A geotecnia nos pavimentos e vias-férreas e prospetivas para a era digital
DOI:
https://doi.org/10.14195/2184-8394_152_4Palavras-chave:
Geotecnia nos transportes, pavimentos, digitalResumo
O artigo tem como objetivo apresentar as principais contribuições da geotecnia e da era digital nos pavimentos e nas vias-férreas, com importância nas várias fases do ciclo de vida (projeto, construção, operação e manutenção). Neste contexto são apresentados aspetos da caracterização e modelação dos geomateriais e sua influência no desempenho dessas estruturas, através da demonstração de resultados de ensaios de laboratório e “in situ”. No que diz respeito à digitalização que caracteriza a indústria na atualidade (Indústria 4.0), são descritas algumas das maiores potencialidades que as áreas da otimização e das tecnologias de informação e comunicação podem ter na gestão e alocação inteligente de recursos em ambientes dinâmicos, tais como as terraplenagens, bem como nos sistemas de gestão de pavimentos, para além do recurso ao BIM ao longo das fases de projeto. Acresce ainda a integração de materiais com capacidade de auto-sensorização que constituirão as estruturas inteligentes do futuro.
Downloads
Referências
Abedi, M.; Fangueiro, R.; Gomes Correia, A. (2020). Ultra-sensitive affordable cementitious composite with high mechanical and microstructural performances by hybrid CNT/GNP. Materials, Vol. 13, no 16, art. n.o 3484.
Balay, J.; Gomes Correia, A.; Jouve, P.; Hornych, P.; Paute, J. L. (1998). Étude expérimentale et modélisation du comportement mécanique des graves non traitées et des sols supports de chaussées. Dernières avancées. Bulletin des Laboratoires des Ponts et Chaussées, 216, pp. 3- 17.
Biarez J.; Bougriou Z.; Fayad T.; Hammoud I.; Liu W.; Gomes Correia A. (1999). Les modules de 10-5 à 10-1 pour les sols remaniés et non remaniés, pour les fondations des voies ferrées et les routes. Proceedings of the 10 th ECSMGE, Geotechnical Engineering for Transportation Infrastructure, AA Balkema. The Netherlands, vol. 3, pp. 1737-1742.
Brown, S. F. (1996). 36 th Rankine Lecture: Soil Mechanics in Pavement Engineering. Géotechnique, Vol. 46, no 3, pp. 383-426.
Camargo, F.; Larsen, B.; Chabourn, B.; Roberson, R.; Siekmeier, J. (2006). Intelligent compaction: A Minnesota case history. Proceedings of the 54 th Annual University of Minnesota Geotechnical Conference. Minneapolis, USA.
Caterpillar Inc. (2006). System for Track-Type Tractors AccuGrade: Grade Control System for Track-Type Tractors. http://www.cat.com/en_US/support/operations/technology/earth- moving-solutions/accugrade-grade-control-system.html. Acedido em abril de 2018.
Caterpillar Inc. (2012). Cat Minestar System - Robison Mine case http://www.cat.com/en_US/articles/customer-stories/mining/case-studies/robinson- mine.html. Acedido em abril de 2018. study.
Coronado, O.; Caicedo, B.; Taibi, S.; Gomes Correia, A.; Fleureau, J.-M. (2011). A macro geomechanical approach to rank non-standard unbound granular materials for pavements. Engineering Geology, vol. 119, pp. 64-73.
Coronado, O.; Caicedo, B.; Taibi, S.; Gomes Correia, A.; Souli, H.; Fleureau, J.-M. (2016). Effect of water content on the resilient behavior of non standard unbound granular materials. Transportation Geotechnics, vol. 7, pp. 29-39.
Delgado, B.; Viana da Fonseca, A.; Fortunato, E., Maia, P. (2019). Mechanical behavior of inert steel slag ballast for heavy haul rail track: laboratory evaluation. Transportation Geotechnics, vol. 20, pp. 2214-3912.
EN 13286-7 (2004). Unbound and hydraulically bound mixtures; Part 7: Cyclic load triaxial test for unbound mixtures. European Committee for Standardization, Brussels.
Fortunato, E., (2005). Renovação de Plataformas Ferroviárias. Estudos relativos à capacidade de carga. Tese de Doutoramento. Faculdade de Engenharia da Universidade do Porto.
Fortunato, E. (2016). Comportamento estrutural de vias-férreas balastradas. Contributos para melhorar a eficiência e a qualidade da operação. Lisboa: LNEC. ISBN 978-972-49-2280-5.
Fortunato, E.; Paixão, A.; Fontul, S. (2012). Improving the use of unbound granular materials in railway sub-ballast layer. Hokkaido University, Japan: Taylor & Francis Group.
