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resumo I résumé /  abstract

Neste artigo, apresenta-se um modelo 
bicritério para análise de projectos 
baseado em árvores de decisão, e uma 
aplicação deste modelo a um problema de 
planeamento de produção. Começa-se 
por apresentar um modelo que permite a 
utilização do tempo e do custo na análise 
de projectos. Este modelo é simples de 
usar, e pode ser aplicado a um grande 
número de situações reais em que os 
principais objectivos são a minimização 
do tempo e do custo. A construção das 
árvores de decisão correspondentes a 
este modelo pode exigir tempos de 
cálculo elevados, e assim tornar-se 
impraticável. Este problema é abordado 
de duas formas: primeiro, define-se um 
algoritmo para a geração das estratégias, 
e depois introduz-se um parâmetro de 
erro que permite evitar a geração das 
estratégias que estejam muito próximas 
de outras. Finalmente, apresenta-se uma 
aplicação do modelo a um problema de 
planeamento de produção. Define-se o 
problema, utiliza-se o algoritmo para 
gerar as estratégias eficientes, e 
analisam-se os resultados.

Cet article présente un modèle bi-critère 
d'analyse de projets ayant pour base des 
arbres de décision et qui est ensuite appliqué 
à un problème de planification de la 
production. On commence par présenter un 
modèle qui permet d'utiliser le temps et les

coûts dans l'analyse de projets. Ce modèle 
s'emploie facilement et peut être appliqué à 
un grand nombre de situations réelles dont le 
but principal est la minimisation du temps et 
des coûts. La construction des arbres de 
décision qui correspondent à ce modèle peut 
exiger des temps de calcul très longs, ce qui 
peut le rendre impraticable. Le problème est 
abordé en deux étapes: on commence par 
définir un algorithme pour générer les 
stratégies et on introduit ensuite un 
paramètre d'erreur qui va permettre d'éviter la 
génération de stratégies très proches les 
unes des autres. Finalement, on présente 
l'application du modèle à un problème de 
planification de la production. On définit le 
problème, on emploie l'algorithme pour 
générer des stratégies efficientes et on 
analyse les résultats.

In this paper we present a useful bicriteria 
model for project analysis based on decision 
trees, and an application of the model to a 
production planning problem. We start by 
presenting a model that allows the use of 
time and cost in project analysis. This model 
is easy to use, and it can be applied to a 
large number of real-life situations when the 
main objectives are the minimisation of cost 
and the minimisation of time. The 
construction of the decision trees for this 
model may require large computational times, 
and thus become impracticable. We deal with 
this problem in two ways: first, we define an 
algorithm for generating the strategies, and 
then we introduce an error parameter, which 
allows us to avoid generating all the 
strategies that are very close to each other. 
Finally, we apply the model to a production 
planning problem. We define the problem, 
use the algorithm to identify the efficient 
strategies and analyse the results.

1 This research was partially supported by FCT, FEDER, project POCTI/EGE/58828/2004.
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1. Introduction

Decision trees are often used in project analysis and appraisal (see Brealey and Myers, 2000; 
Magee, 1964), usually considering only the financial perspective. In many cases, there are 
certain factors that cannot be incorporated into the financial value of a project and that are very 
important in deciding whether or not it should be undertaken, so it is often useful to include 
multiple criteria in the analysis. The efforts to use multiple criteria in the evaluation of project 
decision trees have been based on multi-attribute utility theory (MAUT). Hertz and Thomas 
(1983) present an overview of some MAUT-based methodologies for the evaluation of 
multicriteria decision trees. These methodologies require either the definition of the criteria 
aggregation rule or the definition of some trade-offs between criteria before rolling back the tree, 
and they only allow the identification of the “best” alternative. Smith and Nau (1995) also use 
utility theory to evaluate project decision trees in incomplete markets.
Time is one important criterion that is often overlooked in the project evaluation literature. 
Godinho and Costa (2002) outline a new approach for the incorporation of time and financial 
value in project decision trees, which is detailed and analysed in depth in Godinho (2003). This 
approach is based on the identification of the non-dominated strategies2. After all the 
non-dominated strategies are identified, the decision-maker may use any multicriteria method to 
choose from them. We will present this approach in Section 2.

This approach may lead to very large trees, whose construction and evaluation may take a very 
long time, or even be impractical. Therefore, it is useful to build particular models that allow the 
automatic definition of the tree using a limited set of parameters. Godinho (2003) proposes one 
such model, which will be presented in Section 3. This model assumes that some different 
processes may be used to undertake a homogeneous task, each process having a constant cost 
and requiring a constant time per utilisation, and that there are switching costs and set-up times 
for changing the process being used. In this model, project advance follows an additive binomial 
process. After the processes are defined, the complete decision tree can be automatically built, 
and the non-dominated strategies can be identified. This model is easy to use, because it only 
requires a limited number of inputs: the parameters of the processes. Also, it can be used as an 
approximation to some continuous-time problems, and applied to a large number of real-life 
situations when the main objectives are the minimisation of cost and the minimisation of time, 
and when the considered task is homogeneous, or can be treated as such. Possible applications 
include the analysis of some construction projects and production planning.
The decision trees generated by this model are usually very large, and building and evaluating 
the trees in order to identify the non-dominated strategies may be impractical, because it takes a 
very long time, or even impossible due to memory limitations of the computer systems. In order 
to handle this problem, an algorithm for the identification of the non-dominated strategies was 
proposed in Godinho (2003). We will outline this algorithm in section 4. The algorithm does not 
require the construction of the complete decision tree, since it is able to disregard non-interesting 
branches as soon as they come up, and to avoid the repetition of calculations for similar 
branches of the tree. The algorithm also provides a more compact representation of the tree, 
since identical branches located in different points of the tree are represented only once.
Computational tests were performed by Godinho (2003) to assess the performance of the 
algorithm and some results are presented in Section 4.2. These tests have shown that the 
algorithm performs well when the number of non-dominated strategies is small, but it does not 
perform so well when that number is large. In order to overcome the problem of model usage 
with a large number of non-dominated strategies, we introduce a new approach: an error

