Bioestabilização de um solo arenoso por via enzimatica e com biopolimero: efeito do tempo de cura
DOI:
https://doi.org/10.14195/2184-8394_161_2Palavras-chave:
bioestabilização, enzima urease, biopolímero xantanoResumo
Neste trabalho compara-se a eficiência de duas metodologias para bioestabilização de um solo arenoso: utilização da enzima urease (EICP) e do biopolímero xantano (XG). Com base nos resultados de ensaios UCS e edométricos para diferentes tempos de cura, avaliam-se as repercussões de ambas as metodologias, em termos de resistência à compressão não confinada, módulo de deformabilidade, índice de compressibilidade e tensão de cedência. Comparando ambas as metodologias, constata-se que o tratamento com EICP é mais eficiente na melhoria das propriedades mecânicas, induz um comportamento tensão-deformação mais frágil e conduz a ganhos de resistência e rigidez mais rápidos (≤ 14 dias). Em termos de compressibilidade confinada, consta-se com EICP o aumento da tensão de cedência com o tempo de cura, enquanto a utilização de XG origina a diminuição da tensão de cedência e um significativo aumento do índice de compressibilidade, em resultado da hidratação dos hidrogéis do XG.
Downloads
Referências
Al Qabany, A.; Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique, 63 (4), pp. 331–339.
https://doi.org/10.1680/geot.SIP13.P.022
ASTM D2487 (2000). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken, PA, USA.
ASTM D698 (2003). Standard test methods for laboratory compaction characteristics of soil using standard effort [12,400 ft-lbf/ft3(600 kN-m/m3)]. ASTM International, West Conshohocken, PA, USA.
ASTM D2435-04 (2004). One-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken, PA, USA.
ASTM D2166 (2005). Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken, PA, USA.
Blakeley, R.L.; Zerner, B. (1984). Jack bean urease: the first nickel enzyme. Journal of molecular Catalysis, 23 (2-3), pp. 263-292. https://doi.org/10.1016/0304-5102(84)80014-0
Bouazza, A.; Gates, W.P.; Ranjith, P.G. (2009). Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 59 (1), pp. 71–72. https://doi.org/10.1680/geot.2007.00137
Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R. (2013). Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139 (6), pp. 928-936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781
Cabalar, A.F.; Wiszniewski, M.; Skutnik, Z. (2017). Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behaviour of a Sand. Soil Mechanics and Foundation Engineering, 54 (5), pp. 356–361.
https://doi.org/10.1007/s11204-017-9481-1
Carmona, J.P.S.F.; Venda Oliveira, P.J.; Lemos, L.J.L. (2017). Biocimentação de um solo arenoso com recurso a enzimas: efeito de diversos fatores. Geotecnia, 141, pp. 03-18. https://doi.org/10.24849/j.geot.2017.141.01
Carmona, J.P.S.F.; Venda Oliveira, P.J.; Lemos, L.J.; Pedro, A.M.G. (2018). Improvement of a sandy soil by enzymatic CaCO3 precipitation. ICE – Geotechnical Engineering, 171 (GE1), pp. 3-15. https://doi.org/10.1680/jgeen.16.00138
Chang, I.; Im. J.; Cho, G.C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8 (3), pp. 251. https://doi.org/10.3390/su8030251
Chang, I., Im, J., Prasidhi, A.K.; Cho, G.C. (2015a). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, pp. 65–72.
https://doi.org/10.1016/j.conbuildmat.2014.10.026
Chang, I., Prasidhi, A.K., Im, J., Shin, H.D.; Cho, G.C. (2015b). Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma, 253–254, pp. 39–47.
https://doi.org/10.1016/j.geoderma.2015.04.006
Chang, I.; Jeon, M.; Cho, G.C. (2015c). Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries. International Journal of Polymer Science, Article ID 326745. https://doi.org/10.1155/2015/326745
Chang, I.; Kwon, Y.M.; Im, J.; Gye-Chun Cho, G.C. (2019). Soil consistency and interparticle characteristics of Xanthan gum biopolymer–containing soils with pore-fluid variation. Canadian Geotechnical Journal, 56 (8), pp. 1206–1213.
