

0.5

0.4055

0.6012

0.7729

0.9564

0.6

0.4056

0.6005

0.7748

0.9559

0.7

0.4041

0.6013

0.7741

0.9562

0.8

0.4031

0.6001

0.771

0.9556

0.9

Table 8 – AO: Empirical Rejection Frequencies for the indicator at t* + 1, T = 100, T/2

δ = 2

δ = 2.5

δ = 3

δ = 4

δ \ ρ

0.033

0.0375

0.0418

0.0507

0.1

0.0432

0.0489

0.0597

0.0848

0.2

0.0574

0.0732

0.0943

0.1419

0.3

0.0782

0.1069

0.1419

0.232

0.4

0.1067

0.1532

0.211

0.3526

0.5

0.1429

0.2128

0.2996

0.4853

0.6

0.1902

0.2879

0.3985

0.6238

0.7

0.2464

0.3691

0.5086

0.754

0.8

0.3079

0.4616

0.6207

0.8589

0.9

The method appears to have good power to detect the moment at which the AO occurs. Power at
that moment does not depend on the autoregressive coefficient, as was expected. Also, we
confirm that the second indicator will be retained less often, with the autoregressive coefficient
playing a role here7.

3.2. Theoretical power derivation for the Additive Outlier case

We shall proceed with the analysis of theoretical power separating conclusions for the indicator at
time t* and at time t* +1. Consider the DGP defined by (3) and (4), where |ρ| <1, εt ~ IN(0;1).
Consider the econometric model:

(5)

Dt is a single impulse indicator such that Dt* = 1. dt is another single impulse indicator such that
dt*+1 = 1. 

Suppose we wish to test the null hypothesis:

H0: ψ = 0



in a model that differs from (5) because it does not contain the lagged dummy (for simplicity). We
make use of the test statistic:

(see Hendry and Santos, 2005). Hence,

Notice that:

Since,

and

we obtain,

which simplifies to:
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Notice also that,

Under the alternative,

where χ2 (1;δ2) is a non-central χ2 distribution with 1 degree of freedom and non-centrality
parameter δ2 (see Johnson, Kotz and Balakrishnan, 1995). 

Bearing in mind that the relationship, between a non-central and a central χ2 with m degrees of
freedom is given by:

(see Hendy, 1995), where,

and

for a significance level of 0.025, we can compute the probability of rejecting the null when indeed
that is false as:

(6)

The noticeable conclusion is that the non-centrality depends only on δ, and not on the sample
size T nor on the autoregressive coefficient ρ. This is line with our findings in table 7. Hence, for δ
∈ {2; 2.5; 3; 4} the values for theoretical power are

(7)

The Monte Carlo evidence reported on the relevant table of the previous subsection suggests
that empirical power is always below theoretical power, but that the difference is never too big:
about 0.1 for 2 ≤ δ ≤ 3, and vanishing rapidly for δ > 3.
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3.3 Dummy at t + 1 when AO is at t

In this case,

(8)

Hence, the noncentrality, and therefore power, will now depend both on δ and on ρ. Suppose ρ = 0.9
and δ ∈ {2; 2.5; 3; 4}. Then, for a similar critical value as above,

(9)

Results should be compared with those in table 9. Again empirical power converges to
theoretical power as δ increases.
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Any reference to the power properties of impulse saturation algorithm in stationary
autoregressions, under the alternative, would have to contemplate both outliers and level shifts.
In a sense, however, the analysis is not all that different, since level shifts are sequences of
additive outliers (see Peña, 2001). Hence, we expect the impulse saturation algorithm to have
power against level shifts in this class of models. 

For the purpose of the Monte Carlo analysis we postulate a DGP where, for T ≤ T*:

(10)

and for T > T*,

(11)

where εt ~ IN(0;1) and |ρ| <1. By assumption, . That is, the break occurs for the
last 20% sample observations. In the first set of Monte Carlo results reported in tables 10-12, we
assume that ρ = 0.5. Keeping ρ and r fixed, we allow for different significance levels and break
magnitudes. Tables 10-12 report the empirical null rejection frequencies for the indicators
covering those last observations. The entire break period is comprised within a single partition.
T/2 is used.