2 We consider a strategy to be the complete set of decisions that will be made until the end of the project. A 
strategy is non-dominated if none of the other strategies is better or equal in all the criteria, and strictly better in 
at least one criterion.
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parameter that allows us to avoid generating all the non-dominated strategies that are very close 
to each other. Using this approximation, we are able to reduce the number of strategies that are 
generated. This improves the performance of the algorithm, and we are able to apply the model 
to some cases that we would otherwise be unable to handle.
Finally, we describe an application of the model. We consider a production planning problem, 
and we calculate the model parameters for that problem. Then we use the algorithm to calculate 
the non-dominated strategies and we analyse the results.
This paper is structured as follows. Section 2 presents a general approach for the use of time and 
value (or cost) in decision trees. Section 3 presents the particular model that we use in our application. 
Section 4 outlines and discusses the algorithm for the identification of non-dominated strategies. 
Section 5 describes an application of the model. Finally, we present our conclusions in Section 6.

2. An approach for the use of bicriteria decision trees in project analysis
This section presents the general approach for the use of time and financial value in project 
decision trees that was proposed by Godinho and Costa (2002). We assume that we are 
maximising the financial value, as measured by the Net Present Value (NPV), and minimising the 
time. This approach focuses on the identification of the non-dominated strategies, allowing the 
decision-maker to choose one of these alternatives using a multicriteria method.
The evaluation of the decision tree is a two-step process. In the first step, time increments and 
cash flows (or other value increments) are forwarded to the leaves, in order to calculate the 
criteria values for each leaf. In the second step, time- and value-adjusted probabilities are 
calculated, and the tree is rolled back. Since we are using multiple criteria, the rolling back 
process is different from the one used in standard decision tree analysis.
The aggregation of criteria values across event nodes is based on the adjustment of 
probabilities. Since financial value and time may follow different aggregation rules, time-adjusted 
probabilities may differ from value-adjusted probabilities for the same branch, and they are 
usually different from the initial probabilities of that branch.
In an event node, the financial value is calculated as the weighted sum of the values 
corresponding to its branches, using the value-adjusted probabilities as weights. The adjustment 
of probabilities follows a discrete-time option valuation model: probabilities are adjusted to 
risk-neutral value-adjusted probabilities according to the pricing process of the securities on 
which the project value is contingent. In this paper, we use the binomial model, but other models 
can be used with this approach. One alternative model is the trinomial model (used, for example, 
by Smith and McCardle, 1998).
A new problem arises with the use of an option valuation model: some event nodes may not 
correspond to events that influence the value of the securities on which the option value is 
contingent -  that is, private risks may exist. For example, uncertainty about whether a factory will 
take 18 or 20 months to be built does not influence the value of a publicly traded company with a 
similar factory. Such events are unique to the project, and should thus be treated as 
unsystematic risk. Since this risk is not relevant to the investors, the probabilities associated with 
such nodes are not adjusted for the calculation of financial value -  only the event nodes that 
correspond to the passage of time require the adjustment of probabilities.
Time may be aggregated across event nodes in several different ways, depending on the 
situation that the decision-maker is facing. Average time to completion (or average delay relative 
to a specified completion time) and maximum time may, under some circumstances, be of 
interest. However, we believe that an uncertain time is, in most situations, considered equivalent 
to a fixed time between the average and the maximum of the uncertain times. So, a very general 
approach to aggregate time across event nodes is proposed, for which average time and 
maximum time are particular cases. This approach is similar to the risk-neutral valuation 
technique, and it relies on the use of certainty equivalents.
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I To start with, the decision-maker is asked for a certainty equivalent of a specified uncertain time. 
Then we calculate the implicit probabilities that equate the expected value of the uncertain time 

I to that certainty equivalent. Those probabilities -  time-adjusted probabilities -  are used to 
perform the aggregation of time whenever the same pair of initial probabilities comes up (if the 
times are in the same order).
Assume that, in an event node, m is the shortest time, M is the longest time, and p* and p+ are 
their corresponding probabilities, as shown in Figure 1. Also assume that, faced with the 
uncertain time represented by that node, the decision-maker provides a certainty equivalent time 
CE. Then the certainty equivalent CE corresponds to an adjustment of probabilities to 
pT-= (M-CE)/(M-m) and pT+= (CE-m)/(M-m). These time-adjusted probabilities (pT‘, pT+) can be 
used every time the initial probabilities (p-, p+) come up, with the longest time corresponding to 
p+. Notice that the choice of the longer time as the certainty equivalent leads to the maximum 
time to completion, and the choice of the average time as the certainty equivalent leads to the 
average time to completion.

