Dinámica de deslizamientos en rocas blandas arcillosas
DOI:
https://doi.org/10.14195/2184-8394_152_8Palavras-chave:
Deslizamientos, dinámica, rocas blandas, casos reales, modelación numéricaResumo
El artículo analiza el comportamiento de deslizamientos en rocas caracterizadas por el predominio de su componente arcillosa y por una tipología de movimientos que se explican por el agotamiento de la resistencia al esfuerzo cortante en superficies o bandas de pequeño espesor. El artículo se centra en primeras roturas y, posteriormente, en el efecto de los planos de corte internos que se desarrollan por compatibilidad de movimiento. Las primeras roturas en materiales que exhiben un comportamiento de reblandecimiento bajo tensión están generalmente precedidas por un mecanismo de rotura progresiva seguido de un movimiento acelerado. El tipo de solicitación exterior (carga, descarga, cambio en presiones intersticiales) controla el mecanismo de rotura y su evolución. Ello se ilustra en varios ejemplos de roturas (Selborne, Viladesens, Sabadell, