Study of the stresses below a raft founded on collapsible soil reinforced with rigid inclusions

Authors

  • Raimundo Francisco Pérez León Universidade de Brasília
  • Juan Félix Rodríguez Rebolledo Universidade de Brasília https://orcid.org/0000-0003-2929-7381
  • José Camapum de Carvalho Universidade de Brasília
  • Fernando Feitosa Monteiro Universidade de Brasília

DOI:

https://doi.org/10.24849/j.geot.2020.150.05

Keywords:

Rigid inclusions, axisymmetric modelling, collapsible soil

Abstract

The region of the Federal District of Brasília has a superficial layer formed by clayey, porous and collapsible soil whose thickness varies from a few centimetres to several meters deep. It is due to the presence of this layer of collapsible porous soil that in the Federal District is common to use deep foundations. The inclusions have been studied and used for the purpose of controlling the settlements and reducing the cost in the foundations of low height buildings over soft soil. The authors have studied the use of foundations with rigid inclusions as an alternative for controlling the settlement in the collapsible soils of the Federal District, demonstrating its good performance. This paper studies, through axisymmetric modelling, the stress under raft induced by the top of the inclusions. For this, several models were developed, where the spacing between inclusions, the height of the distribution layer and the stratigraphy were varied. The results show the influence of the geometric characteristics of the foundation and the type of stratigraphy on the development of stress under the raft, as well as the geometric arrangement in which the stresses induced by the inclusion head are minimal, which constitutes an advantage of this type of foundation since it decreases the amount of structural reinforcement in the raft.

Downloads

Download data is not yet available.

References

ABNT (2001). NBR 6484 – Solo – Sondagens de simples reconhecimento com SPT - Método de ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 17 p.

ABNT (2014). NBR 6118 – Projeto de estruturas de concreto – Procedimento. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 256 p.

ABNT (2015). NBR 8953 – Concreto para fins estruturais – Classificação pela massa específica, por grupos de resistência e consistência. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 3 p.

Almeida, M.S.S.; Magnani, H.O.; Dias, D.; Deotti, L.O.G. (2011). Behaviour of three test embankments taken to failure on soft clay. Soils and Rocks, 34:389–404.

Alonso, E.E.; Gens, A.; Josa, A. (1990). A constitutive model for partially saturated soils. Geotechnique, 40(3): 405–430.

ASIRI (2011). Recommendations for design, construction and control of rigid inclusion ground improvements. ASIRI National Project. Institute for Applied Research and Experimentation in Civil Engineering (IREX), Presses des Ponts, France, 317 p.

Bohn, C. (2015). Serviceability and safety in the design of rigid inclusions and combined pile-raft foundations. PhD thesis, Université Paris-Est, Paris, 319 p. NNT: 2015PESC1096

Briançon, L.; Dias, D.; Simon C. (2015). Monitoring and numerical investigation of a rigid inclusions reinforced industrial building. Can. Geotech. J., 52:1–13, DOI: 10.1139/cgj-2014- 0262.

Brinkgreve, R.B.J.; Engin E.; Swolfs W.M. (2014). Plaxis 2D Anniversary Edition, Plaxis bv.

Brinkgreve, R.B.J.; Kamarswamy S.; Swolfs W.M. (2015). Plaxis 3D Anniversary Edition, Plaxis bv.

British Standards (2010). Code of practice for strengthened/reinforced soils and others fills - BS 8006-1, British Standards Institution, London, UK, 249 p.

Camapum de Carvalho, J.; Martins, É.S.; Cardoso, F.B.F. (2002). A influência da mineralogia na evolução micromorfológica do colapso em saprólito e latossolo. Boletim de Pesquisa e Desenvolvimento. Embrapa Cerrados, Brasília, n.67.

Camapum de Carvalho, J.; Cordão Neto, M.; Andrade de Aguiar, L. (2009). Livro comemorativo dos vinte anos do Programa de Pós-Graduação em Geotecnia da Universidade de Brasília. Editorial FT, Brasília, DF, 470 p.

Cardoso, F.B.F. (1995). Análise Química, Mineralógica e Micromorfológica de Solos Tropicais Colapsíveis e o Estudo da Dinâmica do Colapso. Dissertação de Mestrado, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 140 p.

Cardoso, F.B.F. (2002). Propriedades e Comportamento Mecânico de Solos do Planalto Central Brasileiro. Tese de Doutorado, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 357 p.

Chatte, R.; Lauzon, M. (2011). Embankment Construction Using Controlled Modulus Columns for Nouvelle Autoroute 30 Project in Beauharnois (Qc). 14th Pan-Am CGS Geotechnical Conference, Toronto, Ontario, Canada.

Chevalier, B. (2008). Études expérimentale et numérique des transfert de charge dans les matériaux granulaires. Application aux renforcement des sols par inclusions rigides. Thése de Docteur, Ecole doctorale Mécanique et Energétique, Université Joseph-Fourier - Grenoble I, 203 p.

Cintra, J.C.A (2004). Aplicações da mecânica dos solos não saturados - Fundações em solos colapsíveis. 5° Simpósio Brasileiro de Solos Não-Saturados, São Carlos, SP : 1-19.

