
89

territorium

Imprensa da Universidade de Coimbra
Associação Portuguesa de Riscos, Prevenção e Segurança

2022

RISCO
S A.P.R.P.S.

territorium
 • 29

(I )

• 29(I)

Agir hoje pArA 
proteger o AmAnhã

revistA internAcionAl de riscos | internAtionAl journAl of risks

METHODOLOGY FOR MAPPING THE PROBABILITY OF FIRE OCCURRENCE IN THE BRAZILIAN CERRADO BIOME 
BASED ON THE DANGER OF FIRE PROPAGATION VARIABLES* 

METODOLOGIA PARA MAPEAMENTO DA PROBABILIDADE DE OCORRÊNCIA DE FOGO NO BIOMA DO CERRADO BRASILEIRO 
BASEADA EM VARIÁVEIS RELACIONADAS AO PERIGO DE PROPAGAÇÃO DO FOGO

Marcos César Ferreira

University of Campinas
Department of Geography, Institute of Geosciences (Brazil)

0000-0003-4187-8437     macferre@unicamp.br

Cassiano Gustavo Messias

INPE - National Institute for Spatial Research 
DIOTG - Earth Observation and Geoinformatic Division (Brazil)

0000-0002-1497-1022     cassiano.messias@inpe.br

ABSTRACT 

The area covered by the Brazilian cerrado biome has been greatly reduced in recent years due to the expansion of 
agricultural land and the increased number of fire outbreaks. The objective of this paper is to propose a methodology 
based on geospatial analysis and logistic regression analysis (LRA) for mapping the probability of fire occurrence in 
Brazilian cerrado conservation units. This model was applied in the Serra da Canastra National Park (SCNP) in the 
Southeast of Brazil. The methodology uses the maps of the following environmental variables, which are related to the 
danger of fire propagation: wind effect (WIN), terrain convexity (CVX), slope (SLO), drainage density (DRD), altitude 
(ELV), vegetation index (NDVI), and road density (ROD). The results of the LRA showed that the variables SLO, ELV, NDVI, 
ROD (p<0.0001), DRD (p=0.0005) and WIN (p=0.0007) contributed significantly to the occurrence of fire outbreaks. The 
model correctly classified 94.26% of cases. We conclude that this methodology can be used to inform the planning of 
firefighting actions in the Brazilian cerrado biome.

Keywords: Fire outbreaks, geospatial analysis, logistic regression, Brazilian cerrado biome, Brazil.

RESUMO

As áreas cobertas pelo bioma do cerrado do Brasil têm sido extensamente reduzidas nos últimos anos devido à expansão 
da agricultura e ao aumento da ocorrência de eventos de fogo. O objetivo deste artigo é apresentar uma metodologia 
baseada em análise geoespacial e análise de regressão logística (LRA) para mapear a probabilidade de ocorrência de fogo 
em unidades de conservação do cerrado do Brasil. Este modelo foi aplicado no Parque Nacional da Serra da Canastra, 
localizado no sudeste do Brasil. A metodologia utiliza os mapas das seguintes variáveis ambientais relacionadas ao 
perigo de propagação do fogo: efeito do vento (WIND), convexidade do terreno (CVX), declividade (SLO), densidade de 
drenagem (DDR), altitude (ELV), índice de vegetação (NDVI) e densidade de estradas (ROD). Os resultados mostraram 
que as variáveis SLO, ELV, NDVI, ROD (p<0,0001); DRD (p=0,0005) e WIN (p=0,0007) contribuíram significativamente para 
a ocorrência de eventos de fogo. O percentual de casos corretamente classificados foi de 94,26%. Concluímos que esta 
metodologia pode ser utilizada em ações de planejamento do combate ao fogo no bioma do cerrado.

Palavras-chave: Eventos de fogo, análise geoespacial, regressão logística, bioma do cerrado brasileiro, Brasil.
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Introduction

Fire is a major cause of forest destruction and biodiversity 

loss in Brazilian biomes, especially in the Brazilian 

cerrado biome. The area covered by Brazilian cerrado 

vegetation has been greatly reduced in recent years due 

to the expansion of agricultural land and the increased 

number of fire outbreaks. Given the current vulnerability 

of Brazilian forests, the development of geospatial 

models to map the probability of fire occurrence is an 

important scientific goal. Tropical savannas experience a 

high frequency of fires because of the high production and 

accumulation of fuel due to the abundance of herbaceous 

vegetation (Rodrigues et al., 2021).