https://doi.org/10.1139/cgj-2018-0254
Chang, I.; Kwon, Y.M.; Cho, G.C. (2021). Effect of Pore–Fluid Chemistry on the Undrained Shear Strength of Xanthan Gum Biopolymer-Treated Clays. Journal of Geotechnical & Geoenvironmental Engineering, 147 (11), pp. 1-11.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002652
Cheng, L.; Cord-Ruwisch, R.; Shahin, M.A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50 (1), pp. 81-90. https://doi.org/10.1139/cgj-2012-0023
Chou, C.W., Seagren, E.A., Aydilek, A.H.; Lai, M. (2011). Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, 137 (12), pp. 1179-1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532
Declet, A.; Reyes, E.; Suárez, O.M. (2016). Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composite. Reviews on Advanced Materials Science, 44 (1), pp. 87-107.
https://www.ipme.ru/e-journals/RAMS/no_14416/07_14416_declet.pdf.
Dehghan, H.; Tabarsa, A.; Latifi, N.; Bagheri, Y. (2019). Use of Xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy, 21 (1), pp. 155–165. https://doi.org/10.1007/s10098-018-1625-0
García-Ochoa, F., Santos, V.E.; Casas, J.Á.; Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18 (7), pp. 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
Gomes, C.; Lopes, M.L.; Venda Oliveira, P.J. (2014). Stiffness parameters of municipal solid waste. Bulletin of Engineering Geology and the Environment, 73, (4), pp. 1073-1087. https://doi.org/10.1007/s10064-014-0621-9
Hammes, F,; Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1 (1), pp. 3-7. https://doi.org/10.1023/A:1015135629155
Hoang, T.; Alleman, J.; Cetin, B.; Choi, S.G. (2020). Engineering Properties of Biocementation Coarse- and Fine-Grained Sand Catalyzed by Bacterial Cells and Bacterial Enzyme. Journal of Materials of Civil Engineering, 32 (4), pp. 04020030.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083
IPCC (2022). Climate Change 2022 - Mitigation of Climate Change , IPCC AR6 WG III. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Jiang, N.J.; Soga, K. (2016). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Géotechnique, 67 (1), pp. 42-55. https://doi.org/10.1680/jgeot.15.P.182
Khachatoorian, R.; Petrisor, I.G.; Kwan, C.C.; Yen, T.F. (2003). Biopolymer plugging effect: laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38, pp. 13– 21. https://doi.org/10.1016/S0920-4105(03)00019-6
Kwon, Y.M.; Chang, I.; Lee, M.; Cho, G.C. (2019). Geotechnical engineering behaviour of biopolymer-treated soft marine soil. Geomechanics and Engineering, 17 (5), pp. 453-464. https://doi.org/10.12989/gae.2019.17.5.453
Lajevardi, S.H.; Shafiei, H. (2023). Investigating the biological treatment effect on fine-grained soil resistance against wind erosion: An experimental case study. Aeolian Research, 60, pp. 100841. https://doi.org/10.1016/j.aeolia.2022.100841
Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. (2017). Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer. Journal of Materials in Civil Engineering, 29 (2), pp. 04016204.
https://ascelibrary.org/doi/10.1061/%33SCE%29MT.1943-5533.0001706
Lee, S.; Chung, M.; Park, H.M.; Song, K.I.; Chang, I. (2019). Xanthan gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka. Journal of Materials in Civil Engineering, 31 (11), pp. 06019012.
https://ascelibrary.org/doi/10.1061/%33SCE%29MT.1943-5533.0002909
Lemos, L.J.L.; Correia, A.A.S.; Venda Oliveira, P.J. (2021). Comportamento de solos estabilizados quimicamente e reforçados com fibras sob ações monotónicas e cíclicas. Geotecnia, 152, pp. 509-529. https://doi.org/10.14195/2184-8394_152_16
Lin, H.; Suleiman, M.T.; Brown, D.G.; Kavazanjian, Jr.E. (2016). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142 (2), pp. 04015066.
