Microzonation of the liquefaction susceptibility: case study in the Lower Tagus Valley


  • Ana Sofia Saldanha Faculdade de Engenharia, Universidade do Porto
  • António Viana da Fonseca CONSTRUCT-GEO, Faculdade de Engenharia, Universidade do Porto
  • Cristiana Ferreira CONSTRUCT-GEO, Faculdade de Engenharia, Universidade do Porto https://orcid.org/0000-0001-5998-6220




Liquefaction susceptibility, Seismic liquefaction, Microzonation, Lower Tagus Valley


This work is part of the European research project LIQUEFACT, of which the Faculty of Civil Engineering of the University of Porto (FEUP) is an associate partner. During this research, a vast amount of existing geological and geotechnical reports were collected for the creation of a solid database for selection of a pilot site, for supplementary in situ tests, towards a liquefaction susceptibility microzonation. The analysis of this geotechnical information (mainly SPT, CPT and CH) included the assessment of liquefaction risk indexes, namely the Liquefaction Safety Factor (FSliq), the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN), from which a pilot site was selected in the area of Lezíria Grande de Vila Franca de Xira. The experimental campaign at the pilot site involved SPT, CPTu, SDMT, various geophysical methods and the collection of high quality samples for subsequent laboratory characterization. Data treatment of these test results was subdivided into three types of analyses, namely Risk Indexes, classification according to VS30, and expected settlements and lateral displacements. From this work, it was possible to establish and propose a preliminary earthquake-induced liquefaction susceptibility microzonation.


Download data is not yet available.


Andrus, R. D.; Stokoe II, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of geotechnical and geoenvironmental engineering, 126(11), pp. 1015-1025.

Andrus, R. D.; Mohanan, N. P.; Piratheepan, P.; Ellis, B. S.; Holzer, T. L. (2007). Predicting shear-wave velocity from cone penetration resistance. In Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece (Vol. 2528).

Andrus, R. D.; Stokoe, K. H.; Chung, R. M.; Juang, C. H. (2003). Guidelines for evaluating liquefaction resistance using shear wave velocity measurements and simplified procedures. NIST GCR, pp. 03-854.

Boulanger, R.W.; Idriss, I.M. (2014). CPT and SPT Based Liquefaction Triggering Procedures. Center for Geotechnical Modeling, (April), 134 pgs.

Cabral, J.; Moniz, C.; Batlló, J.; Figueiredo, P.; Carvalho, J.; Matias, L.; Teves-Costa, P.; Dias, R.; Simão, N. (2011). The 1909 Benavente (Portugal) earthquake: search for the source. Natural Hazards. 69, pp. 1211-1227; doi:10.1007/s11069-011-0062-8.

Caltrans (2004). Caltrans Seismic Design Criteria version 1.3. California Department of Transportation, Sacramento, California.

Carrilho Gomes, R. (2017). Relatório preliminar dos ensaios HVSR da Lezíria Grande, projeto LIQUEFACT.

CEN (2007). EN 1997-2: 2007, Eurocódigo 7 – Projeto geotécnico - Parte 2: Caracterização geotécnica – Prospeção e ensaios.

Costa, P.A.; Colaço, A.; Pinto, A.C. (2016). Análise Espectral de Ondas Superficiais (Ensaio SASW). Resultados do ensaio SASW, FEUP, 2016.

GeoLogismiki (2017). CLiq v.2.0 – CPT liquefaction software. http://www.geologismiki.gr/products/cliq/, Acesso em Setembro 2017.

Hegazy, Y. A.; Mayne, P. W. (1995). Statistical correlations between VS and cone penetration data for different soil types. In Proceedings of the International Symposium on Cone Penetration Testing, CPT, Vol. 95, pp. 173-178.

Idriss, I.M.; Boulanger, R.W. (2008). Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute. MNO-12.

Idriss, I. M.; Boulanger, R. W. (2010). SPT-based liquefaction triggering procedures. Report UCD/CGM-10/02, Department of Civil and Environmental Engineering, University of California, Davis, CA, 259 pgs.

IPQ (2010). NP EN 1998-5:2010, Eurocódigo 8 - Projeto de estruturas para resistência aos sismos – Parte 5: Fundações, estruturas de suporte e aspectos geotécnicos.

Ishihara, K.; Yoshimine, M. (1992). Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes. Soils and Foundations, 32(1): 173-188. Japanese Geotechnical Society, Tokyo.

ISO (2005). ISO/TS 22476-11:2005, Geotechnical Investigation and testing – Field Testing – Part 11: Flat Dilatometer Test.

Iwasaki, T.; Tatsuoka, F.; Tokida, K.; Yasuda, S. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In: Proceedings of the 2nd International Conference on Microzonation. San Francisco, CA, USA, pp. 885–896.