Fires in the Brazilian cerrado biome have been occurring 

for 32,000 years, and they propagate on the surface 

vegetation of the herbaceous stratum (Miranda et al., 

2004). Practically all plants of the Brazilian cerrado have 

evolved to tolerate or depend on fire for their existence 

(Coutinho, 1990); therefore, fires are integrated into the 

ecosystems of this biome (Conti and Furlan, 2011).

Natural fires occur during the wet season and are mainly 

caused by lightning strikes. These fire types benefit some 

phytophysiognomies of the Brazilian cerrado, for example, 

by promoting the regrowth of several herbaceous species 

and acting as flowering stimuli (Conti and Furlan, 2011). 

Nevertheless, recurrent fires can be harmful because 

they may prevent woody species from having time to 

regenerate, affect resprouting vigour and result in 

changes in soil properties (Rodrigues et al., 2021).

Over the last 50 years, forest fires have been 

concentrated at the end of the dry season and have been 

occurring every two or three years, which has seriously 

damaged fire-sensitive vegetation (Schmidt and Eloy, 

2020). Fires that occur at the end of the dry season are 

more severe due to the larger amount of fuel available 

on the ground (especially dead herbaceous vegetation) 

and to the absence of rainfall (Gomes et al., 2018).

The irrational occupation of space over decades and the 

increasing expansion of the agricultural frontier have 

worsened fires and increased their destructive power 

(Ramos et al., 2015). Agribusiness expansion is one of 

the main causes of suppressing almost half of the original 

vegetation in the Brazilian cerrado, and fires are used 

as tools to convert natural vegetation to monocultures 

(Schmidt and Eloy, 2020) and as an inexpensive and quick 

management strategy (Conti and Furlan, 2011).

Studies have shown that several environmental factors 

are related to the increased danger of fire propagation 

in vegetation. The slope of the terrain contributes 

significantly to the spread of fire, with fires spreading 

more rapidly in areas located on steeper slopes (Ajin 

et al., 2016; Soares Neto et al., 2016). The wind acts 

in a more complex way because in addition to fuelling 

combustion, it also contributes to directing the spread of 

fire along slopes (Torres, 2006). The proximity of roads 

facilitates access to firefighting and can also act as a 

barrier to the spread of fires (Torres, 2006), although it 

can contribute to arson.

The convex forms of slopes disperse moisture on the surface 

and therefore tend to be drier and more favourable to fires 

(Coura et al., 2009). Phytophysiognomies that present 

lower biomass densities and, therefore, lower vegetation 

index, such as fields, are more predisposed to the spread 

of fire (Messias and Ferreira, 2019a). Catry et al. (2009) 

found that population density, human accessibility, land 

use and altitude were the most important determinants of 

the spatial distribution of fire ignition in Portugal.

Among the main elements of landscapes that drive fire 

propagation are fuel characteristics. In the Brazilian cerrado 

biome, the main fuel load is composed of herbaceous 

vegetation that becomes senescent in the dry season and 

provides much fine and flammable fuel on the ground 

(Franke et al., 2018). Atmospheric conditions throughout 

the year limit or promote the growth of fine fuel, while 

variations in relative humidity, wind speed and temperature 

may influence the ignition, intensity and propagation of fires 

(Ruffault et al., 2017). Furthermore, the characteristics of 

topography, such as aspect, elevation and slope, affect fire 

behaviour, either directly or in association with climatic or 

fuel conditions (Algöwer et al., 2003).

Fire elimination over a long period may cause the accumu-

lation of fine fuel, which increases the intensity and sever-

ity of future fires (Harris et al., 2016). Studies show that 

both frequent and rare fire occurrences may affect con-

servation and biodiversity in the Brazilian cerrado (Durigan 

and Ratter, 2016). Hence, protected areas in Brazil have 

followed an international trend of integrated fire manage-

ment (IFM), which aims to reduce fire occurrence at the 

end of the dry season and consequently to decrease the 

occurrence of large magnitude events (MMA et al, 2017). 

Fire risk mapping is also an essential tool for the preven-

tion, suppression and management of fires, as it allows the 

spatial visualization of areas with higher and lower ignition 

or propagation probabilities (Kovalsyki et al., 2020). 

