The argumentative progression of the three definitions of figure in the Meno

Authors

  • Rafael de Souza Unicamp

DOI:

https://doi.org/10.14195/1984-249X_35_32

Keywords:

Definitions, Figures, Method of Analysis, Knowledge, Mathematics

Abstract

The article examines the three definitions of figure in Plato’s Meno, relating them to the analytical method of geometry. The first defines in perceptual terms (colors of surfaces), useful for initial identification but insufficient for rational explanations. The second abstracts figure as the limit of solids, offering clarity but violating the simplicity criterion by explaining something simple through something complex. The third, implicit definition, describes by the lines that delimit it, surpassing the previous ones by using a simple element with explanatory power. The ordering of the definitions reflects the analytical method of geometry and the Socratic method of generalizations.

Downloads

Download data is not yet available.

References

BURNET, J. 1900-1907. Platonis Opera, 5 Vols. Oxford: Clarendon Press.

HEIBERG, L. 1969. Euclidis Elementa. Leipzig: B. G. Teubner. Editado por E. S Stamatis, J. L. Heiberg.

CROCKER, R. 1963. Pythagorean Mathematis and Music. The Journal of Aesthetics and Art Criticism, Vol. 22, No. 2, pp. 189-198.

FRIEDLEIN, G. 1967 Procli Diadochi in primum Euclidis elementorum librum commentarii. (Series: Bibliotheca scriptorum Graecorum et Romanorum Teubneriana), Leipzig: Teubner.

FINE, G. 2014 The Possibility of Inquiry: Meno’s Paradox from Socrates to Sextus. Oxford: Oxford University Press.

HEATH, T. 1926. The Elements of Euclid. 3 vols. 2nd. ed. Eng. trans. with comm. T.L. Heath. Cambridge U. P., (reprint: New York, Dover, 1956).

HEATH. 1921. A History of Greek Mathematics, Volume I: from Thales to Euclid. Nova Iorque: Dover Publications.

HIRSCH, E. 1967. Validity in interpretation. Yale University Press.

IGLÉSIAS, M. 2001. Mênon. São Paulo: Edições Loyola.

IGLÉSIAS, M. 2020. Teeteto. São Paulo: Editora Loyola.

KNORR, W. 1986. The Ancient Tradition of Geometric Problems. Boston: Birkhäuser, (reprint, New York: Dover).

KNORR, W. 1991. What Euclid Meant: On the Use of Evidence in Studying Ancient Mathematics. Science and Philosophy in Classical Greece, p. 119-163.

LLOYD, G. 2004. The Meno and the Mysteries of Mathematics. In: Christianidis, J. (eds) Classics in the History of Greek Mathematics. Boston Studies in the Philosophy of Science, vol 240. Springer, p. 169–183.

MCKIRAHAN, R. 1983. Aristotelian Epagoge in Prior Analytics 2. 21 and Posterior Analytics 1. 1. Journal of the History of Philosophy, Volume 21, Number 1, January, pp. 1-13.

MENDELL, H. 1984. Two Geometrical Examples from Aristotle's Metaphysics. Classical Quarterly 34, 359-72.

MENDELL, Henry. 1998. Making sense of Aristotelian demonstration. In: Oxford Studies in Ancient Philosophy, vol. 16, p. 161-225.

MORROW, G. 1992. A Commentary on the First Book of Euclid's Elements. Trans. with intro. and notes by Glenn R. Morrow. Forward by Ian Mueller. Princeton: Princeton University Press.

ROSS, D. 1964. Aristotle's Prior and Posterior Analytics: A Revised Text with Introduction and Commentary. Oxford University Press.

ROSS, D. 1949. Aristotle’s Metaphysics Volume I-II: A Revised Text with Introduction and Commentary. Oxford University Press.

SCOTT, D. 2006. Meno’s Paradox. Cambridge University Press.

Published

2026-01-12

How to Cite

de Souza, R. (2026). The argumentative progression of the three definitions of figure in the Meno . Revista Archai, (35), e03532. https://doi.org/10.14195/1984-249X_35_32