Mecanismos de ruptura por tração em maciço rochoso com fundações diretas. Pontes no granito do Porto
DOI:
https://doi.org/10.14195/2184-8394_161_3Palavras-chave:
Resistência à tração direta, capacidade de suporte em rocha, fundações superficiais, terrenos estratificados, granito do Porto, Ponte da FerreirinhaResumo
A resistência à tração é um parâmetro geomecânico que tem recebido muito menos atenção do que a resistência à compressão, sendo tradicionalmente difícil de estimar, utilizando-se habitualmente ensaios indiretos ou correlações empíricas. Este artigo apresenta os mecanismos de ruptura que podem ocorrer sob uma fundação direta, dando especial atenção às configurações que induzem ruptura por tração no terreno e para as quais é essencial avaliar corretamente a resistência à tração direta. Além disso, é apresentada uma nova configuração não estabelecida pelos mecanismos clássicos de ruptura, relativa a terrenos estratificados, onde é possível que a ruptura seja condicionada pelo parâmetro de resistência à tração. Estuda-se em particular o granito do Porto, cuja geologia local apresenta configurações de maciço rochoso horizontalmente estratificado, devido a distintos estados de alteração do material; obtêm-se amostras de granito com diferentes graus de alteração e efetua-se uma campanha de ensaios laboratoriais para avaliar corretamente o parâmetro de resistência à tração. Finalmente, o estudo é aplicado a duas fundações de pontes sobre maciços de granito do Porto, com diferentes e invertidos graus de alteração, onde a resistência à tração pode ser limitante: 1) a ponte Infante Dom Henrique; 2) a nova ponte da Ferreirinha.
Downloads
Referências
AASHTO (2012). LRFD Bridge design specifications. 6th edition. Washington, DC: American Association of State Highway and Transport Officials.
Alavi, A.H.; Sadrossadat, E. (2016). New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses. Geoscience Frontiers, 7, pp. 91-99. https://doi.org/10.1016/j.gsf.2014.12.005
Alencar, A.; Galindo, R.A.; Melentijevic, S. (2019). Bearing capacity of foundation on rock mass depending on footing shape and interface roughness. Geomechanics and Engineering, 18(4), pp. 391-406. https://doi.org/10.12989/gae.2019.18.4.391
Alencar, A.; Galindo, R.; Melentijevic, S. (2021). Influence of the groundwater level on the bearing capacity of shallow foundations on the rock mass. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-021-02368-2
Ambrósio, A. C.; Brito, J. A. M.; Romeiro, M. J.; Morujão, P. (2004). Fundações da ponte Infante D. Henrique. 9º Congresso Nacional de Geotecnia – Vol. III, pp. 285-296.
Babendererde, S.; Hoek, E.; Marinos, P.; Cardoso, A.S. (2004). Characterization of Granite and the Underground Construction in Metro do Porto, Portugal. Geotechnical & Geophysical Site
Characterizaton. Vol. 1, pp. 39-47. Ed. A. Viana da Fonseca & P.W.Mayne. Millpress, Rotterdam
Begonha, A., Sequeira Braga M.A. (2002). Weathering of the Oporto granite: geotechnical and physical properties. Catena. 49, 57-76 https://doi.org/10.1016/S0341-8162(02)00016-4
Bieniawski, Z.T. (1974). Geomechanics classification of rock masses and its application in tunneling. 3rd Congress of the International Society of Rock Mechanics, Denver National Academy of Sciences, Washington DC, 1-7 September 1974, pp. 27-32.
Bishnoi, B.L. (1968). Bearing capacity of a closed jointed rock. PhD Thesis, Georgia Institute of Technology, Atlanta, 120 pp.
Brinch Hansen, J. A. (1970). Revised and extended formula for bearing capacity. Bulletin Nº 28, Danish Geotechnical Institute Copenhagen, pp. 5-11.