Figure 1 -  A generic binomial node with uncertain time

T = m

T = M

We will now consider the evaluation of decision nodes. We want the tree evaluation process to 
provide all the non-dominated strategies, and we use three different rules to accomplish this.
The first rule is that two consecutive decision nodes are merged. This means that, when there 
are consecutive decision nodes, it is the choice among all the alternatives represented by those 
nodes that is considered, and not consecutive choices among some of those alternatives.
The second rule is that if there is an event node before a decision node, then the decision is 
postponed by considering all possible combinations of decisions. Figure 2 shows the use of this 
rule. Note that if the lower branch were to have a decision node with two alternatives, the total 
number of alternatives in the resulting tree would be four. This rule may cause a large growth in 
the number of alternatives. So, it is important to use the next rule (the third) in order to prevent 
the number of alternatives from becoming too large.

Figure 2 -  Example of the use of rule 2. A, B and C are different alternatives

The third rule is to eliminate all dominated alternatives in a decision node. This means that one 
alternative in a decision node can be eliminated if there is another alternative with a larger or 
equal financial value and a shorter or equal time, given that one of the inequalities is strict.
There is no need to explicitly modify the tree in order to apply these rules: they can be applied by 
considering that sets of alternatives are associated with the tree nodes. With these rules, the 
decisions involving non-dominated alternatives can be postponed until all event nodes are evaluated. 
Then, a multicriteria method may be used to choose from the non-dominated strategies.
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This section has described the general approach for the use of time and financial value in project 
decision trees that was proposed by Godinho and Costa (2002). It is an approach that identifies 
all the non-dominated strategies, allowing the decision maker to use a multicriteria method to 
choose from them. In the next section we will define a particular model based in this general 
approach.

3. A model for the use of time and cost in project analysis
This section presents a model based on the above approach. This model assumes that time and 
cost are the relevant criteria, and that the decision-maker wants to minimise both criteria.
Consider a project that consists of undertaking a homogeneous task, that is, a task that can be 
split into several subtasks, all of them with identical characteristics. Define x° as the amount of 
work required to complete the task. It is hereafter assumed, without loss of generality, that x° = 1, 
and x is used to represent a fraction of the project (0 < x < 1).
Assume that n different processes, P|, i = 1,..., n, may be used to undertake the project. Each 
process Pj is characterised by:
-  a given time, tj> 0, representing the duration of each utilisation of the process;
-  a given cost per utilisation of the process, q > 0;
-  a set of switching costs, representing the cost of switching to each of the other processes,

Cj j > 0, j = 1,..., n, j ^ i (Cj j = 0);
-  a set of set-up times, representing the set-up time necessary to switch to each of the other

processes, tj j> 0, j = 1.....n, j *  i (^  = 0);
-  an initial set-up time, t0 j > 0, and an initial cost, c0 j > 0, representing the time and cost 

associated with the use of the process in the beginning of the project;
-  an additive binomial process to describe project advance under each utilisation of process Pj, 

which can be represented by the binomial event node shown in figure 3.

Figure 3 -  Binomial event node representing project advance under each utilisation of 
process Pj

x1 j and x2 j (x1 j > 0, x2 i > 0) are the possible project advance amounts under process Pj, and P1 j 
arid P2 j are the corresponding probabilities, with P1 j+P2 —1, P1 j>0 and P2 j>0. Note that this 
representation assumes the independence of project advances: the probability distribution of 
project advance under a given process is constant, and therefore independent of previous project 
advances. It is assumed, without loss of generality, that x1 j < x2 j. Since it is assumed that x° = 1, 
then x1 j and x2, can be interpreted as fractions of the project. The arc corresponding to an 
advance x1 j is hereafter identified as arc 1 of the node, and the arc corresponding to an advance 
x2 j is identified as arc 2. The branches starting immediately after these arcs are identified as 
branches 1 and 2 of the node, respectively.
This model assumes that the use of the processes is indivisible. This means that the process 
being used can only be changed at the end of a complete utilisation. If, at the end of the task, the 
fraction of the project that has not been undertaken is smaller than the project advance in the 
next use of the process, the time and cost for a complete utilisation of the process will be 
required anyway.
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Following the previously outlined approach, the aggregation of criteria values across event nodes 
is based on the adjustment of probabilities. For the cost, the binomial model for option valuation 
is used. Since, in the model being presented, the cost per process utilisation is constant for each 
process, the cost risk is only related to the project duration risk and to the process choices, and it 
is thus independent of the price of any traded asset. Therefore, the cost risk is unsystematic, 
meaning that no risk premium shall be required, and the value-adjusted probabilities are equal to 
the initial probabilities.
For the calculation of time-adjusted probabilities, the decision-maker is asked to provide two 
certainty equivalents for each different pair of initial probabilities occurring in the definition of the 
processes. One certainty equivalent corresponds to an arbitrary time T’ > 0 in branch 1 and a 
time 0 in branch 2, and the other corresponds to a time 0 in branch 1 and a time T’ > 0 in 
branch 2 (see Figure 4). From these certainty equivalents, two pairs of time-adjusted 
probabilities are calculated, (PT,11fi, PT,12,i) and (pT,2i,r pT,22,i)> respectively. The first pair is used 
when time is longer in branch 1 than in branch 2, and’the second pair is used in the opposite 
situation. Notice that the two different pairs of adjusted probabilities are necessary because the 
risk preferences of the decision-maker will usually lead her/him to adjust the same pair of 
probabilities differently, according to the branch that contains the longer time. As an example, if 
the decision-maker is averse to the time risk, she/he will adjust P1 j to a larger value if branch 1 
contains the longer time, and she/he will adjust P1 j to a smaller value if branch 2 contains the 
longer time.

