Biocimentação de um solo arenoso com recurso a enzimas: efeito de diversos fatores
DOI:
https://doi.org/10.24849/j.geot.2017.141.01Palavras-chave:
Bioestabilização, biocimentação, precipitação de carbonato de cálcio, enzima ureaseResumo
Neste trabalho apresentam-se os resultados de uma investigação laboratorial que visa analisar os ganhos de resistência e rigidez de um solo arenoso, através da precipitação de carbonato de cálcio (CaCO3) por via enzimática, com base na adição de uma solução estabilizadora composta por água, ureia, cloreto de cálcio e a enzima urease. Inicialmente a eficiência da metodologia é analisada em tubos de ensaio com a determinação da massa de CaCO3 precipitada, sendo posteriormente testada em provetes de solo, com base em resultados de ensaios de compressão não confinada. São analisados os efeitos da concentração de enzima urease e do tempo de cura, no ganho de resistência e rigidez do solo estabilizado. Constata-se com o aumento da concentração de urease (até 4 kU/L) e do tempo de cura (até 7 dias) um significativo aumento de resistência e rigidez do solo. Ensaios de raios-X e imagens de microscópio eletrónico confirmam a precipitação de CaCO3.
Downloads
Referências
Al Qabany, A.; Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique, Vol. 63, No. 4, pp. 331–339.
Al-Thawadi, S.M. (2011). Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res., Vol. 1, No. 1, pp. 98–114.
ASTM D 2487 (1998). Standard classification of soils for engineering purposes (Unified Soil Classification System). American Society for Testing and Materials.
ASTM D 2974-00 (2000). Standard test methods for moisture, ash, and organic matter of peat and other organic soils. American Society for Testing and Materials.
Blakely, R.L.; Zerner, B. (1984). Jack Bean Urease: The First Nickel Enzyme. Journal of Molecular Catalysis, Vol. 23, pp. 263–292.
BS 1377-3 (1990). Methods of test for soils for civil engineering purposes – part 3: chemical and electro-chemical tests. British Standards Institution, London.
Burbank, M.; Weaver, T.; Green, T.; Williams, B.; Crawford, R. (2011). Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiology Journal, Vol. 28, No. 4, pp. 301-312.
Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R. (2013). Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 6, pp. 928-936.
Carmona, J.P.S.F (2016). Utilização da Biotecnologia para a Estabilização de Solos: Precipitação de CaCO3 por via Enzimática. Dissertação de Mestrado, Dep. Engª Civil da FCTUC, Universidade de Coimbra.
Carmona, J.P.S.F.; Venda Oliveira, P.J.; Lemos L.J.L. (2016a). Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation. Procedia Engineering (3rd International Conference on Transportation Geotechnics, Guimarães, Portugal), Vol.143, pp. 1301–1308. DOI: 10.1016/j.proeng.2016.06.144.
Carmona, João P.S.F.; Venda Oliveira, P.J.; Leal Lemos, L.J. (2016b). Bioestabilização de um solo arenoso por intermédio da precipitação de carbonato de cálcio por via enzimática. VIII Congresso Luso-Brasileiro de Geotecnia, Art. nº ABS_1299, FEUP, Porto.
Cheng, L.; Cord-Ruwisch, R.; Shahin, M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, Vol. 50, No. 1, pp. 81-90.
Chou, C. W.; Seagren E. A.; Aydilek A. H.; Lai M. (2011). Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 12, pp. 1179-1189.
Chu, J.; Stabnikov, V.; Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, Vol. 29, No. 6, pp. 544-549.
DeJong, J.; Fritzges, M.; Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), Vol. 132, No. 11, pp. 1381–1392.
DeJong, J.T.; Mortensen, B. M.; Martinez, B.C.; Nelson D.C. (2010). Bio-mediated soil improvement. Ecological Engineering, Vol. 36, pp. 196-210.
DeJong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; Chen, C.Y.; Cheng, X.; Chu, J.; Ciurli, S.; Esnault-Filet, A.; Fauriel, S.; Hamdan, N.; Hata, T.; Inagaki, Y.; Jefferis, S.; Kuo, M.; Laloui, L.; Larrahondo, J.; Manning, D.A.C.; Martinez, B.; Montoya, B.M.; Nelson, D. C.; Palomino, A.; Renforth, P.; Santamarina, J.C.; Seagren, E.A.; Tanyu, B.; Tsesarsky, M.; Weaver, T. (2013). Biogeochemical processes and geotechnical applications: progress, oportunities and challenges. Géotechnique Vol. 63, No. 4, pp. 287-301.
E196 (1966). Solos – Análise granulométrica. Especificação do LNEC, Lisboa, Portugal.
E197 (1966). Solos – Ensaios de compactação. Especificação do LNEC, Lisboa, Portugal.
Fujita, Y.; Ferris, F.G.; Lawson, R.D.; Colwell, F.S.; Smith, R.W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, Vol. 17, pp. 305- 318.
