Análise indireta do efeito da sucção em ensaios UCS cíclicos de um solo estabilizado e reforçado com fibras

Autores

DOI:

https://doi.org/10.14195/2184-8394_162_1

Palavras-chave:

solo estabilizado, fibras sintéticas, carregamento cíclico, sucção

Resumo

Quando um material é sujeito a carregamento cíclico há alterações no comportamento geomecânico que devem ser conhecidas e caracterizadas para otimizar o binómio segurança-custo de uma dada obra. Para atingir tal objetivo, no presente trabalho apresenta-se uma série de ensaios de resistência à compressão não confinada e triaxiais, monotónicos e previamente submetidos a carregamento cíclico, com e sem membrana a envolver os provetes durante a fase cíclica, para avaliar indiretamente o efeito da sucção num solo mole quimicamente estabilizado e reforçado com fibras. Os resultados são analisados em termos de evolução da deformação axial permanente acumulada, da energia elástica e plástica e da resistência à compressão não confinada, tendo-se observado que a ocorrência de sucção promove um aumento das deformações plásticas acumuladas, da energia elástica e plástica e da resistência à compressão, sendo estes efeitos mitigados com a utilização de uma membrana a envolver os provetes.

Downloads

Não há dados estatísticos.

Referências

Abdullah, H. H., Shahin, M. A., Walske, M. L., e Karrech, A. (2020). Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization. Canadian Geotechnical Journal, 57(9), 1356-1368. https://doi.org/10.1139/cgj-2019-0215

Abu-Farsakh, M., Dhakal, S., e Chen, Q. (2015). Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading. Soils and Foundations, 55(3), 504-516. https://doi.org/https://doi.org/10.1016/j.sandf.2015.04.003

Agboola, O., Sadiku, E. R., Popoola, P., Fayomi, O. S. I., Ayeni, A. O., Dick, D. T., Adegbola, A. T., Moropeng, L., e Ramakhokhovhu, M. (2021). Surface roughness of ternary blends: Polypropylene/chitosan/sisal fiber membranes. Materials Today: Proceedings, 38, 2342-2346. https://doi.org/https://doi.org/10.1016/j.matpr.2020.06.513

Ahmed, A., e Naggar, M. H. (2018). Effect of cyclic loading on the compressive strength of soil stabilized with bassanite–tire mixture. Journal of Material Cycles and Waste Management, 20(1), 525-532. https://doi.org/10.1007/s10163-017-0617-1

Åhnberg, H., Johansson, S.-E., Pihl, H., e Carlsson, T. (2003). Stabilising effects of different binders in some Swedish soils. Proceedings of the Institution of Civil Engineers-Ground Improvement, 7(1), 9-23.

Akbari, H. R., Sharafi, H., e Goodarzi, A. R. (2021). Effect of polypropylene fiber inclusion in kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40 °C. Bulletin of Engineering Geology and the Environment, 80(2), 1841-1855. https://doi.org/10.1007/s10064-020-02028-x

ASTM-D2487. (1998). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). In: ASTM International.

Chae, J., Kim, B., Park, S.-w., e Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281-290. https://doi.org/10.1007/s12205-010-0281-7

Chauhan, M. S., Mittal, S., e Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and Geomembranes, 26(5), 429-435. https://doi.org/https://doi.org/10.1016/j.geotexmem.2008.02.001

Chen, Q., Indraratna, B., e Rujikiatkamjorn, C. (2016). Behaviour of lignosulfonate-treated soil under cyclic loading. Proceedings of the Institution of Civil Engineers - Ground Improvement, 169(2), 109-119. https://doi.org/10.1680/grim.15.00004

Choobbasti, A. J., e Kutanaei, S. S. (2017). Effect of fiber reinforcement on deformability properties of cemented sand. Journal of Adhesion Science and Technology, 31(14), 1576-1590. https://doi.org/10.1080/01694243.2016.1264681

Consoli, N. C., Foppa, D., Festugato, L., e Heineck, K. S. (2007). Key Parameters for Strength Control of Artificially Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 197-205.

https://doi.org/doi:10.1061/(ASCE)1090-0241(2007)133:2(197)

Consoli, N. C., Moraes, R. R., e Festugato, L. (2013). Variables controlling strength of fibre-reinforced cemented soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 166(4), 221-232. https://doi.org/10.1680/grim.12.00004

Consoli, N. C., Rosa, D. A., Cruz, R. C., e Rosa, A. D. (2011a). Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil. Engineering Geology, 122(3), 328-333. https://doi.org/https://doi.org/10.1016/j.enggeo.2011.05.017

Consoli, N. C., Vendruscolo, M. A., Fonini, A., e Rosa, F. D. (2009). Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196-203. https://doi.org/https://doi.org/10.1016/j.geotexmem.2008.11.005

Consoli, N. C., Zortéa, F., de Souza, M., e Festugato, L. (2011b). Studies on the dosage of fiber-reinforced cemented soils. Journal of Materials in Civil Engineering, 23(12), 1624-1632.

Correia, A. A. S. (2011). Applicability of deep mixing technique to the soft soil of Baixo Mondego (PhD Thesis, Univ. of Coimbra, Coimbra, Portugal).