https://ascelibrary.org/doi/10.1061/%33SCE%29GT.1943-5606.0001383
Liu, L.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y. (2018). Strength, Stiffness, and Microstructure Characteristics of Biocemented Calcareous Sand. Canadian Geotechnical Journal, 56 (10), pp. 1502-1513. https://doi.org/10.1139/cgj-2018-0007
Mendonça, A.; Morais, P.V.; Pires, A.C.; Chung, A.P.; Venda Oliveira, P.J. (2021a). A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties. Applied Sciences, 11, pp. 170. https://doi.org/10.3390/app11010170
Mendonça, A.; Morais, P.V.; Pires, A.C.; Chung, A.P.; Venda Oliveira, P.J. (2021b). Reducing Soil Permeability Using Bacteria-Produced Biopolymer. Applied Sciences, 11, pp. 7278. https://doi.org/10.3390/app11167278
Montoya, B.; DeJong, J.; Boulanger, R.; Wilson, D.; Gerhard, R.; Ganchenko, A.; Chou, J. (2012). Liquefaction mitigation using microbial induced calcite precipitation. Proceedings of GeoCongress 2012, pp. 1918-1927, Oakland, California, USA.
Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111, pp. 338-349. https://doi.org/10.1111/j.1365-2672.2011.05065
Naeimi, M.; Chu, J.; Khosroshahi, M.; Kashi, Z.L. (2023). Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation. Geoderma, 429, pp. 116183. https://doi.org/10.1016/j.geoderma.2022.116183
Nemati, M.; Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33, pp. 635-642. https://doi.org/10.1016/S0141-0229(03)00191-1
Neves, J.; João Moutinho, J.; Freire, A.C.; Paixão, A.; Monteiro, B.; Parente, M.; Cristelo, N.; Correia, A.G. (2024). A geotecnia na transição eco-digital das infraestruturas de transporte. Geotecnia, Nº extra (2024), pp. 41-78. https://doi.org/10.14195/2184-8394_extra2024_1_3
Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. (2013). Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. Journal of Geotechnical and Geoenvironmental Engineering, 139 (12), pp. 2201-2211.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959
Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. (2015a). Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils and Foundations, 55 (2), pp. 447-457. https://doi.org/10.1016/j.sandf.2015.02.018
Neupane, D.; Yasuhara, H.; Kinoshita, N. (2015b). Evaluation of enzyme mediated calcite grouting as a possible improvement technique. Proceedings of the Conference: Computer Methods and Recent Advances in Geomechanics, pp. 1169-1172, Kyoto, Japan. Taylor & Francis Group, London.
Nguyen, T.T.; Indraratna, B.; Carter, J. (2018). Laboratory investigation into biodegradation of jute drains with implications for field behaviour. Journal of Geotechnical and Geoenvironmental Engineering 144(6), pp. 04018026-1:15.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001885
Putra, H.; Yasuhara, H.; Kinoshita. N.; Hirata, A. (2017). Optimization of Enzyme-Mediated Calcite Precipitation as a Soil-Improvement Technique: The Effect of Aragonite and Gypsum on the Mechanical Properties of Treated Sand. Crystals, 7 (2), pp. 59.
https://doi.org/10.3390/cryst7020059
Shafii, I.; Shidlovskaya, A.; Briaud, J.L. (2019). Investigation into the Effect of Enzymes on the Erodibility of a Low-Plasticity Silt and a Silty Sand by EFA Testing. Journal Geotechnical Geoenvironmental Engineering, 145 (3), pp. 04019001.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002019
Stocks-Fisher, S.; Galinat, J.K.; Bang, S.S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-157.
