Desempenho a curto e longo prazo de uma via em laje em zona de transição: análise de aterro para túnel
DOI:
https://doi.org/10.14195/2184-8394_157_3Palavras-chave:
zonas de transição, via em laje, deformação permanenteResumo
As zonas de transição de vias-férreas são caracterizadas por uma mudança abrupta na rigidez das condições de suporte da via, o que conduz ao aumento das cargas dinâmicas e aceleração dos assentamentos diferenciais e degradação da via. Este trabalho apresenta o estudo do comportamento da via em laje em zonas de transição, com especial destaque para as secções aterro-túnel. Esta análise usa uma metodologia híbrida que combina a modelação tridimensional por elementos finitos com as equações empíricas de deformação permanente, inseridas num processo iterativo. Em cada iteração, são determinados os campos de tensão induzidos na fundação usando o modelo 3D, antes de se calcularem as deformações a partir da equação empírica calibrada capaz de determinar o assentamento ao longo da transição. Seguidamente, antes de iniciar a próxima iteração, estes assentamentos são utilizados para modificar a geometria do modelo 3D, o que permite considerar os efeitos do assentamento anterior. Relativamente ao comportamento dinâmico a curto-prazo, os resultados mostram uma concentração de tensões na laje de betão e HBL. Em relação ao comportamento a longo prazo, os resultados mostram um assentamento permanente máximo acumulado próximo de 0.52 mm. Mais ainda, foi testada a eficácia de uma manta resiliente na zona do túnel e no aterro. Os resultados mostram uma diminuição do nível de tensões na transição e atenuação da variação dos deslocamentos na laje de betão.
Downloads
Referências
Abdelkrim, M.; Bonnet, G.; Buhan, P. D. (2003). A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading. Computers and Geotechnics, 30, 463–476, https://doi.org/10.1016/S0266-352X(03)00010-7.
Alves Ribeiro, C. (2012). Transições Aterro – Estrutura em Linhas Ferroviárias de Alta Velocidade: Análise Experimental e Numérica. PhD thesis Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
Alves Ribeiro, C.; Calçada, R.; Delgado, R. (2018). Calibration and experimental validation of a dynamic model of the train-track system at a culvert transition zone. Structure and Infrastructure Engineering, 14, 604-618, https://doi.org/10.1080/15732479.2017.1380674.
Alves Ribeiro, C.; Paixão, A.; Fortunato, E.; Calçada, R. (2015). Under sleeper pads in transition zones at railway underpasses: numerical modelling and experimental validation. Structure and Infrastructure Engineering, 11, 1432-1449, https://doi.org/10.1080/15732479.2014.970203.
Arema. Implementing track transition solutions for heavy axle load service. (2005) In Proceedings of the AREMA 2005 Annual Conferences, Chicago, IL, USA, 25–28 September.
Asghari, K.; Sotoudeh, S.; Zakeri, J.-A. (2021). Numerical evaluation of approach slab influence on transition zone behavior in high-speed railway track. Transportation Geotechnics, 28, 100519, https://doi.org/10.1016/j.trgeo.2021.100519.
Banimahd, M.; Woodward, P. K.; Kennedy, J.; Medero, G. M. (2012). Behaviour of train-track interaction in stiffness transitions. Proceedings of the Institution of Civil Engineers: Transport, 165, 205-214, https://doi.org/10.1680/tran.10.00030.
Čebašek, T. M.; Esen, A.F.; Woodward, P. K.; Laghrouche, O.; Connolly, D. P. (2018). Full scale laboratory testing of ballast and concrete slab tracks under phased cyclic loading. Transportation Geotechnics, 17, 33-40, https://doi.org/10.1016/j.trgeo.2018.08.003.
Chen, R.; Chen, J.; Zhao, X.; Bian, X.; Chen, Y. (2014). Cumulative settlement of track subgrade in high-speed railway under varying water levels. International Journal of Rail Transportation, 2, 205–220, https://doi.org/10.1080/23248378.2014.959083.
Coelho, B.; Hölscher, P.; Priest, J.; Powrie, W.; Barends, F. (2011). An assessment of transition zone performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225, 129-139, https://doi.org/10.1177/09544097JRRT389.
Connolly, D.; Giannopoulos, A.; Forde, M. C. (2013). Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dynamics and Earthquake Engineering, 46, 13-19, https://doi.org/10.1016/j.soildyn.2012.12.003.
Dahlberg, T. (2004). Railway track settlements - a literature review. The EU project SUPERTRACK. Linköping, Sweden.