Cai, M. (2009). A simple method to estimate tensile strength and Hoek-Brown strength parameter mi of brittle rocks. In ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009 (Ed: M.Diederichs and G. Grasselli).
Carter, J.; Kulhawy, F. (1988). Analysis and design of foundations socketed into rock. Report EL-5918, Palo Alto, USA: Electronic Power Research Institute; 198.
Chen, H.H.; Zhu, H.H.; Zhang, L.Y. (2021). A unified constitutive model for rock based on newly modified GZZ criterion. Rock Mech Rock Eng. 54, pp. 921–935. https://doi.org/10.1007/s00603-020-518 02293-y
Chen, H.H.; Zhu, H.H.; Zhang, L.Y. (2022). An analytical approach to the ultimate bearing capacity of smooth and rough strip foundations on rock mass considering three-dimensional (3D) strength. Computers and Geotechnics, 149, 104865.
https://doi.org/10.1016/j.compgeo.2022.104865
Clausen, J. (2013). Bearing Capacity of Circular Footings on a Hoek–Brown Material. Inter J of Rock Mech and Min Sci. 57, pp. 34-41. https://doi.org/10.1016/j.ijrmms.2012.08.004
Coates, D. F. (1967). Rock mechanics principles. Queen ́s printer, Ed. Canadian Government Pub Centre.
Franklin, J.A. (1971). Triaxial strength of rock materials. Rock Mechanics, 3, pp. 86–98. https://doi.org/10.1007/BF01239628
Galindo, R.A.; Millán, M.A. (2021). An accessible calculation method of the bearing capacity of shallow foundations on anisotropic rock masses. Computers and Geotechnics, 131, 103939. https://doi.org/10.1016/j.compgeo.2020.103939
Galindo, R.A.; Serrano, A.; Olalla, C. (2017). Ultimate bearing capacity of rock masses based on modified Mohr-Coulomb strength criterion. Int J of Rock Mech and Min Sciences, 93, pp. 215-225. https://doi.org/10.1016/j.ijrmms.2016.12.017
Geocontrole (2021). Prospecção geotécnica e estudo geológico-geotécnico nos concelhos do Porto e Vila Nova de Gaia, para a ampliação do Metro do Porto, no âmbito do concurso público do projeto da futura ponte de Ferreirinha. Relatório professional.
Griffith, A.A. (1924). The theory of rupture. In Proc. 1st Int. Congr. Appl. Mech. Delft, 54-63.
Guerin, A. (1971). Traité de Béton Armé. Tomo II, Dunod, París.
Gupta, A.S.; Rao, R.S. (2000). Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng Geo, 56(3–4), pp. 257-274. https://doi.org/10.1016/S0013-7952(99)00090-3
Hawkes, I.; Mellor, M.; Gariepy, S. (1973). Deformation of rocks under uniaxial tension. Int J Rock Mech Min Sci Geomech Abstr 10:493–507. https://doi.org/10.1016/0148-9062(73)90001-6
Hobbs, D.W. (1966). A study of the behaviour of broken rock under triaxial compression and its application to mine roadways. Intern. J. Rock Mech. Mining Sci., 3, pp. 11-43.
Hoek, E. (1964). Fracture of anisotropic rock. J South African Inst Min Metall 64:501–518
Hoek, E. (1968). Brittle failure of rock in: Rock Mechanics in Engineering Practice. Stagg, K.G., Zienkiewicz O.C. (eds). London: Wiley, pp. 19-124
Hoek, E. (1983). Strength of jointed rock masses. Géotechnique, 33(3), pp. 187-223. https://doi.org/10.1680/geot.1983.33.3.187
Hoek, E., Brown, E. T. (1980). Empirical strength criterion for rock masses. J Geotech Eng Div ASCE.106(9), pp.1013–1035.
Hoek, E., Brown, E. T. (1997). Practical estimates of rock mass strength. Int J Min.; 34(8), pp. 1165–1186.