Coelho, R.S. (2013). Relatório das sondagens executadas na área destinada à construção da obra Casa do Professor. FUNDEX, Infrasolo, Brasília, DF, 11 p.

Combarieu, O. (1988). Amélioration des sols par inclusions rigides verticales application à l’édification de remblais sur sols médiocres. Rev. Franç. Géotech., 44: 57–79.

Combarieu, O. (1990). Fondations superficielles sur sol amélioré par inclusions rigides verticales. Rev. Franç. Géotech., 53: 33–44.

Cruz, P.T. (1987). Solos residuais: algumas hipóteses de formulações teóricas de comportamento. Seminário em Geotecnia de Solos Tropicais, ABMS-UNB, Brasília, DF, pp. 79-111.

Echeverría, S.P. (2006). Efeitos de arqueamento em aterros sobre solo estaqueado. Master Degree Dissertation, Civil Engineering and Environmental Department, University of Brasília, Brasília, 136 p.

Erol, O.A.; El-Ruwaih, I.A. (1982). Collapse behaviour of desert loess. International Proceedings of the 3th International Conference of Expansive Soils, Haifa, 196-200.

Fonseca, E.C.; Palmeira, E.M. (2018). An evaluation of the accuracy of design methods for geosynthetic reinforced piled embankments. Can. Geotech. J., 56(6):761-773, DOI: 10.1139/cgj-2018-0071

Futai, M.M. (1997). Análise de ensaios edométricos com sucção controlada em solos colapsíveis. Dissertação de Mestrado em Ciências da Engenharia Civil, Programa de Pós-graduação de Engenharia, Universidade Federal de Rio de Janeiro, Rio de janeiro, RJ, 254 p.

Guimarães, R.C. (2002). Análise das propriedades e comportamento de um perfil de solo laterítico aplicada ao estudo do desempenho de estacas escavadas. Dissertação de Mestrado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 183 p.

Hor, B.; Myung-Jun Song; Min-Hyung Jung; Young-Hun Song; Yung-Ho Park (2015). A 3D FEM analysis on the performance of disconnected piled raft foundation. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Fukuoka, Kyushu, Japan.

Habib, H. A. A.; Brugman, M. H. A.; Uijting, B. G. J. (2002). Widening of Road N247 founded on a geogrid reinforced mattress on piles. 7th ICG, Nice, pp. 369-372.

Jardim, N.A. (1998). Metodologia de Previsão de Capacidade de Carga Vertical e Horizontal com o Dilatômetro de Marchetti. Dissertação de Mestrado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 141 p.

Jenck, O.; Dias, D.; Kastner, R. (2005). Soft ground improvement by vertical rigid piles – Two- dimensional physical modelling and comparison with current design methods. Soils and Foundations, Vol 45, No 6, 15-30.

Jenck, O.; Dias, D.; Kastner, R. (2006). Numerical modeling of an embankment on soft ground improved by vertical rigid piles. Proceedings of the Fourth International Conference on Soft Soil Engineering, Vancouver, Canada.

Jennings, J.E.; Knigth, K. (1957). The additional settlement of foundations due to a collapse of structure of sand subsoils on wetting. Proc. of the 4th ISSMFE, 1: 316-319.

Jennings, J.E.; Knight, K. (1975). A guide to construction on or with material exhibiting additional settlement due to collapse of grain structure. International Proceedings of the 6th Regional Conference of Africa on SMFE, pp. 99–105.

López, R.; Shao, L.; Lam Po, I.; Gularte, F. (1999). Composite ground reinforcement foundation system for large capacity grain domes under static and seismic loads. XI Congreso Panamericano de Mecánica de Suelos e Ingeniería Geotécnica, Foz do Iguazu, Brasil: 1–16.

Maswoswe, J. (1985). Stress path for a compacted soil during collapse due to wetting. PhD thesis, Imperial College, London.

Mota, N.M.B. (2003). Ensaios avançados de campo na argila porosa não saturada de Brasília: interpretação e aplicação em projetos de fundação. Tese de Doutorado. Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 335 p.

Okyay, U.S.; Briançon, L. (2012). Monitoring and numerical investigations of rigid inclusion reinforced concrete water tanks. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Near East University, Nicosia, North Cyprus.

Okyay, U.S.; Dias, D. (2010). Use of lime and cement treated soils as pile supported load transfer platform. Engineering Geology 114, 34–44.

Otálvaro, I.F. (2013). Comportamento hidromecânico de um solo tropical compactado. Tese de Doutorado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 122 p.

Paniagua, W.I. (2013). Inclusiones rígidas. 1er Congreso Internacional de Fundaciones Profundas, CFPB, Santa Cruz de la Sierra, Bolivia.

Pecker, A. (2004). Le pont de Rion Antirion en Grèce, le défi sismique. 550 conférence, Prononcée à l’Université de Tous les saviors.

Perez, E.N.P. (1997). O uso da teoria da elasticidade na determinação do Modulo de Young de solo adjacente a estacas carregadas verticalmente na argila porosa de Brasília. Dissertação de Mestrado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 146p.