Ferreira, P. (2010). Modelling and prediction of the dynamic behaviour of railway infrastructures at very high speeds. PhD Thesis, Instituto Superior Técnico, Lisboa, Portugal.
Ferreira, P. A.; López-Pita, A. (2013). Numerical modeling of high-speed train/track system to assess track vibrations and settlement prediction. Journal of Transportation Engineering, 139, 330-337, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000482.
Fröhling, R. D. (1997). Deterioration of railway track due to dynamic vehicle loading and spatially varying track stiffness. PhD thesis, University of Pretoria. Pretoria.
Fröhling, R. D.; Scheffel, H.; Ebersöhn, W. (1996). The vertical dynamic response of a rail vehicle caused by track stiffness variations along the track. Vehicle System Dynamics, 25, 175-187, https://doi.org/10.1080/00423119608969194.
Gomes Correia, A.; Ramos, A. (2021). A geomechanics classification for the rating of railroad subgrade performance. Railway Engineering Science, 30, 323-359, https://doi.org/10.1007/s40534-021-00260-z.
Grossoni, I.; Powrie, W. ; Zervos, A. ; Bezin, Y. ; Le Pen, L. (2021). Modelling railway ballasted track settlement in vehicle-track interaction analysis. Transportation Geotechnics, 26, 100433, https://doi.org/10.1016/j.trgeo.2020.100433.
Guo, Y.; Zhai, W. (2018). Long-term prediction of track geometry degradation in high-speed vehicle–ballastless track system due to differential subgrade settlement. Soil Dynamics and Earthquake Engineering, 113, 1-11, https://doi.org/10.1016/j.soildyn.2018.05.024.
Hunt, H. E. M. (1996). Track settlement adjacent to bridge abutments. Paper presented at the Vehicle-Infrastructure Interaction IV, San Diego, CA.
Hunt, H. E. M. (1997). Settlement of railway track near bridge abutments. Proceedings of the Institution of Civil Engineers: Transport, 123, 68-73, https://doi.org/10.1680/itran.1997.29182.
Indraratna, B.; Babar Sajjad, M.; Ngo, T.; Gomes Correia, A.; Kelly, R. (2019). Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches. Transportation Geotechnics, 21, https://doi.org/10.1016/j.trgeo.2019.100260.
Johnson, K. L. (1985). Contact Mechanics, Cambridge, Cambridge University Press.
Kennedy, J.; Woodward, P. K.; Medero, G.; Banimahd, M. (2013). Reducing railway track settlement using three-dimensional polyurethane polymer reinforcement of the ballast. Construction and Building Materials, 44, 615-625, https://doi.org/10.1016/j.conbuildmat.2013.03.002.
Li, S.; Wei, L.; Chen, X.; He, Q.; Chen, A. (2021). Dynamic characteristics of subgrade-bridge transitions in heavy-haul railways under roller excitation. Transportation Geotechnics, 29, 100589, https://doi.org/10.1016/j.trgeo.2021.100589.
Li, Z. G.; Wu, T. X. (2008) Vehicle/Track Impact Due to Passing the Transition between a Floating Slab and Ballasted Track. In: Schulte-Werning B. et al. (eds) Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 99. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-74893-9_13.
López-Pita, A.; Teixeira, P. F.; Casas-Esplugas, C.; Ubalde, L. (2006). Deterioration in geometric track quality on high speed lines: the experience of the Madrid-Seville high speed line (1992-2002). Transportation Research Board 85th Annual Meeting. Washington DC, United States.
Lundqvist, A.; Larsson, R.; Dahlberg, R. (2006). Influence of railway track stiffness variations on wheel/rail contact force. Workshop Track for high speed railways, Porto, Portugal.
Momoya, Y.; Takahashi, T.; Nakamura, T. (2016). A study on the deformation characteristics of ballasted track at structural transition zone by multi-actuator moving loading test apparatus. Transportation Geotechnics, 6, 123-134, https://doi.org/10.1016/j.trgeo.2015.11.001.
Nicks, J. (2009). The bump at the end of the railway bridge. PhD Thesis, Texas A&M University
Paixão, A. (2014). Transition Zones in railway tracks - an experimental and numerical study on the structural behaviour. PhD Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
Paixão, A.; Fortunato, E.; Calçada, R. (2016). A contribution for integrated analysis of railway track performance at transition zones and other discontinuities. Construction and Building Materials, 111, 699-709, https://doi.org/10.1016/j.conbuildmat.2016.02.126.