Correia, A. A. S., Lopes, L., e Reis, M. S. (2021). Advanced predictive modelling applied to the chemical stabilisation of soft soils. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 1-11. https://doi.org/10.1680/jgeen.19.00295

Correia, A. A. S., Venda Oliveira, P. J., e Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008

Correia, A. A. S., Venda Oliveira, P. J., e Lemos, L. J. L. (2019). Strength assessment of chemically stabilised soft soils. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 172(3), 218-227. https://doi.org/10.1680/jgeen.17.00011

Correia, A. A. S., Venda Oliveira, P. J., Teles, J. M. N. P. C., e Pedro, A. M. G. (2017). Strength of a stabilised soil reinforced with steel fibres. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 170(4), 312-321. https://doi.org/10.1680/jgeen.16.00200

Dall'Aqua, G. P., Ghataora, G., e Ling, U. (2010). Behaviour of fibre-reinforced and stabilized clayey soils subjected to cyclic loading. Studia Geotechnica et Mechanica, 32, 3-16.

EN-197-1. (2000). Cement - Part 1: Composition, specifications and conformity criteria for common cements. In: European Committee for Standardization.

EN-206-1. (2007). Concrete - Part 1: Specification, performance, production and conformity. In: European Committee for Standardization.

EN-13286-7. (2004). Unbound and hydraulically bound mixtures - Part 7: Cyclic load triaxial test for unbound mixtures. In: European Committee for Standardization.

EuroSoilStab. (2002). Development of design and construction methods to stabilise soft organic soils: Design guide soft soil stabilisation. In: Industrial and Materials Technologies Programme (Brite-EuRam III), European Commission, p. 94.

Festugato, L., Fourie, A., e Consoli, N. C. (2013). Cyclic shear response of fibre-reinforced cemented paste backfill. Géotechnique Letters, 3(1), 5-12. https://doi.org/10.1680/geolett.12.00042

Fredlund, D. G., Sheng, D., e Zhao, J. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian Geotechnical Journal, 48(2), 186-198.

Guo, L., Wang, J., Cai, Y., Liu, H., Gao, Y., e Sun, H. (2013). Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering, 50, 28-37. https://doi.org/https://doi.org/10.1016/j.soildyn.2013.01.029

Horpibulsuk, S., Miura, N., e Nagaraj, T. S. (2005). Clay-Water/Cement Ratio Identity for Cement Admixed Soft Clays. Journal of Geotechnical and Geoenvironmental Engineering, 131(2), 187-192. https://doi.org/doi:10.1061/(ASCE)1090-0241(2005)131:2(187)

Janz, M., e Johansson, S. E. (2002). The function of different binding agents in deep satbilization (9). S. D. S. R. Centre.

Johnson, D. H., Vahedifard, F., e Peters, J. F. (2021). Macroscale friction of granular soils under monotonic and cyclic loading based upon micromechanical determination of dissipated energy. Acta Geotechnica, 16(10), 3027-3039. https://doi.org/10.1007/s11440-021-01224-7

Kamruzzaman, A. H., Chew, S. H., e Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573-589. https://doi.org/doi:10.1061/(ASCE)1090-0241(2009)135:4(573)

Kaniraj, S. R., e Havanagi, V. G. (2001). Behavior of Cement-Stabilized Fiber-Reinforced Fly Ash-Soil Mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 574-584. https://doi.org/doi:10.1061/(ASCE)1090-0241(2001)127:7(574)

Khattak, M. J., e Alrashidi, M. (2006). Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures. International Journal of Pavement Engineering, 7(1), 53-62. https://doi.org/10.1080/10298430500489207

Kumar, A., e Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/https://doi.org/10.1016/j.geotexmem.2015.07.010

Lau, J., Biscontin, G., e Berti, D. (2021). Effects of biochar on cement-stabilised peat soil. Proceedings of the Institution of Civil Engineers - Ground Improvement, 176(2), 76-87. https://doi.org/10.1680/jgrim.19.00013

Lemos, L. J. L., Correia, A. A. S., e Venda Oliveira, P. J. (2021). Behavior of chemically stabilized soils reinforced with fibers under monotonic and cyclic loading. Geotecnia Journal - Special Issue Commemorating the 50th Anniversary, 152, 509-529. https://doi.org/https://doi.org/10.14195/2184-8394_152_16

Lenart, S. (2008). The Use of Dissipated Energy at Modeling of Cyclic Loaded Saturated Soils. In T. M. a. Y. Ikeda (Ed.), Earthquake Engineering: New Research (pp. 29). Nova Science Publishers, Inc., New York.