Results reported in tables 10-12 are encouraging: empirical null rejection frequencies for the
indicators in the break period indicate useful power for δ ≥ 2.5, and α ≥ 0.025. The sample size is

Table 9 – Theoretical power at time t + 1

δ = 2

δ = 2.5

δ = 3

δ = 4

δ \ ρ
0.3079

0.4616

0.6207

0.8589

0.9

4. Level shifts in stationary AR(1) processes



not playing a relevant role here. A complete study should also allow r to vary. Nonetheless, this is
not the main effect we are interested in studying here.
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Table 10 – Level Shift – Empirical rejection frequencies, r = 0.2, T = 100 

α = 0.1

α = 0.05

α = 0.025

α = 0.01

0.2973

0.2004

0.1334

0.077

0.6573

0.5429

0.4382

0.3202

α \ δ δ = 1 δ = 2 δ = 2.5 δ = 3 δ = 4

0.7923

0.6991

0.6037

0.4823

0.88175

0.8145

0.7376

0.6315

0.9644

0.9369

0.8995

0.8363

Table 12 – Level Shift – Empirical rejection frequencies, r = 0.2, T = 300 

α = 0.1

α = 0.05

α = 0.025

α = 0.01

0.2757

0.181

0.1171

0.0641

0.6462

0.527

0.418

0.2971

α \ δ δ = 1 δ = 2 δ = 2.5 δ = 3 δ = 4

0.7984

0.7022

0.6027

0.4747

0.89891

0.8835

0.7588

0.6488

0.981

0.9624

0.935

0.8848

Table 13 – Level Shift – Empirical rejection frequencies, r = 0.2, T = 300, ρ = 0.9 

α = 0.1

α = 0.05

α = 0.025

α = 0.01

0.093

0.157

0.23

0.3324

0.364

0.4825

0.585

0.693

α \ δ δ = 1 δ = 2 δ = 2.5 δ = 3 δ = 4

0.512

0.6343

0.725

0.811

0.65

0.7524

0.825

0.888

0.829

0.892

0.931

0.961

Table 11 – Level Shift – Empirical rejection frequencies, r = 0.2, T = 200 

α = 0.1

α = 0.05

α = 0.025

α = 0.01

0.2803

0.185

0.1203

0.0664

0.6471

0.5284

0.4205

0.3001

α \ δ δ = 1 δ = 2 δ = 2.5 δ = 3 δ = 4

0.7955

0.6998

0.5997

0.4733

0.8927

0.8274

0.7506

0.6405

0.9761

0.9543

0.9234

0.8692

Rather we investigate whether the impulse saturation procedure is sensitive to the degree of
serial correlation in the series. That is, instead of ρ = 0.5, as in the previous example, we shall be
considering empirical power when ρ = 0.9. Therefore, we considered the following DGP:

(12)

where εt is a Gaussian white noise process with unit variance, and δ ∈ {1; 2; 2.5; 3; 4}. Table 13
reports results for a sample size of T = 300 and table 14 reports results for T = 100. Other
defaults apply.
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Comparing with the corresponding tables for ρ = 0.5, it is clear that there is no significant
dominating power loss when ρ is increased to 0.9. Indeed, in some cases power is even
increased. This is an important result as it suggests power of this procedure does not depend on
degree of serial correlation of the data.

In this paper we have established that the impulse saturation method can also be applied to
stationary AR(1) models. Monte Carlo evidence has shown that nominal and real size are close
for this type of model. There are some indications that the magnitude of the autoregressive
coefficient and that the sample size might cause some deviations but these are, in any case,
always very slight. A pilot extension to a unit root process suggests the process could be applied
there as well.

On the other hand, impulse saturation tests are shown to have power (in the AR(1) framework)
against additive outliers and level shifts. Theoretical power is studied for the AO case, whilst
results for the level shift case are entirely simulation-based. In any event, the empirical rejection
frequencies for the indicators at the AO date, or covering the shift period, indicate the procedure
has good power against these alternatives.

A most relevant conclusion of this paper is that the impulse saturation test for level shifts in
dynamic models does not depend on the degree of serial correlation of the sample, nor does it
seem to demand that the test is conducted in a (mis-specified) location scale model. Hence there
appears to be some advantages of using this procedure over the Bai and Perron test (1998,
2003). Santos (2006) explores this issue further. 

The analysis developed here has already proven to be useful for the development of new super
exogeneity tests (see Hendry and Santos, 2006a), and follows from the preliminary papers by
Hendry, Johansen and Santos (2005) where the properties of the impulse saturation algorithm
under the null that no indicators matter were studied in detail in a location-scale model, and
Hendry and Santos (2006b) where it the power properties of the procedure in location-scale
models were studied. Santos and Oliveira (2006) and Santos (2006) have developed empirical
applications of these procedures.

Table 14 – Level Shift – Empirical rejection frequencies, r = 0.2, T = 100, ρ = 0.9 

α = 0.1

α = 0.05

α = 0.025

α = 0.01

0.147

0.227

0.309

0.413

0.465

0.574

0.665

0.759

α \ δ δ = 1 δ = 2 δ = 2.5 δ = 3 δ = 4

0.604

0.708

0.784

0.8553

0.717

0.83

0.8623

0.913

0.858

0.909

0.941

0.966

5. Conclusions
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