Ramos, A.; Gomes Correia, A.; Calçada, R.; Alves Costa, P. (2021a). Stress and permanent deformation amplification factors in subgrade induced by dynamic mechanisms in track structures. International Journal of Rail Transportation, 1-33, https://doi.org/10.1080/23248378.2021.1922317.
Ramos, A.; Gomes Correia, A.; Calçada, R.; Alves Costa, P.; Esen, A.; Woodward, P. K.; Connolly, D. P.; Laghrouche, O. (2021b). Influence of track foundation on the performance of ballast and concrete slab tracks under cyclic loading: Physical modelling and numerical model calibration. Construction and Building Materials, 277, 122245, https://doi.org/10.1016/j.conbuildmat.2021.122245.
Ramos, A.; Gomes Correia, A.; Indraratna, B.; Ngo, T.; Calçada, R.; Costa, P. A. (2020). Mechanistic-empirical permanent deformation models: Laboratory testing, modelling and ranking. Transportation Geotechnics, 23, 100326, https://doi.org/10.1016/j.trgeo.2020.100326.
Shahraki, M.; Warnakulasooriya, C.; Witt, K.-J. (2015). Numerical Study of Transition Zone Between Ballasted and Ballastless Railway Track. Transportation Geotechnics, 3, 58–67, https://doi.org/10.1016/j.trgeo.2015.05.001.
Shahraki, M.; Witt, K.-J. (2015). 3D Modeling of Transition Zone between Ballasted and Ballastless High-Speed Railway Track. Journal of Traffic and Transportation Engineering 3, 234-240, https://doi.org/10.17265/2328-2142/2015.04.005.
Shan, Y.; Albers, B.; A., S. S. (2013). Influence of different transition zones on the dynamic response of track–subgrade systems. Computers and Geotechnics, 48, 21-28, https://doi.org/10.1016/j.compgeo.2012.09.006.
Trackelast. -. Slab Track Mats [Online]. http://www.trackelast.com/slab-track-mats.html: Trackelast Available: http://www.trackelast.com/slab-track-mats.html [Accessed 2020].
Varandas, J. N.; Hölscher, P.; Silva, M. A. G. (2011). Dynamic behaviour of railway tracks on transitions zones. Computers & Structures, 89, 1468-1479, https://doi.org/10.1016/j.compstruc.2011.02.013.
Varandas, J. N.; Hölscher, P.; Silva, M. A. (2013). Settlement of ballasted track under traffic loading: Application to transition zones. Proceedings of the Institution of Mechanical Engineering, Part F: Journal of Rail and Rapid Transit, https://doi.org/10.1177/0954409712471610.
Varandas, J. N.; Hölscher, P.; Silva, M. A. G. (2016). Three-dimensional track-ballast interaction model for the study of a culvert transition. Soil Dynamics and Earthquake Engineering, 89, 116-127, https://doi.org/10.1016/j.soildyn.2016.07.013.
Wang, H.; Markine, V. (2018). Modelling of the long-term behaviour of transition zones: Prediction of track settlement. Engineering Structures, 156, 294-304, https://doi.org/10.1016/j.engstruct.2017.11.038.
Wang, H.; Markine, V. (2019). Dynamic behaviour of the track in transitions zones considering the differential settlement. Journal of Sound and Vibration, 459, 114863, https://doi.org/10.1016/j.jsv.2019.114863.
Werkmeister, S. (2003). Permanent deformation behavior of unbound granular materials. PhD Thesis, University of Technology, Dresden, Germany.
Woodward, P. K.; Laghrouche, O.; Mezher, S. B; Connolly, D. P. (2015) Application of Coupled Train-Track Modelling of Critical Speeds for High-Speed Trains using Three-Dimensional Non-Linear Finite Elements. International Journal of Railway Technology, 1-35, https://doi.org/10.4203/ijrt.4.3.1.
Zbiciak, A.; Kraśkiewicz, C.; Oleksiewicz, W.; Płudowska, M.; Lipko, C. (2017). Mechanical modelling and application of vibroacoustic isolators in railway tracks. MATEC Web of Conferences, 117, 00090, https://doi.org/10.1051/matecconf/201711700090.
Zhang, S.; Zhang, W.; Jin, X. (2007). Dynamics of high speed wheel/rail system and its modelling. Chinese Science Bulletin, 52, 1566-1575, https://doi.org/10.1007/s11434-007-0213-1.