Vulnerabilities of Faro airport (Portugal) to tsunamis
DOI:
https://doi.org/10.14195/1647-7723_29-1_10Keywords:
Tsunami, airport, vulnerabilities, mitigationAbstract
After a tsunami hit the Algarve region (Portugal), Faro airport is expected to play an important role in the response phase. Additional difficulties could arise in providing timely assistance to local people if the airport become inoperable. Airport vulnerabilities to tsunamis are studied and some mitigation measures are presented. A digital terrain model was calculated and different scenarios were used. For tsunamis up to 4 or 5 meters in height it is likely that the airport will be unable to receive commercial flights, but it should be able to receive emergency flights. Taller tsunamis will almost certainly flood a large part of the airstrip and in these circumstances the airport will became inoperable. Except in the most severe scenario, the top floor of the airport terminal could be the destination for the evacuation of passengers and airport employees. The installations of the fire department will be hit by a tsunami that moves at a height of 3 meters.
Downloads
References
Andrade, C. (1992). Tsunami generated forms in the Algarve barrier islands (south Portugal). Science of tsunami hazards, 10 (1), 21-33.
ANPC (2010). Plano Especial de Emergência de Proteção Civil para o Risco Sísmico e de Tsunamis na Região do Algarve, 226p.
ANPC (2015). Plano Prévio de Intervenção para o Aeroporto Internacional de Faro, 43p.
AON Benfield (2011). Tohoku Earthquake & Tsunami Event Recap Report, 37p.
Baptista, M. e Miranda, J. (2009). Revision of the portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25–42.
Baptista M., Miranda J., Omira R., Antunes C. (2011). Potential inundation of Lisbon downtown by a 1755-like tsunami. Nat. Hazards Earth Syst. Sci., 11, 3319–3326.
Costa, P., Andrade, C., Freitas, M., Oliveira, M., Lopes, V., Dawson, A., Moreno, J., Fatela, F., Jouanneau, J.-M., (2012). A tsunami record in the sedimentary archive of the central Algarve coast, Portugal: characterizing sediment, reconstructing sources and inundation paths. The Holocene, 22 (8), 899–914.
Costa P., Costas S., González-Villanueva R., Oliveira M., Roelvink D., Andrade C., Freitas M., Cunha P., Martins A., Buylaert J., A.Murray A. (2016). How did the AD 1755 tsunami impact on sand barriers across the southern coast of Portugal? Geomorphology, 268l, 296–311.
Daveau S., Almeida, G., Feio, M., Rebelo, F., Silva R. F. M., Sobrinho, A. S. (1978). Os temporais de Fevereiro/Março de 1978. Finisterra, 26, 236-260.
Freitas, J. e Diasm J. (2013). 1941 windstorm effects on the Portuguese Coast. What lessons for the future? Journal of Coastal Research, Special Issue No. 65, 714-719.
Honesti, L., Majid, M., Djali N., Muchlian, M. (2019). Establishing factors of building vulnerability towards tsunami hazard. MATEC Web of Conferences. DOI: https://doi.org/10.1051/matecconf/201925803011
IATA (2018). Fuel Operations After Natural Disasters Experiences From The Industry, 80 p.
ICAO (2011). The Twenty-First Meeting of the APANPIRG ATM/AIS/SAR Sub-Group (ATM/AIS/SAR/SG/21) Bangkok, Thailand.
INE (2011). Censos da população 2011. Instituto Nacional de Estatística.
Nakahara, H., Sato, H., Nishimur,a T., Fujiwara, H. (2011). Direct observation of rupture propagation during the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) using a small seismic array. Earth Planets Space, 63, 589–594.
Martínez-Graña A., Boski T., Goy J., Zazo C., Dabrioda C. (2016). Coastal-flood risk management in central Algarve: Vulnerability and flood risk indices (South Portugal). Ecological Indicators, 71, 302–316.
Magalhães, A. (2016). Simulação Numérica do Tsunami de Lisboa de 1755m (Dissertação de Mestrado). Apresentada à Faculdade de Engenharia da Universidade do Porto, 148 p.
Pais, S. (2010b). Plano Municipal de Emergência de Protecção Civil de Faro – Vol. I - Partes não reservadas. Serviço Municipal de Protecção Civil de Faro, Faro. 165 p.
Santos A., Fonseca N., Queirós M., Zêzere J., Bucho J. (2017). Implementation of Tsunami Evacuation Maps at Setubal Municipality, Portugal. Geosciences 2017, 116 p. DOI: https://doi.org/10.3390/geosciences7040116
Silva, J., Silva, A., Leitão, P., Silva, A. (2016). Modelling Tsunamis with a Non-Hydrostatic Version of the MOHID Model. 4ªs Jornadas de Engenharia Hidrográfica. Disponível em: https://www.hidrografico.pt/recursos/files/jornadas_EH/JEH2016/20160622-sessao-2-4-Modeling-tsunamis.pdf (acedido em 14/5/2020).
Suppasri, A., Shuto, N., Imamur,a F., Koshimura, S., Mas, E., Yalciner, A. (2013). Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan. Pure Appl. Geophys. 170, 993–1018.
UNITED NATIONS UNIVERSITY (2013). The Great East Japan Earthquake 11 March 2011 – Lessons Learned and Research Questions. Conference proceedings, 100 p.
Weibel, R. and Heller, M. (1991). Digital Terrain Modeling. In: Maguire, D.J., Goodchild, M.F. and Rhind, D.W. (eds.). Geographical Information Systems: Principles and Applications. London: Longman, 269-297.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Territorium

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing the work with recognition of authorship and initial publication in Antropologia Portuguesa journal.