Logistic regression is one of the most used methods 

for modelling fire occurrence (Catry et al., 2009). The 

statistical method of logistic regression is used to analyse, 

describe and test hypotheses about the relationship 

between a categorical variable (the resulting event) 

and one or more categorical or continuous predictive 

variables (explanatory variables).

The simplest case is when we have a continuous predictive 

variable X and a dependent dichotomous variable Y 

(Peng et al., 2002). The dichotomous or binary variable 
Y estimates the presence (Y = 1) or absence (Y = 0) 
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Study Area

The Brazilian cerrado is a savanna biome that occupies 
approximately two million square kilometres. This 
biome has a great floristic diversity and characteristic 
phytophysiognomies. The species of arboreal plants are 
generally tortuous and spaced and are adapted to extract 
water from deep soil. Savanna phytophysiognomies, 
such as campo sujo, campo limpo and campo rupestre, 
in which herbaceous species predominate, are also 
common (Conti and Furlan, 2011).

The Brazilian cerrado is humid despite its seasonality, 
and the annual precipitation level is above 1,000 mm 
(Conti and Furlan, 2011). However, the rainy and dry 
seasons are very set. Throughout the dry season, some 
main and secondary water courses become narrow or 
disappear temporarily. The biome contains parts of 
large hydrographic basins of South America, such as 
Paraná, Paraguai, Tocantins-Araguaia and São Francisco 
(Latrubesse et al., 2019).

SCNP is an important protected area (conservation 
unit) of the Brazilian cerrado. SCNP is located in the 
southwestern part of the state of Minas Gerais, Brazil, 
with a defined area of 1,977.8 km2 and was created by 
the Decree 70.355/1972. However, an area of only 715.2 
km² was regulated at the time of its creation. A buffer 
zone around the SCNP was also created, with a perimeter 
of 1,493 km and a surface area of 2,695.13 km² (fig. 1) 
(MMA and IBAMA, 2005).

of a phenomenon from a set of predictive explanatory 
variables (Panik, 2009). This method allows predicting 
how the probability of an event (dichotomous) is 
influenced or not by the presence or absence of 
determined variables or by their values. 

The main advantages of the logistic regression method over 
conventional methods of simple and multiple regression are 
the possibility of working with dependent and independent 
variables that do not have a normal distribution and the 
use of a mixture of categorical and continuous variables 
(Catry et al., 2009; Çokluk, 2010). For this reason, logistic 
regression is more efficient when working with spatial 
data that are not normal and have a spatially dependent 
distribution. The logistic regression analysis produces an 
equation that reveals the probabilities (measured in values   
of 0.0 and 1.0) of an event belonging to the yes class (it 
occurs) and the no class (it does not occur).

The objective of this paper is to present a methodology 
based on geospatial analysis and logistic regression 
analysis for mapping the probability of fire occurrence 
in Brazilian cerrado conservation units. Of the 
environmental variables related to the fire propagation, 
the following were selected: wind effect (WIN), terrain 
convexity (CVX), slope (SLO), drainage density (DRD), 
altitude (ELV), vegetation index (NDVI) and road 
density (ROD). Maps of these variables were used for 
the development of the methodology. This model was 
applied in the Serra da Canastra National Park, located 
in the Southeast of Brazil.

Fig. 1 - Location of the Brazilian cerrado biome and the state of Minas Gerais in the Brazilian territory (A); Serra da Canastra National 
Park in relation to the state of Minas Gerais (B); Parque Nacional da Serra da Canastra map (C).

Fig. 1 - Localização do bioma do cerrado e do estado de Minas Gerais no território brasileiro (A); Localização do Parque Nacional da 
Serra da Canastra em relação ao estado de Minas Gerais (B); Mapa do Parque Nacional da Serra da Canastra (C).
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The interior of the SCNP is constituted by reliefs 
of chapadas (high reliefs with flattened tops and 
pronounced scarps) that form the areas referred to as 
Chapadão da Canastra and Chapadão da Babilônia. These 
are the higher zones of the SCNP, which may reach up to 
1,500 m and are mainly composed of quartzite rocks. 
There are lower zones composed of rocks less resistant 
than quartzite, surrounded by the reliefs of chapadas, 
and the altitudes in these areas may range from 600 to 
1,100 m (MMA and IBAMA, 2005).