Hoek, E.; Carranza-Torres, C.; Corkum, B. (2002). Hoek-Brown failure criterion - 2002 Edition. Proc. NARMS-TAC Conference, Toronto, 1, pp. 267-273
Hondros, G. (1959). The evaluation of poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Austr J. Appl. Sci., 10-3, pp. 243-268.
Imani, M.; Fahimifar, A.; Sharifzadeh, M. (2012). Upper bound solution for the bearing capacity of submerged jointed rock foundations. Rock Mec and Rock Eng. 45.
https://doi.org/10.1007/s00603-011-0215-9
ISRM (1978). Suggested methods for determining tensile strength of rock materials. In: Int J of Rock Mech and Min Sciences, 15, pp. 99-103, International Society for Rock Mechanics, Commission on standardization of laboratory and field tests.
ISRM (2007). The complete ISRM suggested methods for characterization, testing and monitoring: 1974‐2006. In: Ulusay R. & Hudson J.A., eds., Suggested methods prepared by the commission on testing methods, International Society for Rock Mechanics. Ankara, Turkey. 628
Keshavarz, A., Kumar, J. (2021). Bearing capacity of ring foundations over rock media. J. Geotech. Geoenviron. Eng. 147(6) p. 04021027.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002517
Lamas, R. (2023). Estudo da variabilidade geológico-geotécnica dos perfis de alteração do granito do Porto. Tese de doutorado, Universidade do Porto.
LimitState (2019). GEO Manual VERSION 3.5.d.
Lyamin, A.V.; Sloan S.W. (2002a). Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng; 55(5):573–611. https://doi.org/10.1002/nme.511
Lyamin, A.V.; Sloan S.W. (2002b). Upper bound limit analysis using linear finite elements and non-linear programming. Int J Numer Anal Methods Geomech; 26(2):181–216.
https://doi.org/10.1002/nag.198
LNEG - Serviço Geológico de Portugal (1989). Mapa geológico de Portugal – Página 1, escala 1:200 000.
Merifield, R.; Lyamin, A.; Sloan, S. (2006). Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion. Int J of Rock Mech and Min Sci. 43, pp. 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001
Millán, M.A.; Galindo, R.; Alencar, A. (2021a). Application of artificial neural networks for predicting the bearing capacity of shallow foundations on rock masses. Rock Mech Rock Eng 54, pp. 5071–5094. https://doi.org/10.1007/s00603-021-02549-1
Millán, M.A.; Galindo, R.; Alencar, A. (2021b). Application of discontinuity layout optimization method to bearing capacity of shallow foundations on rock masses. Z Angew Math Mech, 101:e201900192. https://doi.org/10.1002/zamm.201900192
Millán, M.A.; Picardo, A.; Galindo, R. (2023). Application of artificial neural networks for predicting the bearing capacity of the tip of a pile embedded in a rock mass. Eng Appl of Art Int. 124, 106568. https://doi.org/10.1016/j.engappai.2023.106568
Muñiz-Menéndez, M.; Pérez-Rey, I. (2023). Influence of the specimen slenderness on the direct tensile strength of rocks. 15th ISRM Congress, Salzburgo (Austria) October 2023.
Murrell, S.A.F. (1963). A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion. Rock Mechanics and Rock Engineering, 563-577.
Oliveira, J.C.N; Montesinos, M; Vasques, F. (2023). Nova ponte sobre o Douro, Porto. Sebentas d’Obra, Ciclo de construção, do projeto à obra. Edições afrontamiento, Faculdade de Engenharia, Universidade do Porto; 31, maio 2023.
Pappalardo, G.; Mineo, S. (2022). Static elastic modulus of rocks predicted through regression models and Artificial Neural Network. Eng Geo, 308, 106829. https://doi.org/10.1016/j.enggeo.2022.106829
Pells, P. J. (1977). Theoretical and model studies related to the bearing capacity of rock. In Paper presented to Sydney Group of Australian Geomechanics Society. Institute of Engineers, Australia.