Some underlying assumptions of this model, particularly the assumptions of binomial event 
nodes and indivisible process utilisation may, at a first sight, seem too restrictive for the model to 
be useful. We do not think it is so. In a real-life problem it may sometimes be possible to define 
exactly during how much time a process will be used, and there may be continuous statistical 
distributions for the project advance. Still, models like this one may be used to approximate those 
problems, by defining processes such that the duration of each utilisation is small. A similar 
approximation is done in some continuous-time real option problems, particularly when multiple 
options are involved (see, for example, Trigeorgis, 1993).
An important characteristic of the model is that the decision trees are often very large. These 
trees may thus require very large amounts of memory space, and the corresponding calculations 
may take a very long time. Therefore, the approach based on the construction and evaluation of 
the tree is usually impractical, or even impossible to use. This problem will be considered in 
Section 4, where an algorithm for an efficient identification of the non-dominated strategies will 
be presented.
This model is easy to use, and can be applied to the analysis and planning of projects that 
consist of undertaking homogenous tasks, when time and cost are the relevant criteria. Possible 
applications of the model include the analysis of some construction projects and production 
planning. It is also easy to modify the model to make it more general. For example, by making 
small changes we would be able to drop the assumption of independent project advances, or to 
use functions of time and cost (for example, utilities) instead of the absolute values of the criteria. 
However, such modifications may make the development of efficient algorithms for the 
identification of non-dominated strategies more difficult, or even impossible.

Figure 4 -  Certainty equivalents elicited for the calculation of the time-adjusted probabilities
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4. An algorithm for the generation of the non-dominated strategies

The model described in the previous section usually leads to very large decision trees, whose 
construction and evaluation may take a long time and require large amounts of memory space. 
As an attempt to overcome this problem, an algorithm for an efficient identification of the 
non-dominated strategies was developed and is now described. The algorithm uses some 
mathematical properties of the model, which are presented in the appendix.

4.1. Main ideas o f the algorithm
Each branch of the tree corresponds to a fraction of the project: the fraction of the project that 
was not undertaken in the previous arcs of the tree. Different branches of the tree, occurring in 
different places in the tree, may correspond to the same fraction of the project, thus leading to 
identical sets of non-dominated strategies. Moreover, all the branches of the tree that correspond 
to fractions x of the project belonging to certain intervals I lead to the same set of non-dominated 
strategies (see property 2 in the Appendix).
Let S(i,l) be the common set of non-dominated strategies for undertaking fractions xel of the 
project starting with the use of process Pj. The algorithm calculates the sets of non-dominated 
strategies S(i,l) for intervals I of consecutively larger values of x, until the sets of non-dominated 
strategies for x = x° = 1 and for all processes are calculated.
As we explained before, the sets of non-dominated strategies that allow the completion of a 
given fraction x of the project by starting with a given process are the same for a given interval of 
values of x. To exemplify this, consider the existence of two processes, P1 and P2, with x1., = 0.11 
and x21 = 0.16, for Pv and x1 2 = 0.12 and x22 = 0.15, for P2. If a fraction of the project that is 
larger or equal than 0.89 is already executed’ and process P1 is used after that, then, after using 
P1 once, the project will be completed. Since this is true if the fraction of the project not 
previously undertaken is positive and smaller than or equal to 0.11, then S(1 ,]0, 0.11]) is the set 
that only contains the strategy of using P1 once. So, when the fraction of the project that was not 
previously undertaken is x E  ]0, 0.11] and P1 is used next, the only non-dominated strategy is the 
strategy belonging to S(1,]0, 0.11]). Similarly, for P2, S(2,]0, 0.12]) is the set that only contains 
the strategy of using P2 once. For larger values of x, the sets of non-dominated strategies are 
also identical for all the values of x belonging to some intervals, allowing us to avoid repeating 
the calculation of branches that lead to the same non-dominated strategies.
The algorithm begins with the identification of the non-dominated strategies for small project 
fractions. In our previous example, it would start with the calculation of S(1 ,]0, 0.11]) and 
S(2,]0, 0.12]). Then, the sets of non-dominated strategies that were previously calculated are 
taken into account in the identification of the non-dominated strategies for consecutively larger 
project fractions. In the example, the next set S(1, I) would represent the use of process P1 first 
and then the use of a non-dominated strategy in branch 1. Since the non-dominated strategy to 
be used in branch 1 could be from either S(1 ,]0, 0.11]) or S(2,]0, 0.12]), two different strategies 
would be generated. Notice that a strategy generated in such a manner is valid for undertaking a 
project fraction smaller than or equal to 0.16, because the use of another strategy in branch 2 is 
not being considered. So, the next set to be considered would be S(1 ,]0.11, 0.16]), which is the 
set of those two strategies, if none of them is dominated, or a set containing one of those 
strategies, if the other one is dominated. Figure 5 represents these sets. The algorithm then 
proceeds until the complete project (x = x°= 1) is considered.
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Figure 5 -  Initial sets calculated by the algorithm for the example presented in this subsection