Fortunato, E.; Paixão, A.; Calçada, R., (2013). Railway track transition zones: design, construction, monitoring and numerical modelling. International Journal of Railway Technology. Saxe-Coburg Publications, vol. 2, n.o 4, pp. 33-58.
Fortunato, E.; Roque, A. J.; Gomes Correia, A. (2018). Comportamento estrutural de um trecho rodoviário construído com agregado siderúrgico inerte para construção (ASIC). 16o Congresso Nacional de Geotecnia, Ponta Delgada, Sociedade de Portuguesa de Geotecnia.
Fortunato, E.; Paixão, A.; Morais, P.; Santos, C.; Francisco, A.; Asseiceiro, F.; Cruz, J.; Cruz, N. (2019). Soil-binder columns for the rehabilitation of railway track platforms. Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, Iceland.
Gaspar, A. P. T. (2010). Performance evaluation and numerical modeling of an ISAC embankment and its comparison with a traditional soil embankment. Dissertação de Mestrado, Universidade do Minho, Guimarães, Portugal.
Gomes Correia, A. (2000). Influence of compaction conditions on the resilient and permanent deformations of aggregate mixtures of granite. Compaction of soils and granular materials (eds. A. Gomes Correia & A. Quibel). Presse Nationale des Ponts et Chaussées, pp. 27-39.
Gomes Correia, A. (2001). Soil Mechanics in routine and advanced pavement and rail track rational design. Geotechnics for Roads, Rail tracks and Earth Structures (Gomes Correia and Brandl, eds.). Balkema, pp. 165-187.
Gomes Correia, A. (2004a). Características de deformabilidade dos solos que interessam à funcionalidade das estruturas. Geotecnia, n.o 100, pp. 103-122, Revista da Sociedade Portuguesa de Geotecnia, Lisboa, Portugal.
Gomes Correia, A. (2004b). Evaluation of mechanical properties of unbound granular materials for pavements and rail tracks. Geotechnics in Pavement and Railway Design and Construction (eds. A. Gomes Correia and A. Loizos). Milpress, Rotterdam, Netherlands, pp. 35-60.
Gomes Correia, A. (2008). Innovations in design and construction of granular pavements and railways. Advances in Transportation Geotechnics (Ellis, Yu, McDowell, Dawson & Thom, Eds.). Taylor & Francis Group, London, ISBN 978-0-415-47590-7, pp. 3-13.
Gomes Correia, A.; Biarez, J. (1999). Stiffness properties of materials to use in pavement and rail track Design. Proceedings of the 12 th ECSMGE, Geotechnical Engineering for Transportation Infrastructure (Barends et al., eds.), Balkema, Rotterdam, vol. 2, pp. 1245- 1250.
Gomes Correia, A.; Cunha, J. (2014). Analysis of nonlinear soil modelling in the subgrade and rail track responses under HST. Transportation Geotechnics, vol. 1, pp. 147-156.
Gomes-Correia, A.; Dawson, A. (1996). The effects of sugrade clay condition on the structural behaviour of road pavements. Flexible Pavements (A. Gomes Correia, Ed.). Balkema, Rotterdam, ISBN 90 5410 523 2, pp. 113-119.
Gomes Correia, A.; Magnan, J. P. (2012). Trends and challenges in earthworks for transportation infrastructures. Advances in Transportation Geotechnics II, Taylor & Francis Group, pp. 1- 12.
Gomes Correia, A.; Parente, M. (2014). Intelligent compaction technology for geomaterials. A demonstration project. TRA2014 Transport Research Arena, pp. 1-10.
Gomes Correia, A.; Quibel, A. (2000). Compaction of soils and granular materials (A. Gomes Correia & A. Quibel, Eds.). Presse Nationale des Ponts et Chaussées.
Gomes Correia, A; Araújo, N.; Reis Ferreira, S. (2010). A large precision triaxial apparatus for study geomaterials under cyclic loading. 12o Congresso Nacional de Geotecnia, Guimarães, pp. 1125-1130.
Gomes Correia, A.; Hornych, P.; Akou, Y. (1999). Review of models and modelling of unbound granular materials. Unbound Granular Materials. Laboratory testing, In-situ Testing and Modelling (A. Gomes Correia, Ed.). A.A. Balkema, pp. 3-15.
Gomes Correia, A.; Winter, M. G.; Puppala, A. J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, vol. 7, pp. 21-28.
Gomes Correia, A.; Roque, A. J.; Reis Ferreira, S. M.; Fortunato, E. (2012). Case study to promote the use of industrial byproducts: The relevance of performance tests. Journal of ASTM International, vol. 9, n.o 2, pp. 1-18.