Perras, M.A.; Diederichs, M.S. (2014). A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525–546. https://doi.org/10.1007/s10706-014-9732-0
Romana, M. (1996). El ensayo de compresión puntual de Franklin. Ingeniería Civil, 102.
Rosa, S.; Chitas, P.; Rodrigues, V.; Pereira, H. (2015). Estabilização da escarpa das Fontainhas, entre as pontes Luiz I e Maria Pia, no Porto. VII Simpósio Brasileiro de Mecânica das Rochas. https://doi.org/10.20906/CPS/SBMR-03-0009
Rowe, R.K.; Armitage, H.H. (1984). The design of piles socketed into weak rock. Research Report. GEOT_11_84, Faculty of Engineering Science, University of Western Ontario. (Major report submitted to the National Research Council, Canada, 368p.).
Rowe, R. K.; Armitage, H. H. (1987). A design method for drilled piers in soft rock. Canadian Geotech J, 24(1), pp. 126-142.
Saada, Z.; Maghous, S.; Garnier, D. (2008). Bearing capacity of shallow foundations on rocks obeying a modified Hoek–Brown failure criterion. Computers and Geotechnics, 35(2), pp. 144-154. https://doi.org/10.1016/j.compgeo.2007.06.003
Sari, M. (2018). Investigating Relationships between Engineering Properties of Various Rock Types. Global Journal of Earth Science and Engineering, 5, pp.1-25. https://doi.org/10.15377/2409-5710.2018.05.1
Serrano, A.; Olalla, C. (1994). Ultimate bearing capacity of rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.; 31:93-106. https://doi.org/10.1016/0148-9062(94)92799-5
Serrano, A.; Olalla, C. (1996). Allowable bearing capacity of rock foundations using a non-linear failure criterium. Int J of Rock Mech and Min Sci & Geo Abst, 33(4), pp. 327-345. https://doi.org/10.1016/0148-9062(95)00081-X
Serrano, A.; Olalla, C.; Galindo, R. A. (2014). Ultimate bearing capacity at the tip of a pile in rock based on the modified Hoek–Brown criterion. Int J of Rock Mech and Min Sci, 71, pp. 83–90. https://doi.org/10.1016/j.ijrmms.2014.07.006
Serrano, A.; Olalla, C.; Galindo, R. A. (2016). Ultimate bearing capacity of an anisotropic discontinuous rock mass based on the modified Hoek–Brown criterion. Int J of Rock Mech and Min Sci, 83, 24–40. https://doi.org/10.1016/j.ijrmms.2015.12.014
Serrano, A.; Olalla, C.; González, J. (2000). Ultimate bearing capacity of rock masses based on the modified Hoek–Brown criterion. Int J of Rock Mech and Min Sci, 37(6), pp. 1013-1018. https://doi.org/10.1016/S1365-1609(00)00028-9
Shalabi, F. I.; Cording, E. J.; Al-Hattamleh, O. H. (2007). Estimation of rock engineering properties using hardness tests. Eng Geo, 90(3–4), pp. 138-147. https://doi.org/10.1016/j.enggeo.2006.12.006
Singh, M.; Raj, A.; Singh, B. (2011). Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Inter JRock Mech and Min Sci, 48(4), pp. 546-555. https://doi.org/10.1016/j.ijrmms.2011.02.004
Singh, M.; Singh, B. (2012). Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks. Inter J Rock Mech and Min Sci, 51, pp. 43-52. https://doi.org/10.1016/j.ijrmms.2011.12.007
Sokolovskii, V. V. (1965). Statics of soil media. London: Butterworths Science (Translator R. Jones & A. Schofield).
Sloan, S.W. (1988). Lower bound limit analysis using finite elements and linear programming. Int. J. Num. Anal. Methods Geomech. 12, pp. 61–77. https://doi.org/10.1002/nag.1610120105
Sloan, S.W.; Kleeman, P.W. (1995). Upper bound limit analysis using discontinuous velocity fields. Comp. Methods Appl. Mech. Eng.; 127, pp. 293–314. https://doi.org/10.1016/0045-7825(95)00868-1
Sowers, G. (1979). Introductory Soil Mechanics and Foundations: geotechnical engineering. Law Book Co of Australasia.