The importance of the creation of the SCNP is related 
to its ecological relevance. The park preserves a great 
diversity of Brazilian cerrado fauna and flora, protects 
endemic species and endangered species (such as grebe 
duck), presents natural beauties, includes several 
water courses and waterfalls, and preserves springs of 
important Brazilian rivers (such as São Francisco and 
Araguari) (MMA and IBAMA, 2005).

Nevertheless, the preservation of the SCNP is constantly 
threatened by conflicting activities, such as frequent 
fires, deforestation, erosion development, mining and 
agricultural and cattle ranching activities in non-regulated 
areas (MMA and IBAMA, 2005; Messias and Ferreira, 2019b). 

Material and Methods

The model for mapping the probability of fire occurrence 
is based on the following environmental variables, which 
are related to the danger of fire propagation: wind effect 
(WIN), terrain convexity (CVX), slope (SLO), drainage 
density (DRD), altitude (ELV), vegetation index (NDVI) 
and road density (ROD). 

We do not use climatological variables in this research 
because there are no climatological stations within the 
park area. In addition, the available stations are located 
in municipalities which are quite distant from the park.

Mapping of the fire occurrence areas

The mapping of the burnt areas in the study area was 
carried out based on the visual interpretation of orbital 
images in three types of colour compositions: false-
colour compositions 7R/4G/3B and 7R/5G/4B (for both 
Thematic Mapper —  TM and Enhanced Thematic Mapper 
Plus — ETM+ Landsat sensors) or 5R/4G/7B and 7R/6G/5B 
(for Operational Land Imager — OLI Landsat sensor); and 
true colour composition 3R/2G/1B (for both TM-Landsat 
and ETM + Landsat sensors) or 4R/3G/2B (for OLI sensor).

The polygons referring to the perimeter of the burned 
areas were digitized on the screen within regular 5x5 
km cells at an approximate scale of 1:15,000 for each 
year of the 1984-2015 time series. Then, the average fire 
frequency in the pixel in the time series was calculated. 
The average fire frequency map was classified by the 
standard deviation (SD) method.

Explanatory environmental variables

•	 NDVI. The normalized difference vegetation index 
map was derived from Landsat TM, ETM+ and OLI 
images with spatial resolution of 30 m. The SCNP 
is located between two Landsat scenes (paths/
rows 219/74 and 220/74), and for each of them, 
22 images were selected within the period from 
1984 to 2015 at the beginning of the dry season in 
the Brazilian cerrado, i.e., in April or May. In the 
ENVI 4.2 image processing software (Exelis Visual 
Information Solutions, 2011), atmospheric correction 
of these images was performed using the Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) tool. Then, in ArcGIS 10.2 (ESRI, 2012) 
algebraic operations were performed on the 22 
images of each scene; the median values of each 
pixel were calculated with the Cell Statistics tool, 
and a single image that represents the central trend 
of the reflectance in the period was obtained. The 
NDVI was obtained from the following expression:

 

where ρNIR is the reflectance in the near infrared spectral 
band, and ρR is the reflectance in the red spectral band 
of the Landsat multispectral image;

•	 Altitude. The altitude map was obtained from the 
ASTER GDEM 2 Digital Elevation Model (DEM), with 
spatial resolution of 30 m, using ArcGIS 10.2;

•	 Terrain slope. The slope map was generated in 
ArcGIS 10.2 using the Slope tool and ASTER GDEM 2 
as input data;

•	 Terrain convexity. Surface convexity index were 
calculated with the Terrain Surface Convexity tool, 
which is available in SAGA GIS 6.0, with ASTER 
GDEM 2 as input data. The higher the pixel value 
on the convexity index map, higher the density of 
convex slopes; 

•	 Wind effect. The wind effect map predicts the 
degree of the wind effect on the terrain surface. 
The wind effect tool is available in the SAGA GIS 
software (Conrad et al., 2015). We used ASTER GDEM 
2 as input data to calculate the wind effect map, 
considering an azimuth of 120° as the predominant 
wind direction in the SCNP (MMA and IBAMA, 2005). 
Wind effect values lower than 1.0 are associated to 
areas that are not affected by the local predominant 
wind; wind effect values higher than 1.0 are 
associated to areas that are directly affected by it;

•	 Road density. The unpaved roads and the highways 
in the SCNP were digitized in ArcGIS 10.2 using 
cartographic base georeferenced satellite images 

(Eq. 1)
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available in Google Earth. Then, the kernel density 

tool with a radius of 3 km was used to generate the 

road density map;

•	 Drainage density. The drainage density map in the 

SCNP was created in ArcGIS 10.2 using ASTER GDEM 2 

data and hydrology and kernel density tools. All the 

maps built in this research have a spatial resolution 

of 30 m.