Pérez, R.F. (2017). Inclusões rígidas para o controle de recalques nos solos colapsíveis do Distrito Federal. Dissertação de Mestrado, Publicação G.DM-284/17, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 156 p.

Quigley, P.; O’Malley, J.; Rodgers, M. (2003). Performance of a trial embankment constructed on soft compressible estuarine deposits at Shannon, Ireland. Proc of the Int. Workshop on Geotechnics of Soft Soils, Theory and Practice. Noordwijkerhout, pp. 619–624.

Rebolledo, J.F.; León, R.F.; Camapum de Carvalho, J. (2019.a). Obtaining the Mechanical Parameters for the Hardening Soil Model of Tropical Soils in the City of Brasília. Soils and Rocks, 42(1):61-74, DOI: 10.28927/SR.421061

Rebolledo, J.F.; León, R.F.; Camapum de Carvalho, J. (2019.b). Performance evaluation of rigid inclusions foundations in the reduction of settlements. Soils and Rocks, 42(3):265-279, DOI: 10.28927/SR423265

Rizal, M.; Yee, K. (2018). Bridge Approach Embankments on Rigid Inclusions. International Conference on Geotechnics, Yogyakarta, Indonesia.

Rodríguez, J.F. (2001). Uso de inclusiones rígidas para el control de asentamientos en suelos blandos. Tesis de Maestría en Geotecnia, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, DF, 154 p.

Rodríguez, J.F. (2010). Modelado del comportamiento de pilotes e inclusiones sometidos a consolidación regional, en la zona lacustre de la ciudad de México. Tesis de Doctorado en Geotecnia, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, DF, 244 p.

Rodríguez, J.F.; Auvinet, G. (1999). Uso de inclusiones para el control de asentamientos debido a abatimientos preziométricos. XI Congreso Panamericano de Mecánica Suelos e Ingeniería Geotécnica, Brazil.

Rodríguez, J.F.; Auvinet, G. (2002). Aplicación del método de los elementos finitos al diseño de cimentaciones piloteadas. Métodos Numéricos en Ingeniería y Ciencias Aplicadas, : 1–11.

Rodríguez, J.F.; Auvinet, G. (2006). Rigid inclusions in Mexico City soft soils. Proc. Int. Symp.

Rigid Inclusions in Difficult Soft Soil Conditions, Mexico City, v. 1, pp. 197-206.

Rodríguez, J.F.; Auvinent G.; Martínez H.E. (2015). Settlement analysis of friction piles in consolidating soft soils. DYNA, 82(192): 211-220, DOI: http://dx.doi.org/10.15446/dyna.v82n192.47752

Sales, M.M. (2000). Análise do comportamento de sapatas estaqueadas. Tese de Doutorado em Geotecnia, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 229 p.

Sales, M.M.; Vilar O.M.; Mascarenha, M.M.A.; Silva, C.M.; Pereira, J.H.F; Camapum de Carvalho,

J. (2015). Fundações em solos não saturados. Solos não saturados no contexto geotécnico, Camapum de Carvalho, J., Gitirana Jr, G., Machado, S., Mascarenha, M.M. & Filho, F. (eds.), ABMS, São Paulo, SP, pp. 651-685.

Santoyo, E.; Ovando, E. (2006). Geotechnical considerations for hardening the subsoil in Mexico City´s Metropolitan Cathedral. International Symposium of Rigid Inclusions in Difficult Soft Soil Conditions, ISSMGE TC36, Ciudad de México, México, DF, : 171-178.

Schanz, T.; Vermeer, A.; Bonnier, P. (1999). The hardening soil model: formulation and verification. Proc. Int. Symp. beyond 2000 Comput. Geotech. 10 years Plaxis, Amsterdam, Netherlands, 281 p.

Schlosser, F.; Jacobsen, H.M; Juran, I. (1984). Le renforcement des sols. Revue Française de Géotechnique, 624 29:7-32, DOI: 10.1051/geotech/1984029007

Simon, B.; Scholsser, F. (2006). Soil reinforcement by vertical stiff inclusions in France. International Symposium of Rigid Inclusions in Difficult Soft Soil Conditions, ISSMGE TC36, Ciudad de México, Mexico, DF : 3–23.

Varaksin, S.; Meltz, A. e Yee, K. (2011). Application of consolidation acceletarion combined with rigid inclusions (CMC) for a shipyard foundation on deep very soft clay. Proceeding of the 5th International Conference on Geotechnical and Hiwgway Engineering – Practical Applications, Challenges and Opportunities, 183-190.

Wood, H.J. (2003). The design and constructions of pile-supported embankments for the A63 Selby Bypass. Proc. of Foundations: Innovations, Design and Practice, Dundee. pp. 941-950.

Zanziger, H.; Gartung, E. (2002). Performance of a geogrid reinforced railway embankment on piles. Proc. of the 7th Int. Conf. on Geosynthetics, Nice, pp. 381-386.

Published

2020-11-15

Issue

Section

Articles