Abordagem data mining para a previsão da resistência à compressão uniaxial de misturas laboratoriais de solo-cimento
DOI:
https://doi.org/10.24849/j.geot.2019.145.01Palavras-chave:
Misturas solo-cimento, resistência à compressão uniaxial, data mining, análise de sensibilidadeResumo
A previsão da resistência à compressão uniaxial (qu) de misturas solo-cimento é de elevada importância durante a fase de projeto. Para a sua quantificação são realizados ensaios laboratoriais, os quais consomem muito tempo e recursos. Neste artigo é apresentada uma nova abordagem para avaliação da qu ao longo do tempo tirando proveito das elevadas capacidades de aprendizagem das técnicas de Inteligência Artificial (IA). Três algoritmos de IA, nomeadamente as Redes Neuronais Artificiais (RNAs), as Máquinas de Vetores de Suporte (MVSs) e Regressões Múltiplas (RMs), foram treinados utilizando uma base de dados composta por 444 registos contemplando solos não coesivos, coesivos e orgânicos, assim como diferentes ligantes, condições de mistura e tempos de cura. Os resultados obtidos evidenciam um desempenho promissor na previsão da qu de misturas laboratoriais de solo-cimento, sendo o melhor desempenho conseguido através da média das previsões obtidas pelas MVSs e RNAs (RR2=0,95). Estes modelos reproduzem eficazmente os principais efeitos das variáveis de entrada, nomeadamente da razão água/cimento, teor em cimento, teor em matéria orgânica e tempo de cura, as quais são conhecidas como preponderantes no comportamento de misturas solo-cimento.
Downloads
Referências
Bi, J.; Bennett, K. (2003). Regression error characteristic curves. Proceedings of the Twentieth International Conference on Machine Learning, pp. 43-50, AAAI Press, Washington, DC USA.
Chen, H.;Wang, Q. (2006). The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment, Vol. 65, no 4, pp. 445- 448.
Cherkassky, V.; Ma, Y. (2004). Practical selection of svm parameters and noise estimation for svm regression. Neural Networks, Vol. 17, no 1, pp. 113-126.
Consoli, N.C.; Rosa, D.A.; Cruz, R.C.; Dalla Rosa, A. (2011). Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil. Engineering Geology, Vol. 122, no 3-4, pp. 328-333.
Correia, A. (2011). Applicability of deep mixing technique to the soft soil of baixo mondego. Ph.D. thesis, School of Engineering, University of Coimbra, Coimbra, Portugal.
Correia, A.A.; Oliveira, P.J.V.; Custódio, D.G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, Vol. 43, no 2, pp. 97-106.
Cortes, C.; Vapnik, V. (1995). Support vector networks. Machine Learning, Vol. 20, no 3, pp. 273- 297.
Cortez, P. (2010). Data mining with neural networks and support vector machines using the r/rminer tool. In: P. Perner (ed.) Advances in Data Mining: Applications and Theoretical Aspects, 10th Industrial Conference on Data Mining, pp. 572-583. LNAI 6171, Springer, Berlin, Germany.
Cortez, P.; Embrechts, M. (2013). Using sensitivity analysis and visualization techniques to open black box data mining models. Information Sciences, Vol. 225, Mar, pp. 1-17.
Croce, P; Flora, A. (2000). Analysis of single-fluid jet grouting. Géotechnique, Vol. 50, No 6, pp.739- 48.
Deepa, N.; Ganesan, K. (2016). Multi-class classification using hybrid soft decision model for agriculture crop selection. Neural Computing and Applications, pp. 1-14.
Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, Vol. 55, no 10, pp. 78-87
Emamgholizadeh, S.; Bahman, K.; Bateni, S.M.; Ghorbani, H.; Marofpoor, I.; Nielson, J.R. (2017).
Estimation of soil dispersivity using soft computing approaches. Neural Computing and Applications, Vol. 28, no 1, pp. 207-216.
EN 14679:2005. Execution of special geotechnical works - Deep mixing. European Committee for Standardization.
EuroSoilStab (2001). Development of Design and Construction Methods to Stabilise Soft Organic Soils. Design Guide Soft Soil Stabilization. Industrial & Materials Technologies Programme (BriteEuRam III), European Commission, Brussels, Belgium, CT97-0351, EC Project No. BE 96-3177.