Model building

The model uses the multivariate logistic regression 

method to obtain the equation to calculate and map 

the probability of fire occurrence (p). In this model, 

we considered fire as a dichotomous variable (occurs, 

F=1; does not occur, F=0). The dichotomous variable 

was estimated from a set of explanatory environmental 

variables related to the danger of fire propagation, 

including the wind effect (WIN), slope convexity 

(CVX), slope (SLO), drainage density (DDR), altitude 

(ELV), vegetation index (NDVI) and road density (ROD) 

variables. The methodology used to build the model was 

based on the following steps:

• Mapping of 534 centroids of the polygons where the fire 

frequency (F=1) was greater than the annual average 

(> 2.5 SD) during the period from 1984 to 2015;

• Mapping of the buffers with a radius of 500 m around 

F=1 polygon centroids;

• Extracting the average values of each explanatory 

environmental variable map inside the F=1 buffer areas;

• Random selection of 1,000 points located in areas 

where there was no fire (F=0) from 1984 to 2015;

• Mapping of the buffers with a radius of 500 m around 

F=0 polygon centroids;

• Extraction of the average values of the maps for 

each explanatory environmental variable within the 

F=0 buffer areas;

• The average values   for the variables WIN, CVX, SLO, 

DDR, ELV, NDVI and ROD calculated within the F=1 

and F=0 buffer areas were organized in a spreadsheet 

and exported to the statistical software MedCalc 

(MedCalc, 2020), and the logistic regression analysis 

was performed. A sample of 1,534 cases was used, 

with 534 positives (fire or F=1) and 1,000 negatives 

(nonfire or F=0);

• In the logistic regression analysis, we calculated 

the correlation coefficients of the explanatory 

environmental variables and the constant and the 

respective levels of significance. Only variables with 

a significance level of less than 0.001 (p<0.001) were 

used in the model;

• A table of classification of the logistic regression 

was used to assess the accuracy of the model. The 

percentage of cases correctly classified in the fire 

(F=1) and nonfire (F=0) groups and the area under the 

ROC (receiver operating characteristics) probability 

curve (AUC) were calculated;

• Finally, the probability of fire occurrence equation 

(p) was obtained. This equation was used to calculate 

and map the probability of fire occurrence using the 

ArcGIS 10.2 Raster Calculator tool.

Model testing and adjustment

The model was tested and adjusted using fire foci mapped 

from Moderate Resolution Imaging Spectroradiometer 

(MODIS) orbital sensor images registered in the period 

from 2016 to 2020 (INPE, 2020). The fire occurrence 

probability map was classified into ten classes, and the 

density of fire foci per square kilometre was calculated 

in each class.

A scatter plot showing the relationship between the 

probability (p) calculated by the model based on the 

1984 to 2015 fire data and the density of fire foci (D) 

mapped in the 2016-2020 period was constructed. Then, 

the determination coefficient (R²) was calculated, and 

an equation relating p and D was obtained.

Results and discussion 

The methodology for mapping the probability of fire 

occurrence applied in this paper was based on the 

explanatory variables altitude (A), slope (B), convexity 

index (C), wind effect (D), vegetation index (E), drainage 

density (F) and road density (G) in the Serra da Canastra 

National Park (fig. 2). However, as we do not have 

accurate information about the locations of such events, 

we do not consider the causal variables of wildfires in our 

study, such as lightning that occurs during spring storms 

and fires accidentally caused by tourists or farmers who 

live close to the park.

The values of the statistical parameters were obtained 

by the logistic regression analysis (Table I).

The chi-square value (chi-square = 1,471.817) shows that 

the independent variables (explanatory environmental 

variables) affect the dependent dichotomous variable 

(fire occurrence). The significance level value 

(p <0.0001) indicates that there is evidence that at least 

one of the independent variables contributes to the 

prediction of the fire event.

