The intermediate character of mathematics and the ontological structure of its elements by Plato and Aristotle

Authors

  • Gilfranco Lucena dos Santos Universidade Federal da Paraíba (Brasil)

DOI:

https://doi.org/10.14195/1984-249X_19_5

Keywords:

Plato, Aristotle, Mathematics

Abstract

This article examines the ontological structure of mathematical “objects”, focusing on the opposing views of books VI-VII of Plato’s Republic and books XIII-XIV of Aris-totle’s Metaphysics. Plato understands Mathematics as a means or a path (method) of obtaining a philosophical education, and considers the “subject” of Mathematics as ὑποθέσει, rather than οὐσίαι (separate entities). In agreement with Plato, Aristotle seeks to describe the ontological structure of mathematical “ob-jects” not as οὐσίαι, but as quantity, quality or relation; which is to say, as the separable elemental properties (στοιχηῖαι) of entities. I will argue that while neither Plato nor Aristotle un-derstood the objects of Mathematics as separated entities, Aris-totle’s description is more effective by virtue of its consideration of an “object’s” separable elemental properties as the “subject” of mathematics.

Downloads

Download data is not yet available.

References

BICUDO, I. (2009) (ed). Euclides. Elementos. São Paulo, UNESP.

BRENTLINGER, J. A. (1963). The Divided Line in Plato’s Theory of intermediates. Phronesis 8, n. 2, p. 146-166.

CATTANEI, E. (2005). Entes Matemáticos e Metafísica. Platão, a Academia e Aristóteles em Con-fronto, trad. Fernando S. Moreira. São Paulo, Loyola.CORNFORD, F. M. (1932). Mathematics and Dia-lectic in the Republic VI-VII (I.). Mind 41, n. 161, p. 37-52.

CORNFORD, F. M. (1932). Mathematics and Dia-lectic in the Republic VI-VII (II.), Mind 41, n.162, p. 173-190.

FISCHER, F. (2003). La nature de l’objet dianoé-tique em République VI: bilan de l’interprétation contemporaine. Laval théologique et philosophique 59, nº 2, p. 279-310.

GILSON, E. (2009) (ed.). Descartes. Discurso do Método. São Paulo, Martins Fontes.

HEATH, T. (1956) (ed.). Euclid. The Thirteen Books of the Elements.v. 1-3. New York, Dover.HEATH, T. (1981). A History of Greek Mathemat-ics; from Thales to Euclid, v.I. New York, Dover.

HEIDEGGER, M.(1992). Platon: Sophistes. Frank-furt amMain, Vittorio Klostermann.

IGLÉSIAS, M.; RODRIGUES, F. (2003) (ed.). Platão. Menon. Rio de Janeiro, Ed. PUC-Rio. São Pau-lo, Loyola.MADDY, P. (1989). The Roots of Contemporary Platonism. The Journal of Symbolic Logic 54, nº 4, p. 1122-1144.

MCLARTY, C. (2005). ‘Mathematical Platonism’ versus Gathering the Dead: what Socrates teaches Glaucon.PhilosophiaMathematica (III) 13, p.115-134.

MELO, A. R. P. (2010). Matemática enquanto ciên-cia intermediária na República de Platão, Saberes 1, n. 4, p. 65-74.NUNES, C. A. (2000). Platão, República, 3. ed. Belém, EDUFPA.

PABÓN, J. M.; FERNÁNDEZ-GALIANO, M. (2006) (eds.). Platão, La Repúplica, Madrid, Centro de Estudios Políticos y Constitucionales.

PEREIRA, M. H. R. (2001) (ed.). Platão. República, 9ª ed. Lisboa, Fundação Calouste Gulbenkian.

ROSE, L. E. (1964). Plato’s Divided Line, The Re-view of Methaphysics17, n. 3, p. 425-435.

SANTOS, J. T. (2008). Para ler Platão; o problema do saber nos diálogos sobre a teoria das formas, tomo II. São Paulo, Loyola.YEBRA, V. G. (1998) (ed.). Aristóteles. Metafísica. Madrid, Gredos.

Published

2025-11-15

How to Cite

Santos, G. L. dos. (2025). The intermediate character of mathematics and the ontological structure of its elements by Plato and Aristotle . Revista Archai, (19), 129. https://doi.org/10.14195/1984-249X_19_5