So, the identification of non-dominated strategies for larger fractions of the project uses the 
non-dominated strategies generated for smaller fractions, allowing the algorithm to discard 
dominated strategies as soon as they are identified. This way, it is also possible to avoid the 
repetition of calculations for branches with similar characteristics occurring in different places in 
the tree; otherwise such repetition of calculations would happen several times. Property 1 
(presented in the Appendix) is also used by the algorithm, to avoid the calculation of some sets 
of non-dominated strategies, and to allow a more efficient calculation of other sets.
In short, we can say that the algorithm starts with tree branches corresponding to small fractions 
of the project (initially the fractions undertaken in the tree leaves), and then considers 
consecutively larger fractions until all the non-dominated strategies for the complete tree are 
identified. For a complete description of the algorithm, see Godinho (2003)

4.2. The performance o f the algorithm
Some computational tests were conducted in order to assess the performance of the algorithm. 
Those tests aimed to examine the performance of the algorithm in several different situations, 
and to compare the performance of the algorithm with the performance of an alternative method. 
This alternative method, the “basic method”, consists of building and evaluating the tree 
according to the approach defined in section 2. We now present some computational results -  
other results, and other details about the tests, can be found in Godinho (2003).
These tests used sequences of files. The first element of each sequence was generated by 
defining some parameters as constants, and the remaining parameters as samples of given 
uniform distributions. The other elements of each sequence were defined through sequential 
changes in given parameters. Twenty sequences were generated for each set of parameter 
distributions, and average running times were then calculated for each set. Only non-dominated 
strategies with different times and costs were generated (alternative strategies with identical cost 
and time were not generated).
The sets presented in this paper consider two processes, the first one with t1 = 1 and c1 = 2, and 
the second one with t2 = 2 and c2 = 1. These sets were designed to analyse the performance of
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the algorithm and the basic method when the size of the tree increases. In the first set, the 
number of non-dominated strategies was kept very small (equal to 2) and, in the second set, the 
number of non-dominated strategies was allowed to increase quickly with the size of the tree. In 
order to achieve this, we started all sequences of each set with large advance amounts (xb j 
initially belonged to [0.25, 0.26], i = 1, 2, b = 1, 2), and decreased these amounts along each 
sequence. In order to keep the number of non-dominated strategies small, we defined large 
switching costs and set-up times in the first set (Cj j = tu = 10000). In the second set, we used null 
switching costs and set-up times, thus allowing the number of non-dominated strategies to 
increase quickly. The following distributions were used for the probabilities: the basic probabilities 
for both branches belong to [0.49, 0.51], the probability for the branch with the longest time 
belongs to [0.55, 0.6], and the probability for the branch with the shortest time belongs to [0.4,
0.45].
For the first set of sequences (see Chart 1), the algorithm performed much better than the basic 
method. In fact, it was only possible to run the basic method until the tree size reached some 
hundred million nodes (xbj G [0.0716, 0.0744]), because disk and memory space were 
insufficient for larger trees. However, it was still possible to run the algorithm, with very small 
execution times (never much more than 1 second), for all the parameter values that were used 
(the tree size is estimated to be about 1031 event nodes for the smallest advance amounts that 
were considered). This shows that, when the number of non-dominated strategies is small 
(because of large set-up times and switching costs), the algorithm is clearly faster and much 
more efficient in memory usage terms than the basic method.

Chart 1 -  Calculation time (scale on the left) and tree size (scale on the right) for different 
project advance amounts, for the tests on the first set of sequences. Logarithmic scale is 
used in the Y axis

For the second set of sequences (see Chart 2), the results were quite different. In fact, the 
number of non-dominated strategies was very large, and the calculation times were similar for 
both the algorithm and the basic method. Notice that the large number of non-dominated 
strategies soon made their identification impracticable, both for the algorithm and for the basic 
method.
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Chart 2 -  Calculation time (scale on the left), number of non-dominated strategies and 
tree size (scale on the right) for different project advance amounts, for the tests on the 
second set of sequences. Logarithmic scale is used in the Y axis

Project advance amounts xb l, i,b = 1,2

It is also interesting to examine the results we achieved when we used extreme time-adjusted 
probabilities: a 100% probability for the branch with the longest time and a 0% probability for the 
branch with the shortest time (notice that using these probabilities is the same as using 
maximum time to completion to aggregate time). When these time-adjusted probabilities were 
used, there was no noticeable change in the results for the first set of sequences (because the 
number of non-dominated strategies was already very small for this set), but the results for the 
second set were significantly changed. In the second set of sequences (Chart 3), the number of 
non-dominated strategies was lower, and the algorithm performance became much better than 
the basic method performance.