Analysing the values   of the regression coefficients, we 

can see that only the terrain convexity variable (CVX) did 

not significantly contribute to fire prediction (p> 0.05). 

On the other hand, the variables vegetation index (NDVI), 
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Fig. 2 - Maps of the environmental explanatory variables in the Serra da Canastra National Park used in the logistic regression model.

Fig. 2 - Mapas das variáveis ambientais explanatórias no Parque Nacional da Serra da Canastra, utilizadas no modelo de regressão logística.
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slope of the terrain (SLO), altitude (ELV) and road density 
(ROD) contributed the most to the occurrence of fire (p 
<0.0001), followed by density drainage (DDR) (p = 0.0005) 
and wind effect (WIN) (p = 0.0007).

The classification table confirms that the percentage 
of cases correctly classified by the model was 94.26%, 
with 93.63% being fire (F=1) and 94.60% being nonfire 
(F=0). The area under the curve (AUC) value was 0.980 
(95% CI = 0.971-0.986), and the standard error was 
0.00317. The closer the AUC value is to 1.0, the greater 
the efficiency of the model in discriminating between 
negative cases (nonfire) and positive cases (fire) is. 
Therefore, we can affirm that the model showed a good 
capacity to efficiently separate these two types of events.

Equations 2 and 3 are the mathematical relationships 
based on the multivariate logistic regression used to 
calculate the fire occurrence probability (p) in the SCNP.

where logit (p) is calculated using Eq. 3 and the constant 
and regression coefficient values of the explanatory 
variables (Table I).

logit (p) = −1.4865 + (−0.0424 CVX) + 0.15981 SLO + 
+ (−2.603 DRD) + 0.00892 ELV + (−17.6382 NDVI)+ 

+ 3.5960 WIN + (−2.1163 ROD)  

The total number and density of fire outbreaks recorded 
by class of the probability map built by the logistic 
regression model were calculated (Table II). Then, the 
adjustment curve between the values of the probability of 
fire occurrence calculated from 1984-2015 data and the 
density of fire foci observed in the orbital images in the 
period from 2016 to 2020, and their respective equation 
and determinant coefficient was performed (fig. 3).

  Sample size 

Sample size 1534

Positive cases (F=1) 534 (34.81%)

Negative cases (F=0) 1,000 (65.19%)

    Overall Model Fit 

Chi-squared 1,471.817

DF 7

Significance level P<0.0001

    Coefficients and Standard Errors 

Variable Coefficient Std. Error Wald P

CVX -0.042448 0.032139 1.7444 0.1866

SLO 0.15981 0.031596 25.5846 <0.0001

DDR -2.16038 0.62402 11.9858 0.0005

ELV 0.0089268 0.00092874 92.3852 <0.0001

NDVI -17.63823 1.87070 88.9004 <0.0001

WIN 3.59601 1.06643 11.3705 0.0007

ROD -2.11638 0.29161 52.6731 <0.0001

Constant -1.48865 2.35022 0.4012 0.5265

Classification table (cut-off value p=0.05) 

Actual group
Predicted group Percent 

correct0 1

F = 0        946 54 94.60%

F = 1        34 500 93.63%

Percent of cases correctly classified 94.26%

ROC curve analysis 

Area under the ROC curve (AUC) 0,980

Standard Error 0.00317

95% Confidence interval 0.971 to 0.986

Table I – Statistical parameters of the logistic regression model.

    Tabela I – Parâmetros estatísticos do modelo de regressão logística.

(Eq. 2)

Fig. 3 - Adjustment curve of the model of the probability of fire 
occurrence (p) based on the 1984-2015 fire data and fire foci 

density data (D) from the 2016-2020 period.

Fig. 3 – Curva de ajuste do modelo de probabilidade de 
ocorrência de fogo baseado em dados de fogo do período de 

1984-2015 e dados de densidade de focos de fogo relativos ao 
período de 2016 a 2020.