https://doi.org/10.1016/S0038-0717(99)00082-6
Sulaiman, H.; Taha, M.R.; Rahman, N.A.; Taib, A.M. (2022). Performance of soil stabilized with biopolymer materials - xanthan gum and guar gum. Physics and Chemistry of the Earth, 128, pp. 103276. https://doi.org/10.1016/j.pce.2022.103276
van Paassen, L.A.; Ghose, R.; van der Linden, T.J.M.; van der Star, W.R.L.; van Loosdrecht, M.C.M. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 136 (12), pp. 1721–1728. https://ascelibrary.org/doi/abs/10.1061/%33SCE%29GT.1943-5606.0000382
Venda Oliveira, P.J.; Cabral, D.J.R. (2023). Behaviour of sand stabilised with xanthan gum under unconfined and confined conditions. Proceedings of the Institution of Civil Engineers – Ground Improvement, 176 (1), pp. 3-13. https://doi.org/10.1680/jgrim.20.00065
Venda Oliveira, P.J.; Neves, J.P.G. (2019). Effect of Organic Matter Content on Enzymatic Biocementation Process Applied to Coarse-Grained Soils. Journal of Materials in Civil Engineering, 31 (7), pp. 04019121.
https://ascelibrary.org/doi/abs/10.1061/%33SCE%29MT.1943-5533.0002774
Venda Oliveira, P.J.; Reis, M.J.F.C.C. (2023). Effect of the Organic Matter Content on the Mechanical Properties of Soils Stabilized with Xanthan Gum. Applied Sciences, 13, pp. 4787. https://doi.org/10.3390/app13084787
Venda Oliveira, P.J.; Rosa, J.A.O. (2020). Confined and unconfined behaviour of a silty sand improved by the enzymatic biocementation method. Transportation Geotechnics, 24, pp. 100400. https://doi.org/10.1016/j.trgeo.2020.100400
Venda Oliveira, P.J.; Correia, A.A.S.; Garcia, M.R. (2012). Effect of Organic Matter Content and Curing Conditions on the Creep Behavior of an Artificially Stabilized Soil. Journal of Materials in Civil Engineering, 24 (7), pp. 868–875.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000454
Venda Oliveira, P.J.; Correia, A.A.S.; Garcia, M.R. (2013). Effect of stress level and binder composition on secondary compression of an artificially stabilized soil. Journal of Geotechnical and Geoenvironmental Engineering, 139 (5), pp. 810–820.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000762
Venda Oliveira, P.J.; Costa, M.S.; Costa, J.N.P.; Nobre, M.F. (2015). Comparison of the ability of two bacteria to improve the behaviour of a sandy soil. Journal of Materials in Civil Engineering, 27 (1), pp. 06014025.
https://ascelibrary.org/doi/abs/10.1061/%33SCE%29MT.1943-5533.0001138
Venda Oliveira, P.J.; Freitas, L.D.; Carmona, J.P.S.F. (2016). Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement. Journal of Materials in Civil Engineering, 29 (4), pp. 04016263.
https://ascelibrary.org/doi/10.1061/%33SCE%29MT.1943-5533.0001804
Wang, Y.N.; Li, S.K.; Li, Z.Y.; Garg, A. (2023). Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator. Acta Geotechnica, 18 (6), pp. 3273-3285.
https://doi.org/10.1007/s11440-022-01791-3
Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24 (5), pp. 417-423. https://doi.org/10.1080/01490450701436505
Xiao, Y.; He, X.; Evans, T.M.; Stuedlein, A.W.; Liu, H. (2019). Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber-Reinforced Biocemented Sand. Journal Geotechnical Geoenvironmental Engineering, 145 (9), pp. 04019048.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108
Yasuhara. H.; Neupane, D.; Hayashi, K.; Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52 (3), pp. 539-549. https://doi.org/10.1016/j.sandf.2012.05.011
Zomorodian, S.M.A.; Nikbakht, S.; Ghaffari, H.; O’Kelly, B.C. (2023). Enzymatic-Induced Calcite Precipitation (EICP) Method for Improving Hydraulic Erosion Resistance of Surface Sand Layer: A Laboratory Investigation. Sustainability, 15, pp. 5567.