Hamdan N.; Kavazanjian J.E.; O’Donnell, S. (2013). Carbonate Cementation via Plant Derived Urease. Proceeding of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France.
Hammes, F.; Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol., Vol. 1, No. 1, pp. 3–7.
Hammes, F.; Boon, N.; Villiers, J.; Verstraete, W.; Siliciliano, S.D. (2003). Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied and Environmental Microbiology, Vol. 69, No. 8, pp. 4901-4909.
Head, K.H. (1982). Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility Tests. Pentech Press Limited. Plymouth, London.
Inagaki, Y.; Tsukamoto, M.; Mori, H.; Nkajima, S. Ssaki, T.; Kawasaki, S. (2011). A centrifugal model test of microbial carbonate precipitation as liquefaction countermeasure. Japonese Geotechnical Journal, Vol. 6, No. 2, pp. 157-167 (em japonês).
Ivanov, V.; Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci Biotechnol., Vol. 7, No. 2, pp. 139-153.
Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Dominguez-Vera, J.M.; Garcia-Ruiz, J.M. (2003). Influence of lysozyme on the precipitation of calcium carbonate: A kinetic and morphologic Study. Geochimica et Cosmochimica Acta, Vol. 67, No. 9, pp. 1667–1676.
Kalantary, F.; Kahani, M. (2015). Evaluation of the ability to control biological precipitation to improve sandy soils. Procedia Earth and Planetary Science (World Multidisciplinary Earth Sciences Symposium), Vol. 15, pp. 278-284.
Li, W.; Chen, W.S.; Zhou, P.P.; Yu, L.J. (2013). Influence of enzyme concentration on bio-sequestration of CO2 in carbonate form using bacterial carbonic anhydrase. Chemical Engineering Journal, Vol. 232, pp. 149-156.
Mitchell, J. K.; Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp. 1222-1233.
Montoya, B.; DeJong, J.; Boulanger, R.; Wilson, D.; Gerhard, R.; Ganchenko, A.; Chou, J. (2012). Liquefaction Mitigation Using Microbial Induced Calcite Precipitation. GeoCongress, pp. 1918-1927.
Mortensen B. M.; Haber, M. J.; DeJong, J. T.; Caslake L. F.; Nelson D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, Vol. 111, pp. 338-349.
Muynck, W. D.; Debrouwer, D.; De Belie, N.; Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concr. Res., Vol. 38, No. 7, pp. 1005–1014.
Muynck, W. D.; Belie, N. D.; Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, Vol. 36, pp. 118-136.
Nemati, M.; Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, Vol. 33, pp. 635-642.
Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. (2013). Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 12, pp. 2201-2211.
Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. (2015). Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils and Foundations, Vol. 55, No. 2, pp. 447-457.
NP 83 (1965). Solos – Determinação da Densidade das Partículas Sólidas. Norma Portuguesa Definitiva.
NP EN 12390-1 (2010). Ensaios do betão endurecido. Parte 1: Forma, dimensões e outros requisitos para o ensaio de provetes e para os moldes. IPQ.
Shirakawa, M. A.; Kaminishikawahara, K. K.; John, V. M.; Kahn, H.; Futai, M. M. (2011). Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Material Letters, Vol. 65, pp. 1730-1733.
Tiano, P.; Biagiotti, L.; Mastromei, G. (1999). Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. Journal of Microbiological Methods, Vol. 36, pp. 139-145.
Van der Ruyt, M.; van der Zon, W. (2009). Biological in situ reinforcement of sand in near-shore areas. ICE – Geotechnical Engineering, Vol. 162, No. 1, pp. 81-83.
Van Paassen, L. A. (2009). Biogrout. Ground Improvement by Microbially Induced Carbonate Precipitation. Thesis for the degree of Doctor of Philosophy. Delft University of Technology, Netherlands.
Van Paassen, L. A.; Ghose, R.; van der Linden,T. J. M.; van der Star, W. R. L.; van Loosdrecht, M. C. M. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 12, pp. 1721–1728
Venda Oliveira, P.J.; Costa, M.S.; Costa, J.N.P.; Nobre, M.F. (2015). Comparison of the ability of two bacteria to improve the behaviour of a sandy soil. Journal of Materials in Civil Engineering, Vol. 27,. No. 1, pp. 06014025. DOI: 10.1061/(ASCE)MT.1943-5533.0001138.
Venda Oliveira, P.J.; Freitas, L.D.; Carmona, J.P.S.F. (2016). Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement. Journal of Materials in Civil Engineering, pp. 04016263 [DOI:10.1061/(ASCE)MT.1943-5533.0001804].
Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. PhD Thesis. Murdoch University, Perth, Western Australia.
Whiffin, V. S.; van Paassen, L. A.; Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, Vol. 24, No. 5, pp. 417-423.
Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically induced carbonate precipitation. Soils and Foundations, Vol. 52, No. 3, pp. 539-549.