Gilan, S.; Bahrami Jovein, H.; Ramezanianpour, A. (2012). Hybrid support vector regression particle swarm optimization for prediction of compressive strength and rcpt of concretes containing metakaolin. Construction and Building Materials, Vol. 34, Sep, pp. 321-329.
Gomes Correia, A.; Tinoco, J.; Cortez, P. (2014). Use of data mining in design of soil improvement by jet grouting. In: D.T. et al. (ed.) Second International Conference on Information Technology in Geo-Engineering (ICITG 2014), pp. 43-63, IOS Press, Durham, UK.
Hastie, T.; Tibshirani, R.; Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition, Springer-Verlag, New York.
Horpibulsuk, S.; Rachan, R.; Suddeepong, A.; Chinkulkijniwat, A. (2011a): Strength development in cement admixed bangkok clay: laboratory and field investigations. Soils and Foundations, Vol. 51, no 2, pp. 239-251.
Horpibulsuk, S.; Rachan, R.; Suddeepong, A. (2011b). Assessment of strength development in blended cement admixed bangkok clay. Construction and Building Materials, Vol. 25, no 4, pp. 1521-1531.
Inbarani, H.H.; Kumar, S.U.; Azar, A.T.; Hassanien, A.E. (2018). Hybrid rough-bijective soft set classification system. Neural Computing and Applications, Vol. 29, no 8, pp. 67-78.
Kenig, S.; Ben-David, A.; Omer, M.; Sadeh, A. (2001). Control of properties in injection molding by neural networks. Engineering Applications of Artificial Intelligence, Vol. 14, no 6, pp. 819-823.
Kirsch, F.; Sondermann, W. (2001). Ground improvement and its numerical analysis. Proceedings of the international conference on soil mechanics and geotechnical engineering, Vol. 3. AA Balkema Publishers; pp. 1775–1778.
Lee, F.H.; Lee, Y.; Chew, S.H.; Yong, K.Y. (2005). Strength and modulus of marine clay-cement mixes. Journal of geotechnical and geoenvironmental engineering, Vol. 131, no 2, pp. 178-186.
Liao, S.; Chu, P.; Hsiao, P. (2012). Data mining techniques and applications. A decade review from 2000 to 2011. Expert Systems with Applications, Vol.39, no 12, pp. 11303-11311.
Liu, Y.; Zhang, D.; Liu, Z.; Deng, Y. (2008). Assessment of unconfined compressive strength of cement stabilized marine clay. Marine Georesour Geotechnol; Vol.26, no 1, pp. 19-35.
Lorenzo, G.; Bergado, D. (2004). Fundamental parameters of cement-admixed clay-new approach.
Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no 10, pp. 1042-1050.
McCulloch, W.S.; Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, Vol. 5, no 4, pp. 115-133.
R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Autria. Web site: http://www.r-project.org/
Sariosseiri, F.; Muhunthan, B. (2009). Effect of Cement Treatment on Geotechnical Properties of some Washington State Soils. Engineering Geology, Vol. 104, no 1-2, pp. 119-125.
Smola, A.; Scholkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, Vol. 14, no 3, pp. 199-222.
Tinoco, J.; Alberto A.; Venda Oliveira, P.; Gomes Correia, A.; Lemos, L. (2016). A data-driven approach for qu prediction of laboratory soil-cement mixtures. Procedia Engineering, Vol. 143, pp. 566-573.
Tinoco, J.; Gomes Correia, A.; Cortez, P. (2011). Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time. Construction and Building Materials, Vol. 25, no3, pp. 1257-1262.
Tinoco, J.; Gomes Correia, A.; Cortez, P. (2014). A novel approach to predicting young's modulus of jet grouting laboratory formulations over time using data mining techniques. Engineering Geology, Vol. 169, Feb, pp. 50-60.
Venda Oliveira, P.J.; Correia, A.A.; Garcia, M.R. (2012). Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil. Journal of materials in civil engineering, Vol. 24, no 7, pp. 868-875.
Venda Oliveira, P.J.; Correia, A.A.; Garcia, M.R. (2013). Effect of stress level and binder composition on secondary compression of an artificially stabilized soil. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, no 5, pp. 810-820.
Venda Oliveira, P.J.; Correia, A.A.; Lopes, T.J. (2014). Effect of organic matter content and binder quantity on the uniaxial creep behavior of an artificially stabilized soil. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, no 9, pp. 04014053.
Werbos, P. (1974). Regression: New tools for prediction and analysis in the behavioral sciences.