Class P (median of 
the class)

Area 
(km2)

Number of fire foci 
(2016-2020)

Density 
(km-2)

1 0.05 2269.81 169 0.0745

2 0.15 203.51 20 0.0983

3 0.25 134.42 24 0.1785

4 0.35 113.34 23 0.2029

5 0.45 107.94 25 0.2316

6 0.55 109.37 23 0.2103

7 0.65 118.80 29 0.2441

8 0.75 141.01 31 0.2198

9 0.85 215.85 56 0.2594

10 0.95 1004.28 265 0.2639

Table II – Number and density of fire foci recorded by class of 
the p probability map.

Tabela II – Número e densidade de focos de fogo registrados por 

classe do mapa de probabilidade p.

We found a positive and significant relationship (R2 = 
0.9206) between the density of fire foci identified in 
the 2016-2020 orbital images and the probability of fire 
occurrence estimated by the model (fig 3). Eq. 4, which 
describes the relationship between p and D (fig. 3), 

(Eq.3)



RISCOS - Associação Portuguesa de Riscos, Prevenção e Segurança

96

was modified and used to adjust the model of the fire 
occurrence probability p:

where D is the density of fire foci recorded from 2016 
to 2020, and p is the probability of fire occurrence 
estimated from data from the 1984-2015 period. Then, 
Eq. 4 was used to produce the adjusted map of the fire 
occurrence probability (fig. 4).

The adjusted map of the probability of fire occurrence 
(fig. 4) shows that the areas with a high probability 
of fire occurrence are spatially distributed on the 
geomorphological units of Chapadão da Canastra and 
Chapadão da Babilônia (fig. 1). The main factors that 
influenced the distribution of the highest values   of 
p in these units were the levels of significance of the 
variables ELV, SLO, NDVI, WIN, and ROD, which are the 
variables that contributed the most to the occurrence 
of fire.

The areas with the highest probability of fire (fig. 4) are 
characterized by higher altitudes, generally above 1,200 
m (fig. 2A), slopes between 3.0 and 14.0o, low vegetation 

index values between -0.33 and 0.28 (fig. 2E), high wind 
effect values between 1.13 and 1.33 (fig. 2D) and low 
road densities of less than 0.31 km/km2 (fig. 2G).

Catry et al. (2009) found that altitude was one of 
the important factors associated with the spatial 
distribution of fire ignition in Portugal. Research 
carried out by Ajin et al. (2016) and Camelo et al. 
(2020) showed that the slope of a terrain contributes 
significantly to the spread of fire. 

Roads make it easier to fight fires and act as a barrier 
to the spread of fires (Torres, 2006). In our study, the 
areas mapped by the model with the highest probability 
of fire were in areas with a low road density, indicating 
less accessibility to firefighting teams in the SCNP. In 
addition, the areas mapped with higher p values   were 
located on surfaces with quartzite rock outcrops and 
shallow soils covered by vegetation formations such as 
campo sujo, campo limpo and campo rupestre. This type 
of land cover, with lower biomass densities, has a greater 
predisposition to the quick spread of fire (Messias and 
Ferreira, 2019a). Study carried out in the National Park 
of Brasilia by Soares Neto et al. (2016) showed that the 
risk of fire was higher in areas covered by vegetation 
formation of campos.

(Eq.4)

Fig. 4 - Fire occurrence probability map of the Serra da Canastra National Park, Brazil.

Fig. 4 - Mapa de probabilidade de ocorrência de fogo no Parque Nacional da Serra da Canastra, Brasil.
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Conclusions

Our study showed that the environmental variables used 
in the model contributed significantly to the prediction 
of fire events. The variables vegetation index, slope of 
the terrain, altitude and road density contributed the 
most to the occurrence of fire.

The map of the probability of fire occurrence produced 
by the model was tested using real data on the density 
of fire foci. We found that the areas with higher 
probabilities of fire occurrence mapped by the model 
were located in areas with high densities of fire foci. 
This relationship was strong and statistically significant.

In addition, we noted that areas that presented the 
highest probability of fire were characterized by higher 
altitudes, flat surfaces, higher wind effects and a low 
density of roads. Furthermore, the areas mapped with 
higher p values   were also located on surfaces with 
quartzite rock outcrops and shallow soils covered by 
herbaceous species with low vegetation index values.

Considering the percentage of cases correctly 
classified, we can state that this model was efficient in 
discriminating between fire and no-fire areas. We believe 
that this model can be used to map the risk of fire and as 
an assisting tool to prevent fire actions in conservation 
units located in the Brazilian cerrado biome.
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