Modelo de partículas 3D para o estudo da fratura em rocha com base em diagramas de Voronoi da estrutura granular
DOI:
https://doi.org/10.24849/j.geot.2018.143.08Palavras-chave:
Modelo 3D de partículas, Fratura em rocha, Diagramas de Laguerre-VoronoiResumo
Os modelos de partículas, ao terem em conta a estrutura granular da rocha, consideram de forma explícita a variabilidade associada ao material, razão pela qual têm sido aplicados com sucesso no estudo da fratura em rocha. Neste trabalho é apresentado um modelo de partículas 3D com base nos diagramas de Laguerre-Voronoi da estrutura granular, que permite ter em conta de forma aproximada uma geometria do tipo poliédrica mantendo a simplicidade e o reduzido esforço computacional característico dos modelos de partículas esféricas. Propõe-se então um modelo de contacto múltiplo no qual a superfície de contacto é definida com base nas facetas dos diagramas de Voronoi. O modelo de partículas é validado com base em ensaios experimentais em rocha (triaxiais, uniaxiais e ensaio Brasileiro). Apresentam-se vários estudos paramétricos que evidenciam a influência dos parâmetros do modelo de partículas nas propriedades macroscópicas elásticas e resistentes obtidas numericamente. É ainda analisada a relevância de um modelo de contacto com leis de enfraquecimento bilinear em tração e corte que conduz a valores coerentes de tração última em ensaios de tração diretos e em ensaios Brasileiros.
Downloads
Referências
Azevedo, N. (2003). Micromechanical study of rock fracture and fragmentation under dynamic loads using discrete element method. PhD Thesis. Heriot-Watt University, Edinburgh, Scotland.
Azevedo, N.; Lemos, J. (2013). A 3D generalized rigid particle contact model for rock fracture. Engineering Computations, vol. 30(2), pp. 277-300.
Azevedo, N.; Candeias, M.; Gouveia, F. (2015). A rigid particle model for rock fracture following the Voronoi tessellation of the grain structure: Formulation and Validation, Rock Mechanics and Rock Engineering, vol. 48(2), pp. 535-557.
Bolander, J.; Saito, S. (1998). Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics, vol. 61(5/6), pp. 569-591.
Brace W.; Paulding B.; Scholz C. (1966). Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research, vol. 71(16), pp. 3939-3953.
Chang, K.G.; Meegoda, J.N. (1997). Micromechanical simulation of hot mix asphalt. Journal of Engineering Mechanics, ASCE, vol. 123(5), pp. 495-503.
Cho, N.; Martin, C.; Sego, D.C. (2007). A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, vol. 44(7), pp. 997-1010.
Diederichs, M.S. (2000). Instability of hard rock masses: the role of tensile damage and relaxation. PhD Thesis. University of Waterloo, Canada.
Diederichs, M.S. (2003). Rock fracture collapse under low confinement conditions. Rock Mechanics and Rock Engineering, vol. 36(5), pp. 339-381.
Erarslan, N.; Williams, D. (2012). Experimental, numerical and analytical studies on tensile strength of rocks. International Journal of Rock Mechanics & Mining Sciences, vol. 49(January 2012), pp. 21-30.
Gao, F.; Stead, D. (2014). The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. International Journal of Rock Mechanics & Mining Sciences, vol. 68(June 2014), pp. 1-14.
Ghazvinian, E.; Diederichs, M.; Quey, R. (2014). 3D Random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering, vol. 6(6), pp. 506-521.
Hamdi, P.; Stead, D.; Elmo, D. (2014). Damage characterization during laboratory strength testing: A 3D-finite-discrete element approach. Computers and Geotechnics, vol. 60(July 2014), pp. 33-46.
Itasca Consulting Group, Inc., (2005). PFC3D Particle Flow Code in Three Dimensions, Version 3.1, Minneapolis, ICG.
Kazerani, T.; Zhao, J. (2010). Micromechanical parameters in bonded particle method for modelling of brittle material failure. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 34(18), pp. 1877-1895.
Kazerani, T. (2011). Micromechanical study of rock fracture and fragmentation under dynamic loads using discrete element method. PhD Thesis. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Klanphumeesri, S. (2010). Direct tension tests of rock specimens. MSc Thesis. Suraranee University of Technology, Thailand.
Lan, H.; Martin, C.; Hu, B. (2010). Effect of heterogeneity of brittle rock on micromechanical extensile behaviour during compression loading. Journal of Geophysical Research, vol. 115(B1), pp. 1-14.
Martin C.; Chandler N. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences, vol. 31(6), pp. 643-659.
Meguro, K.; Iwashita, K. e Hakuno, M. (1991). Fracture analyses of media composed of irregularly shaped regions by the extended distinct element method. Structural Engineering / Earthquake Engineering, JSCE, vol. 8(3), pp. 37-48.
Okabe, A.; Boots, B.; Sugihara, K. (1992). Spatial tessellations: Concepts and applications of Voronoi diagrams, John Wiley & Sons.
Potyondy, D.; Cundall, P.; Lee, C. (1996). Modelling rock using bonded assemblies of circular particles. In: Aubertin M et al. (eds) Proceedings of the 2nd North American Rock Mechanics Symposium, Montreal, Quebec, Canada, 19-21 June 1996. Rotterdam, Balkema, pp. 1937-1944.
Potyondy, D.; Cundall, P. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, vol. 41(8), pp. 1329-1364.
Potyondy, D. (2010). A grain based model for rock: approaching the true microstructure. In: Li C, et al. (eds) Proceedings of Berg Mekanikk i Norden 2010 - Rock Mechanics in the Nordic Countries, Kongsberg, Norway, 9-12 June 2010. Norwegian Group for Rock Mechanics, pp. 225-234.
Rokugo, K. (1989). Testing method to determine tensile softening curve and fracture energy of concrete. Fracture toughness and fracture energy, pp. 153-163. Balkema.
Schlangen, E.; Garboczi, E. (1997). Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics, vol. 57(2/3), pp. 319-332.
Scholtès, L.; Donzé, F.V. (2013). A DEM model for soft and hard rocks: Role of grain interlocking on strength. Journal of the Mechanics and Physics of Solids, vol. 61(2), pp. 352-369.
Underwood, P. (1983). Dynamic relaxation. In Belytschko T. and Hughes T. (eds) Computation Methods for Transient Analysis, North-Holland, New York, pp. 246-265.
Wang, Y.; Tonon, F. (2009). Modeling Lac du Bonnet granite using a discrete element model. International Journal of Rock Mechanics & Mining Sciences, Vol 46, pp. 1124-1135.