Tres décadas de evolución del análisis numérico de túneles. Una visión subjetiva a la luz de un caso real
DOI:
https://doi.org/10.14195/2184-8394_152_7Palavras-chave:
Túneles, Metro de Lisboa, Análisis numéricoResumo
Se presenta un esbozo de la evolución de los métodos de análisis numérico en problemas geotécnicos desde sus comienzos, haciendo hincapié en las tres últimas décadas. Para ello, se ha tomado un caso real de una obra bien documentada, que permita un reanálisis con las herramientas de cálculo disponibles actualmente. La obra elegida ha sido la estación de Baixa-Chiado, del Metro de Lisboa, construida en la década de los 90. El objetivo no es la evaluación de la obra en sí, sino de la evolución de las técnicas de modelización numérica reflejadas en su aplicación al caso, en respuesta a la invitación expresada por el Comité Editorial de la revista. La presentación del caso y de los métodos de cálculo tiene una componente subjetiva importante, por lo que las referencias de apoyo se han tomado en lo posible de la experiencia propia o del entorno próximo de los autores.
Downloads
Referências
Abe, K.; Soga, K.; Bandara, S. (2014). Material Point Method for Coupled Hydromechanical Problems. J. Geot. Geoenv. Eng. ASCE. 140:3 (04013033).
Ballester, F.; Sagaseta, C. (1979). Anisotropic elastoplastic undrained analysis of soft clays. Géotechnique 29:3,323-340.
Barton, N.; Lien, R.; Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics 6(4),189-236.
Bieniawski, Z.T. (1973). Engineering classification of jointed rock masses. Trans. South Afr. Inst. Civ. Eng. 15:335-344.
Cañizal, J.; Sagaseta, C. (1988). Numerical analysis of discontinuous block systems. VIth. Int. Conf. Num. Meth. Geom. (NUMOG). Innsbruck, Austria. 2,895-900.
Cañizo, L.; Castillo, E.; Sagaseta, C. (1972). Aplicación del método de elementos finitos en la Mecánica del Suelo. I Jorn. Nac. Aplic. Informática Ing. Civil. Madrid. 1,2.10-2.19.
Cañizo, L.; Sagaseta, C. (1972). Discusión a 'Finite element analyses of retaining wall behaviour', G.W. Clough y J.M. Duncan. (1971), J. Soil Mech. Found. Div. ASCE. 98:SM8,831-832.
Carol, I.; Alonso, E. (1983). A new joint element for the analysis of fractured rock. 5th. Int. Congr. Rock Mech. Melbourne, F147-F151.
Castellón, J. (2019). Estudio del comportamiento del suelo en el rango de las pequeñas deformaciones y desarrollo del modelo constitutivo EPHYSS. Tesis Doct. Univ. Pol. Cataluña.
Cundall, P. (1971). A computer mode for simulating progressive large scale movements in blocky rock systems. Proc. Symp. on Rock Fracture. Nancy, France, 2-8.
Cundall, P.; Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique 29:1,47-65.
Da Costa, A. (2004). Inestabilidades por degradación superficial de taludes en suelos. Corrección mediante sistemas de refuerzo anclados. Tesis Doct. Univ. Cantabria.
De Borst, R.; Vermeer, P.A. (1984). Possibilities and limitations of finite elements for limit analysis. Géotechnique 34:2,199-210.
Felippa, C.A. (2001). A historical outline of matrix structural analysis: a play in three acts. Computers and Structures, 79, 1313-1324.
Goodman, R.E.; Taylor, R.L.; Brekke, T. (1968). A model for the mechanics of jointed rock. J. Soil Mech. Div. ASCE 94:SM3,637-659.
Griffiths, D.V.; Lane, P.A. (1999). Slope stability analysis by finite elements. Géotechnique 49:3,387-403.
Gunn, M. J. (1992). The prediction of surface settlement profiles due to tunnelling. Predictive Soil Mechanics. Wroth Symp. (G.T. Houlsby, A.N. Schofield, eds.). T. Telford, London. 304-316.
Kielbassa, S.; Duddeck, H. (1991). Stress-strain fields at the tunnelling face. Three-dimensional analysis for two-dimensional technical approach. Rock Mech. and Rock Eng., 24,115-132.
Leca, E.; Clough, G.W. (1992). Preliminary design for NATM tunnel support in soil. J. Geot. Engg. ASCE 118:4,558-575.
Panet, M.; Guenot, A. (1982). Analysis of convergence behind the face of a tunnel. Tunnelling ’82. Londres. I.M.M.E., 197-204.
Pastor, M.; Quecedo, M.; Merodo, J.A.F.; Herrores, M.I.; González, E.; Mira, P. (2002). Modelling tailings dams and mine waste dumps failures. Géotechnique 52:8,579-591.
Peck, R.B. (1969). Deep excavations and tunneling in soft ground. 7th Int. Conf. Soil Mech. Found. Eng. State-of-the Art Report. Mexico City, 225-290.
Sagaseta, C. (1973). Estado tensodeformacional alrededor de un túnel excavado en un medio elastoplástico, con especial consideración de la influencia del proceso constructivo. Tesis Doctoral. Univ. Polit. Madrid.
Sagaseta, C.; Sánchez, J.M.; González, C.; López, A.; Gómez, J.; Pina, R. (1999). Soil deformations due to the excavation of two parallel caverns. 12th Eur. Conf. Soil Mech. Geot. Eng. Amsterdam. 3,2125-2131.
Serrano, A.; Rodríguez-Ortiz, J.Ma. (1973). A contribution to the mechanics of heterogeneous granular media. Symp. Role of Plasticity in Soil Mech. Cambridge, U.K. 215-227.
Simic, D. (2003). Subsidencias debidas a la excavación de galerías en los terrenos de la Baixa lisboeta mediante tuneladora y Nuevo Método Austriaco. Jornadas Hispano-Lusas sobre Obras Subterráneas. Madrid.
Smith, I.M.; Griffiths, D.V. (1988). Programming the finite element method. Wiley, U.K.
Smith, I.M.; Hobbs, R. (1974). Finite element analysis of centrifuged and built-up slopes. Géotechnique 24:4,531-559.
Széchy, K. (1967). The art of tunnelling. Akademiai Kiadó. Budapest.
Turner, M.J.; Clough, R.W.; Martin, H.C.; Topp, L.J. (1956). Stiffness and deflection analysis of complex structures, J. Aero. Sci., 23, 805-824.
Zienkiewicz, O.C.; Cheung, Y.K. (1967). The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill, London.