Kaynia, A. M.; Madshus, C.; Zackrisson, P. (2000). Ground vibration from high-speed trains: Prediction and countermeasure. Journal of Geotechnical and Geoenvironmental Engineering, vol. 126, n.o 6, pp. 531-537.
Krylov, V. V.; Dawson, A. R.; Heelis, M. E.; Collop, A. C. (2000). Rail movement and ground waves caused by high-speed trains approaching track-soil critical velocities. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 214, n.o 2, pp. 107-116.
LC Products. (2018). Titan 3330 Production Monitor Brochure. https://lc.com.au/products_excavator_production_monitor.aspx. Acedido em abril de 2018.
Marcelino, P.; Lurdes Antunes, M.; Fortunato, E. (2018). Comprehensive performance indicators for road pavement condition assessment. Structure and Infrastructure Engineering, vol. 14, n.o 11, pp. 1433-1445.
Marcelino, P.; Lurdes Antunes, M.; Fortunato, E.; Gomes, M. C. (2019a). Improved Methods for the Imputation of Missing Data in Pavement Management Systems. 18th Annual International Conference on Pavement Engineering, Asphalt Technology and Infrastructure, Liverpool, UK.
Marcelino, P.; Lurdes Antunes, M.; Fortunato, E.; Gomes, M. C. (2019b). Transfer learning for pavement performance prediction. International Journal of Pavement Research and Technology, vol. 13, pp. 154-167.
Marcelino, P.; Lurdes Antunes, M.; Fortunato, E.; Gomes, M. C. (2021). Machine learning approach for pavement performance prediction. International Journal of Pavement Engineering, vol. 22, n.o 3, pp. 341-354.
Marques, R.; Gomes Correia, A.; Cortez, P. (2009). Data mining applied to compaction of geomaterials. Proceedings of the 8 th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Champaign, Illinois, USA, Taylor & Francis, vol. 2, pp 597- 605.
Montaser, A.; Moselhi, O. (2014). Truck + for earthmoving operations. Journal of Information Technology in Construction, vol. 19, pp. 412-433.
Monteiro, A. (2019). Modelação numérica do comportamento de camadas de pavimentos rodoviários constituídas por solos tratados com cimento. Dissertação de Mestrado. Instituto Superior Técnico, Universidade de Lisboa.
Nazarian, S; Desai, M. R. (1993). Automated surface wave method: Field testing. Journal of the Geotechnical Engineering Division, ASCE, vol. 119, n.o 7.
Neves, J. (2001). Contribuição para a modelação do comportamento estrutural de pavimentos rodoviários flexíveis. Tese de Doutoramento. Universidade Técnica de Lisboa.
Neves, J.; Gonçalves, M. (2018). Finite element modelling of reinforced road pavements with geogrids. Numerical Methods in Geotechnical Engineering IX - Cardoso et al. (Eds), Taylors & Francis Group, London, ISBN 978-1-138-33203-4, vol. 2, pp. 1371-1376.
Neves, J.; Gomes Correia, A. (2002a). Importância do comportamento dos materiais granulares no dimensionamento e na economia de construção de pavimentos flexíveis. 2o Congresso Rodoviário Português, Lisboa. Centro Rodoviário Português, vol. II, pp. 233- 244.
Neves, J.; Gomes Correia, A. (2002b). Bearing capacity of a flexible pavement during the construction phase. Proceedings of the 6 th International Conference on the Bearing Capacity of Roads and Airfields, BCRA02, Lisboa. A.A. Balkema, Rotterdam, vol. 1, ISBN 90 5809 396 4, pp. 677-684.
Neves, J.; Gomes Correia, A. (2002c). O contributo da observação de trechos experimentais na modelação do comportamento estrutural e pavimentos flexíveis. 8o Congresso Nacional de Geotecnia, Lisboa. Sociedade Portuguesa de Geotecnia, vol. 3, pp. 1421-1431.
Neves, J.; Gomes Correia, A. (2003). Influence of non-linear elastic behaviour of unbound granular materials on pavement reinforcement design. Proceedings of the 3 rd International Symposium on Maintenance and Rehabilitation of Pavements and Technological Conference, MAIREPAV03, Guimarães. A.A. Balkema, Rotterdam, ISBN 972-8692-03-X, pp. 251-260.
Neves, J.; Gomes Correia, A. (2004). Behaviour of granular materials: field results versus numerical simulations. Proceedings of the 6 th International Symposium on Unbound Aggregates in Roads, UNBAR6, Nottingham, United-Kingdom. A.A. Balkema, Rotterdam, ISBN 90 5809 699 8, pp. 97-106.
Neves, J.; Gomes Correia, A. (2006). Consideração da não-linearidade do comportamento dos solos na modelação numérica de pavimentos rodoviários. 10o Congresso Nacional de Geotecnia, Lisboa. Sociedade Portuguesa de Geotecnia, pp.1-10.