Sutcliffe, D.; Yu, H.S.; Sloan, S.W. (2004). Lower bound solutions for bearing capacity of jointed rock. Comput Geotech; 31(1), pp. 23–36. https://doi.org/10.1016/j.compgeo.2003.11.001
Tajeri, S.; Sadrossadat, E.; Bazaz, J. B. (2015). Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses. Int J Rock Mech Mining Sci. Volume 80, Pages 107-117, ISSN 1365-1609. https://doi.org/10.1016/j.ijrmms.2015.09.015
Teixeira, R.J.S.; Neiva, A.M.R.; Silva, P.B.; Gomes, M.E.P.; Anderson, T.; Ramos, J.M.F. (2011). Combined U-Pb geochronology and Lu-Hf isotope systematics by LAM-ICPMS of zircons from granites and metasedimentary rocks of Carrazeda de Ansiães and Sabugal areas, Portugal, to constrain granite sources. Lithos, 125, 321-334 https://doi.org/10.1016/j.lithos.2011.02.015
Teng, W. C. (1962). Foundation Design. Englewood Cliffs, Ed.. Prentice-Hall, Inc.
Terzaghi K. (1943). Theoretical soil mechanics. New York: Wiley.
Vesic, A. B. (1961). Bending of beams resting on isotropic elastic solid. Journal Eng. Mech. ASCE.
Viana da Fonseca, A. (1996). Geomecânica dos Solos Residuais do Granito do Porto. Critérios para o Dimensionamento de Fundações Directas. Dissertação de Doutoramento, Universidade do Porto - FEUP, Porto, Portugal. http://hdl.handle.net/10216/11101
Viana da Fonseca, A. (2003). Characterizing and deriving engineering properties of a saprolitic soil from granite, in Porto. Characterization and Engineering Properties of Natural Soils. Eds. Tan et al. 2,1341-1378. https://hdl.handle.net/10216/65885
Viana da Fonseca, A.; Marques, E.; Carvalho, P.; Gaspar. A. (2003). Implicação da heterogeneidade do granito do Porto nas opções de investigação e classificação. Parametrização para projetos de estações cut-and-cover do Metro do Porto. Proc. 1ªs Jornadas Luso-Espanholas de Geotecnia, Madrid, 15 e 16 de setembro de 2003. Atas: pp. 15-26, Ed. SPG-CEDEX
Viana da Fonseca, A; Topa, A. (2010). Project and construction of Underground stations and tunnels (TBM and NATM) in heterogeneous masses for Metro do Porto. Livro "Excavations and tunnels in granite (Túneles y Excavaciones en Granito)", pp. 79-123. Edição de Aula PAYMACotas - Ingeniería de Túneles, da Universitat Politècnica de Catalunya.
Vipulanandan, C.; Hussain, A.; Usluogulari, O. (2007). Parametric study of open core-hole on the behavior of drilled shafts socketed in soft rock. Contemporary Issues in Deep Foundations, Proc of Geo-Denver, GSP 158, Denver, Colorado.
Winkler, E. (1867). Die Lehre von Elasticitaet und Festigkeit. Prag (H. Dominicus), pp. 182-184.
Yoshinaka, R.; Yamabe, T. (1980). Strength Criterion of Rocks. Soils and Foundations, 20 (4), pp. 113-126. https://doi.org/10.3208/sandf1972.20.4_113
Zhang, L.; Einstein, H. H. (1998). End bearing resistance of drilled shafts in rock. Journal of Geotech and Geoenv Eng, ASCE, 124(7), pp. 574-584.
Zheng, X.; Booker, J.R; Carter, J.P. (2000). Limit analysis of the bearing capacity of fissured materials. Int J Solids Struct; 37(8), pp.1211–43.