Iwasaki, T.; Tokida. K.; Tatsuoka, F.; Watanabe, S.; Yasuda, S.; Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods, vol. 3, In: Proceedings of 3th International Conference on Microzonation, Seattle, pp. 1319–1330.

Jorge, C. (1993). Zonamento do Potencial de Liquefação - Tentativa de Aplicação a Portugal, Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Geologia de Engenharia, Junho, Lisboa.

Juang, C.H.; Yuan, H.; Lee, D.H.; Lin, P.S. (2013). Simplified CPT-based method for evaluating liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering. 129(1), pp. 66–80. doi:10.1061/(ASCE)1090-0241(2003)129:1(66).

Ku, C.-S.; Juang, C.H.; Chang, C.-W.; Ching, J. (2012). Probabilistic version of the Robertson and Wride method for liquefaction evaluation: Development and application. Canadian Geotechnical Journal, 49(1), pp. 27–44.

Liao, S. C.; Whitman, R. V. (1986). Overburden correction factors for SPT in sand. ASCE Journal of Geotechnical Engineering, 112, pp. 373- 377.

Lee, D.-H.; Ku, C.-S.; Yuan, H. (2003). A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng. Geol. (Amsterdam), 71, 1–2, pp. 97–117.

LIQUEFACT.eu (2016). Disponível em http://www.liquefact.eu. Acesso em Outubro de 2016.

Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. In Characterisation and Engineering Properties of Natural Soils–Proceedings of the Second International. Workshop on Characterisation and Engineering Properties of Natural Soils: Taylor & Francis, pp. 1601-1652.

Nakamura, Y (1989) A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report Railway Technical Research Institute, Tokyo, Tokyo 30, pp. 25–33.

O’Rourke, T. D.; Jeon, S. S.; Toprak, S.; Cubrinovski, M.; Jung, J. K. (2012). Underground lifeline system performance during the Canterbury earthquake sequence. In Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal.

Parolai, S.; Bormann, P.; Milkereit, C. (2002). New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the seismological society of America, 92(6), pp. 2521-2527.

Pitilakis, K.; Riga, E.; Anastasiadis, A. (2013). New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4), pp. 925-966.

Ribeiro, A. (1998). As Ciências da Natureza-Geologia no século XVIII.

Robertson, P.K.; Wride, C.E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3): 442-459, National Research Center, Ottawa.

Robertson, P.K. (2009). Performance based earthquake design using the CPT. Proc.; IS Tokyo Conf.CRC Press/Balkema, Taylor and Francis Group, Tokyo.

Robertson, P.K. (2015). Guide to Cone Penetration Testing. 6th Edition (p.133) http://www.cpt-robertson.com/doc/.

Rodrigues, C. (2016). Relatório preliminar dos CPTu realizados na Lezíria Grande – LIQUEFACT, Guarda, IPG.

Saldanha, A.S. (2017). Microzonamento de suscetibilidade à liquefação. Aplicação a um caso de estudo na região da Grande Lisboa. Dissertação de Mestrado em Engenharia Civil, Faculdade de Engenharia da Universidade do Porto.

Seed, H. B.; Idriss, I. M. (1967). Analysis of liquefaction: Niigata earthquake. Proc., ASCE, 93(SM3), pp. 83-108.

Seht, M. I.-v.; Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), pp. 250-259.

Sonmez, H. (2003). Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey), Environmental Geology, 44 (2003), pp. 862–871.

Teves Costa, P. (2005). Perigosidade e Risco sísmico. In: Terramotos e Tsunamis, P. Teves Costa (Coord.). Livro Aberto, Editores Livreiros Lda., Lisboa, pp. 55-97.

Tonkin; Taylor (2013). Canterbury earthquakes 2010 and 2011. Land Report as at 29 February 2012. Earthquake Commission (108 pp., http://www.tonkin.co.nz/canterbury- land-information/docs/downloads2592013/T&T-Stage-3-Report.pdf, last visited May 9, 2014).

Viana da Fonseca, A.; Lopes, I. F.; Rodrigues, C. (2016). Projeto Geotécnico Assistido por Ensaios In Situ - Curso CPTu. 23 de Junho 2016, Porto, FEUP.

Wair, B.R.; DeJong, J.T.; Shantz, T. (2012). Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering, 8 (December), 68 pgs.

Youd, T. L.; Idriss, I. M.; Andrus, R. D.; Arango, I.; Castro, G.; Christian, J. T.; Ishihara, K. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(10), pp. 817-833.

Zhang, G.; Robertson, P.K.; Brachman, R.W. (2002). Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, 39(5), pp.1168–1180. Available at: http://www.nrcresearchpress.com/doi/abs/10.1139/t02-047.