Neves, J.; Gomes Correia, A. (2006). A experiência portuguesa na modelação do comportamento estrutural dos solos de fundação dos pavimentos rodoviários. III Congresso Luso-Brasileiro de Geotecnia, Geotecnia de Infraestrutura de Transportes, Brasil. ABMS/SPG, pp. 77-82.
Neves, J.; Gomes Correia, A. (2007). Evaluation and modelling of subgrade stiffness during the construction phase of asphalt pavements. Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials. Grécia, vol. 1, pp. 503-511.
Neves, J.; Gomes Correia, A. (2014). Portuguese experience on asphalt pavements design supported by in situ performance evaluations. Design, Analysis, and Asphalt Material Characterization for Road and Airfield Pavements. GSP 246, ASCE, pp. 75-82.
Neves, J.; Sampaio, Z.; Vilela, M. (2019). A case study of BIM implementation in rail track rehabilitation. Infrastructures, vol. 4, no 8.
Paixão, A.; Fortunato, E.; Calçada, R. (2014). Transition zones to railway bridges: track measurements and numerical modelling. Engineering Structures, vol. 80, pp. 435-443.
Paixão, A.; Fortunato, E.; Calçada, R. (2015). Design and construction of backfills for railway track transition zones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 229, n.o 1, pp. 58-70.
Paixão, A.; Varandas, J. N.; Fortunato, E.; Calçada, R. (2016). Non-linear behaviour of geomaterials in railway Tracks under different loading conditions. Procedia Engineering, vol. 143, pp. 1128-1135.
Parente, M.; Cortez, P.; Gomes Correia, A. (2015a). An evolutionary multi-objective optimization system for earthworks. Expert Systems with Applications, vol. 42, no 11, pp. 6674-6685.
Parente, M.; Gomes Correia, A.; Cortez, P. (2015b). Modern optimization in earthwork construction. Proceedings of the XVI ECSMGE, ICE Publishing, pp. 343-348.
Parente, M.; Gomes Correia, A.; Cortez, P. (2016). Metaheuristics, data mining and geographic information systems for earthworks equipment allocation. Advances in Transportation Geotechnics III, vol. 143, pp. 506-513.
Petersen, L. (2005). Continuous compaction control MnROAD demonstration. Technical report for the Minnesota Department of Transportation (Mn/DOT). Minneapolis, USA.
Profillidis, V. A. (2006) Railway management and engineering. 3a Edição. Ashgate, Aldershot, UK, ISBN 978-1-4094-6463-1.
Ramos, A.; Gomes Correia, A.; Indraratna, B.; Ngo, T.; Calçada, R.; Costa, P. A. (2020). Mechanistic-empirical permanent deformation models: Laboratory testing, modelling and ranking. Transportation Geotechnics, vol. 23, 100326.
Ramos, A.; Gomes Correia, A.; Calçada, R.; Alves Costa, P.; Esen, A.; Woodward, P. K.; Connolly, D. P.; Laghrouche, O. (2021). Influence of track foundation on the performance of ballast and concrete slab tracks under cyclic loading: Physical modelling and numerical model calibration. Construction and Building Materials, vol. 277.
Rana, S.; Subramani, P.; Fangueiro, R.; Gomes Correia, A. (2016). A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, vol. 3, no 2, pp. 357-379.
Rana, S.; Zdraveva, E.; Pereira, C.; Fangueiro, R.; Gomes Correia, A. (2014). Development of hybrid braided composite rods for reinforcement and health monitoring of structures. The Scientific World Journal, n.o 170187.
Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. https://www.bcgperspectives.com/content/articles/engineered_products_project_business_ind ustry_40_future_productivity_growth_manufacturing_industries/#chapter1. Acedido em abril de 2017.
Shearon, L. (2015). Manage what you measure. Australia’s Mining Monthly Magazine, 57. https://lc.com.au/pdfs/amm_titan_article.pdf. Acedido em abril de 2018.
Shift2Rail Homepage (2021). https://shift2rail.org. Acedido em abril de 2021.
Thurner, H.; Sandström, A. (1980). A new device for instant compaction control. Proceedings of International Conference on Compaction, Paris, France, pp. 611-614.
Thurner, H.; Sandström, A. (2000). Continuous Compaction Control, CCC. In A. Gomes Correia & A. Quibel (Eds.), Compaction of soils and granular materials. Paris, France: Presse Nationale des Ponts et Chaussées.
Varandas, J. N.; Paixão, A.; Fortunato, E.; Zuada Coelho, B.; Hölscher, P. (2020). Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates - A 3D FEM implementation. Computers and Geotechnics, vol. 126, 103712.