Lorenzo, G. A., e Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay - New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042-1050. https://doi.org/doi:10.1061/(ASCE)1090-0241(2004)130:10(1042)

Lorenzo, G. A., e Bergado, D. T. (2006). Fundamental characteristics of cement-admixed clay in deep mixing. Journal of Materials in Civil Engineering, 18(2), 161-174. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161)

Martins, L. A., Correia, A. A. S., Venda Oliveira, P. J., e Lemos, L. J. L. (2023). Effect of the number of loading cycles on the behavior of a stabilized fiber reinforced soft soil – energy evaluation. Journal of Materials in Civil Engineering https://doi.org/https://doi.org/10.1061/JMCEE7.MTENG-15231

Martins, L. A., Correia, A. A. S., Venda Oliveira, P. J., e Lemos, L. J. L. (2024). Using the shakedown theory to study the cyclic behaviour of an unreinforced and fibre-reinforced stabilized soft soil. International Journal of Geotechnical Engineering, 1-12. https://doi.org/10.1080/19386362.2024.2359816

Narani, S. S., Abbaspour, M., Hosseini, S. M. M. M., e Nejad, F. M. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24, 100375. https://doi.org/https://doi.org/10.1016/j.trgeo.2020.100375

Narani, S. S., Zare, P., Abbaspour, M., Fahimifar, A., Siddiqua, S., e Mir Mohammad Hosseini, S. M. (2021). Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading. Construction and Building Materials, 296, 123746. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.123746

Ni, J., Indraratna, B., Geng, X., Carter, J. P., e Chen, Y. (2015). Model of soft soils under cyclic loading. International Journal of Geomechanics, 15(4), 04014067.

Nie, R., Li, Y., Leng, W., Mei, H., Dong, J., e Chen, X. (2020). Deformation characteristics of fine-grained soil under cyclic loading with intermittence. Acta Geotechnica, 15(11), 3041-3054. https://doi.org/10.1007/s11440-020-00955-3

Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263-275. https://doi.org/10.1680/gein.13.00016

Ostadan, F., Deng, N., e Arango, I. (1996). Energy-based Method for Liquefaction Potential Evaluation. Phase 1, Feasibility Study. National Institute of Standards and Technology, Building and Fire Research.

Park, S. S. (2011). Unconfined compressive strength and ductility of fiber-reinforced cemented sand. Construction and Building Materials, 25(2), 1134-1138. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2010.07.017

Plé, O., e Lê, T. N. H. (2012). Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles and Geomembranes, 32, 111-116. https://doi.org/https://doi.org/10.1016/j.geotexmem.2011.11.004

Sas, W., Głuchowski, A., Bursa, B., e Szymański, A. (2017). Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading. Acta Geophysica, 65(2), 331-344. https://doi.org/10.1007/s11600-017-0028-7

Tang, C., Shi, B., Gao, W., Chen, F., e Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.

https://doi.org/https://doi.org/10.1016/j.geotexmem.2006.11.002

Varkuti, H. R. (2015). Influence Of Cyclic Loading On The Bearing Capacity Of Treated Soil. In. Faculty of Civil Engineering, Bauhaus University Weimar.

Venda Oliveira, P. J., e Cabral, D. J. R. (2023). Behaviour of sand stabilised with xanthan gum under unconfined and confined conditions. Proceedings of the Institution of Civil Engineers - Ground Improvement, 176(1), 3-13. https://doi.org/10.1680/jgrim.20.00065

Venda Oliveira, P. J., Correia, A. A. S., e Cajada, J. C. A. (2018). Effect of the type of soil on the cyclic behaviour of chemically stabilised soils unreinforced and reinforced with polypropylene fibres. Soil Dynamics and Earthquake Engineering, 115, 336-343. https://doi.org/https://doi.org/10.1016/j.soildyn.2018.09.005

Venda Oliveira, P. J., Correia, A. A. S., e Garcia, M. R. (2013). Effect of Stress Level and Binder Composition on Secondary Compression of an Artificially Stabilized Soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 810-820. https://doi.org/doi:10.1061/(ASCE)GT.1943-5606.0000762

Venda Oliveira, P. J., Correia, A. A. S., e Lopes, T. J. S. (2014). Effect of organic matter content and binder quantity on the uniaxial creep behavior of an artificially stabilized soil. Journal of Geotechnical and Geoenvironmental Engineering, 140. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001158

Venda Oliveira, P. J., Correia, A. A. S., Teles, J. M. N. P. C., e Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23(3), 171-182. https://doi.org/10.1680/jgein.15.00040

Venda Oliveira, P. J., Correia, A. A. S., Teles, J. M. N. P. C., e Pedro, A. M. G. (2017). Effect of cyclic loading on the behaviour of a chemically stabilised soft soil reinforced with steel fibres. Soil Dynamics and Earthquake Engineering, 92, 122-125. https://doi.org/10.1016/j.soildyn.2016.10.006

Xia, P., Shao, L., e Deng, W. (2021). Mechanism study of the evolution of quasi-elasticity of granular soil during cyclic loading. Granular Matter, 23(4), 84. https://doi.org/10.1007/s10035-021-01157-8

Yilmaz, Y. (2009). Experimental investigation of the strength properties of sand–clay mixtures reinforced with randomly distributed discrete polypropylene fibers. Geosynthetics International, 16(5), 354-363. https://doi.org/10.1680/gein.2009.16.5.354

Zaimoglu, A. S., e Yetimoglu, T. (2012). Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers. Geotechnical and Geological Engineering, 30(1), 197-203.

##submission.downloads##

Publicado

2024-11-30

Edição

Secção

Artigos