Chart 3 -  Calculation time (scale on the left), number of non-dominated strategies and 
tree size (scale on the right) for different project advance amounts, for the tests on the 
second set of sequences when extreme time adjusted probabilities were used. 
Logarithmic scale is used in the Y axis
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The results of the tests led us to some important conclusions:
-  as would be expected, the performance of both methods worsens as the number of 

non-dominated strategies increases and as the tree size increases;
-  the performance of the algorithm is less sensitive to the increase in tree size, and more 

sensitive to the increase in the number of non-dominated strategies;
-  the performance of the algorithm is not clearly better than the performance of the basic method 

when the number of non-dominated strategies is large;
-  the algorithm performs much better than the basic method, both in terms of running time and in 

terms of memory usage, when the number of non-dominated strategies is small;
-  when the maximum time to completion is used (and, in fact, whenever extreme probabilities of 

0% or 100% are used), the number of non-dominated strategies is small, and the algorithm 
performs very well.

So, although the algorithm does not appear to be able to efficiently generate a large number of 
non-dominated strategies, its performance is very good when the number of non-dominated 
strategies is small. The use of the algorithm to identify some representative strategies, instead of 
all the non-dominated strategies, may thus be an efficient way to employ the model.

4.3. The use o f maximum error parameters
For an effective use of the model, it is important to define a way to improve the performance of 
the algorithm when the number of non-dominated strategies is large. We developed a new 
approach, based on the use of maximum error parameters, which allows the algorithm to identify 
some representative strategies instead of generating all the non-dominated strategies. This way, 
we are able to perform a faster identification of the strategies, allowing us to use the model in 
some situations that we would otherwise be unable to analyse.
To understand the meaning of these parameters, let us define et as the time error parameter and 
ec as the cost error parameter. These parameters mean that, for a given non-dominated strategy 
with time t and cost c that ceases to be generated, it can be guaranteed that there is at least one 
strategy that is generated with a time t’ < t + et and a cost c’ < c + ec. This way, it is possible to 
generate only one “representative” strategy for each neighbourhood of size (et, eç). Thus, a 
smaller number of strategies is generated by the algorithm, and its performance is improved. The 
improvement in the algorithm performance depends on the values of et and ec: the larger these 
values are, the better the algorithm performs, and the furthest may the generated strategies be 
from the true non-dominated strategies.
The practical implementation of these parameters in the algorithm required some adaptations. In 
fact, instead of the global time and cost error parameters considered above, we defined time and 
cost error parameters that are used by the algorithm every time that an elimination of dominated 
strategies occurs. Instead of only eliminating dominated strategies, the algorithm also eliminates 
some non-dominated ones, if another one exists in the neighbourhood defined by the error 
parameters. From these parameters, and from the maximum number of tree levels, it is possible 
to calculate upper bounds for the maximum errors considered before (et and ec).

The practical use of these maximum error parameters proved to be very useful, allowing us to 
run the model for some parameter sets that we would otherwise be unable to handle. The 
application we present in the next section is one such example.

5. An application of the model
This section presents an application of the model, in order to show that it may be useful in 
real-life situations.
Consider the case of a textile company that received an order for 10 000 shirts from a soccer 
team. The company managers want to produce the shirts as quickly as possible, but they also
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want to have as low a production cost as possible. The company has three different sets of 
equipment, let us call them A, B and C, that can be used. The number and skills of the available 
workers, as well as other company commitments, do not allow the simultaneous use of more 
than one of these sets in the production of shirts. The decision about which equipment to use 
may be made on a daily basis.

Equipment A produces an average |m = 3000 shirts in a 5-day week, with a standard deviation of 
tt = 250 shirts. Its use costs €500 per day, and its initial set-up time and cost are 2 days and 
€1000 euros, respectively. Equipment B produces an average |x = 4800 shirts in a 5-day week, 
with a standard deviation of 0-=500 shirts. Its use costs €1000 per day, and its initial set-up time 
and cost are 2 days and €2000, respectively. Equipment C produces an average |jl = 2400 shirts 
in a 5-day week, with a standard deviation of a = 250 shirts. Its use costs €400 per day, and its 
initial set-up time and cost are 1 day and €400, respectively. These characteristics of the 
equipment are summarized in Table 1.

Table 1 -  Characteristics of the equipment
Equipment

A B C
Average production 3000 shirts/week 4800 shirts/week 2400 shirts/week
Standard deviation 
of the production

250 shirts 500 shirts 250 shirts

Cost €500/day € 1000/day €400/day
Initial set-up time 2 days 2 days 1 days
Initial set-up cost €1000 €2000 €400

The set-up times and switching costs for changing the equipment being used are shown in Table
2. If it can be assumed both that the number of shirts produced in a given day is independent of 
the number of shirts produced in the previous day and that the binomial project advance 
distribution provides a good enough approximation for the production distribution, then the model 
presented in Section 3 may be used.

Table 2 -  Set-up times and switching costs for switching from one set of equipment to another
From/To Equipment

A B C
A 2 days/€1500 1 day / €500

Equipment B 2 days/€1500 1 day/€1000
C 1 day/€800 1 day/€1700

We define three different processes, P.,, P2 and P3. P1 consists of using equipment A for one 
day, P2 consists of using equipment B for one day and P3 consists of using equipment C for one 
day. For each of these processes, tj is 1 day, Cj is the cost of using the equipment for one day 
and t0 j and c0 j are the initial cost and initial set-up time for the equipment, so t1 = t2 = t3 = 1 day, 
c1 = €500 eurôs, c2 = €1000, c3 = €400, t01 = t02 = 2 days, t03= 1 day, c01 = €1000, cQ2 = €2000 
and cQ 3 = €400. The set-up times and switching costs are t1 2 = t21 = 2 days, t1 3 = t2 3 = t31 = t3 2 
= 1 day, c1 2 = c21 = €1500, c1 3 = €500, c23= €1000, c3 1 = €800 and c32 = €1700. ’
We now define additive binomial processes whose project advance amounts are consistent with 
the average and standard deviation of the shirt production. For each process, the average and 
standard deviation of shirt production are fitted to the average and standard deviation of a 
binomial distribution by using the following equations:



The Use of Cost and Time in Project Decision Trees:
A model and an application

Pedro Cortesão Godinho;
João Paulo Costa

-5  =  P 1,iX1,i+ P 2,iX2,i 

- P = ( X2 , i - X l , i ) V P ^
V5

Since P2 j = 1-P-i j, there are two equations and three unknowns. So it is possible to let one of the 
unknowns assume a given value, to solve the system and then to assess the validity of the 
values of the parameters (to assess whether the probabilities belong to ]0,1[ and whether the 
project advance amounts are positive).
We define initial probabilities of 50% for the three processes. Solving the equation systems for all 
processes, we get x11 = 488.2 shirts and x21 = 711.8 shirts for process P1, xi 2 = 736.4 shirts and 
x2 2 = 1183.6 shirts for process P2 and x1 3 = 368.2 shirts and x2 3 = 591.8 shirts for process P3. In 
order to keep x° = 1, the project advance amounts are normalised by dividing them by the total 
number of shirts to be produced (10000).
Since, for both processes, 50%/50% probabilities are used, the managers are only asked to 
provide one certainty equivalent. Assuming that a 50% probability of 0 days and a 50% 
probability of 10 days is considered equivalent to a certain time of 6 days, the time-adjusted 
probability for the longest time is 60%, and the time-adjusted probability for the shortest time is 
40% This means that P1-1., 1 = PT22 1 = PJ' \  2= PT)222 = 0.6 and PT’121 = P1-2-, -, = PT,12 2 = 
pT’21 2= °-4-
Now the model parameters are completely defined, and it seems that the model can be used to 
assess the efficient time/cost combinations. However, the trees that correspond to this 
application are very large, and the number of non-dominated strategies is also very large. This 
made it impossible to use either the algorithm or the basic method to generate all the 
non-dominated strategies. Instead, we ran the algorithm using the maximum error parameters, 
as described in subsection 4.3. The parameter values that we used considered a maximum time 
error of 0.011 days and a maximum cost error of €1 in each tree level. Since there are at most 28 
levels in one such strategy tree, this leads to maximum global errors of 0.31 days and €28. As a 
percentage of the absolute criteria values, maximum time error is about 1.7% and maximum cost 
error is about 0.3%.
The model was run, allowing us to obtain 645 time/cost combinations, which are represented in 
Figure 6.

Figure 6 -  Time/cost combinations for the representative strategies generated by the 
algorithm for the shirt production example
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Two separated lines are clearly defined in the plot shown in Figure 6. The shortest line is on the 
bottom right of the plot and includes the strategies with the smallest costs. On the bottom right of 
this line is the strategy that consists of using only process P3 (strategy C), which is the strategy 
that allows us to complete the project with the smallest cost. As we go left along this line, we get 
strategies with increasing costs and decreasing times. All the strategies in this line start with the 
use of process P3 and, apart from strategy C, they all change to processes P1 and P2 in different 
situations. As we move left along the line, the changes from process P3 to another process occur 
earlier in the tree. In strategy J, which is near strategy C, the first possible change occurs when 
about 33% of the project is complete, while in strategy I, at the other end of the line, the first 
possible change occurs when about 7% of the project is completed.
It is clear that the strategies near the left side of this shortest line (near I) do not seem attractive, 
since for a small additional cost it is possible to have a significant decrease in time by choosing 
strategy B.
The longest line is in the top left side of the plot and includes the strategies with the shortest 
times. This line does not look straight and, in fact, we may say that its form seems quite “odd”. 
Notice that its form is clearly due to the non-linear effect of switching costs and set-up times in 
the model.
The strategy that consists of using only process P2 (strategy A, on the top left of the line) is found 
at one extreme end of this line, and this is the strategy that allows us to complete the project in 
the shortest time. At the other extreme end of this line, we find the strategy that consists of using 
only process P1 (strategy B, on the bottom right of the line). Near strategy A, we have strategies 
that start by using process P2, then switch to P3 in some situations, and sometimes switch again 
from P3 to P2 or Pr  For example, strategy D consists of starting with process P2 and switching to 
P3 in a particular situation. Near the other end of this line, the time/cost combinations correspond 
to strategies that start by using process P1 and then change to process P2. For example, strategy 
H starts by using P1 and then changes to P2 in some situations in which the project is advancing 
slowly.
Near the middle of this longest line, we have strategies that start by using P3 and then switch to 
P1 or P2. It may seem odd that some strategies that start by using P3 appear in the middle of this 
line, since the strategy that consists of only using P3, and other strategies that start with P3, are 
in the shortest line, and have quite different times and costs from the strategies in the middle of 
this longest line. There is a reason for this, though. If we want to use P1 or P2, depending on 
whether the project is advancing rapidly or slowly, it may pay to start by using P3 and switch to 
one of the other processes after it is possible to know whether the project is advancing quickly or 
not. This is because P3 has small switching costs and set-up times. Also, we may want to start 
by using P3 and then switch to P2 in order to speed up the project: combining the two processes 
gives us the intermediate times and costs. Both these situations occur in the middle of this 
longest line: P3 is used at the beginning and then a change to another process occurs (eventually, 
when it is possible to know how quickly the project is advancing). On the other hand, in the 
shortest, bottom right line, we have strategies with low costs and, to achieve that, we use P3 
during most of the project. The reason for using P3 is thus different for the two areas of the plot.
Some examples of strategies in the middle of the longest line that start by using P3 are E, F and 
G. Strategy E starts with P3 and then switches to P2. Strategies F and G both start by using P3 
and then switch to P2 (particularly when the project is advancing slowly) or to P1 (particularly 
when the project is advancing quickly); in strategy F, some additional changes from P1 to P2 
occur when the project advances slowly after switching to Pr
After the strategies are generated, the decision-maker can use a multicriteria method to choose 
the preferred time/cost combination, and embark on the corresponding strategy.
Let us assume, as an example, that strategy G is chosen. This strategy has a cost of €11256 
and a time of 17.95 days. The first process to be used in the strategy is process P3. If the project 
advances quickly on the first two days, or slowly on the first day and quickly on the second, then
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a change to process P1 occurs on the third day. If the project advances slowly for the first two 
days, then a change to process P2 occurs on the third day. If the project advances quickly on the 
first day and slowly on the second, then a change to P2 also occurs, but later. This change 
occurs on the fourth day if the project advances slowly on the third day, it occurs on the fifth day 
if the project advances quickly on the third day and slowly on the fourth, and it occurs on the sixth 
day if the project advances quickly on both the third and the fourth day.

6. Conclusions
In this paper we have presented a useful bicriteria model for project analysis that is based on 
decision trees, and described an application of the model to a production planning problem.
Following a general approach that uses bicriteria decision trees to represent investment projects, 
a model for the use of time and cost in project analysis was developed. This model assumes that 
some different processes may be used to undertake a homogeneous task. After the processes 
are defined, the complete decision tree can be automatically built, and the non-dominated 
strategies can be identified.
This model usually leads to very large decision trees, whose construction and evaluation may 
take a long time and require very large amounts of memory space. Therefore, the approach 
based on the construction and evaluation of the tree is usually impractical, or even impossible. In 
an attempt to overcome this problem, we have proposed an algorithm for the identification of the 
non-dominated strategies. The algorithm does not require the construction of the complete 
decision tree, since it is able to disregard non-interesting branches as soon as they come up, and 
to avoid the repetition of calculations for similar branches of the tree. The algorithm also provides 
a more compact representation of the tree, since identical branches located in different points of 
the tree are represented only once.
The computational tests have shown that the algorithm performs well when the number of 
non-dominated strategies is small, but it does not perform so well when that number is large. In 
order to overcome the problem of model usage with a large number of non-dominated strategies, 
we introduced an error parameter that allows us to avoid generating all the non-dominated 
strategies that are very close to each other. Using this approximation, we are able to reduce the 
number of strategies that are generated. This way the performance of the algorithm is improved, 
and we are able to apply the model to some cases that we would otherwise be unable to handle.
Finally, we applied the model to a production planning problem. We defined the problem, 
calculated the model parameters, and generated the strategies. We then plotted and analysed 
the different time/cost combinations that we obtained, and examined which types of strategies 
led to different combinations of criteria values. This application allowed us to conclude that the 
model can be easily applied to some problems, providing useful insights about the types of 
strategy that should be used in order to achieve different combinations of criteria values.
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Appendix -  some mathematical properties of the model

This appendix presents two mathematical properties of the model that were used in the 
development of the algorithm. For the proof of these properties, see Godinho (2003).
Property 1 : Let S(i,x), i = 1,..., n, be the set of all strategies that begin with the use of process Ps, 
can be used to undertake a fraction x of the project, and are not dominated by any other strategy 
belonging to this same set. Then:
a) if x’ > x, s E  S(i, x), and s can be used to undertake a fraction x’ of the project, then s G S(i, x’);
b) if x’ > x and V s G S(i, x), s can be used to undertake a fraction x’ of the project, then S(i, x’)
= S(i, x).
Property 2: Let S(i, x), i = 1,..., n, be the set of all strategies that begin with the use of process 
Pj, can be used to undertake a fraction x of the project, and are not dominated by any other 
strategy belonging to this same set. Consider a process P, and a fraction x of the project such 
that x G ]x1 j, 1 [. Let x’ be a fraction of the project such that x’ > x, and let Ej, j = 1,..., n, be the 
set of all values of x that are smaller than x’-x1 j and that cause a modification in S(j, x), that is:

Ej = {eG JO, x’ -  x1 j[: V 8 > 0, S(/, e) * S(j, e + 8)}

Define the set A in the following way:

n
U  {« > 0: a = e + x b ,-, e G Ey, b G {1, 2}}, if x  > x2 j 

A = ' n
. {x2() u U { a > 0 :a  = e + x 1}, e G Ê }, if x < x2 j

If x G A and there are no elements of A with values between x and x’, then S(i, x) = S(i, x’). That 
is,

A n [x, x’[ = 0  => S(i, x) = S(i, x’).


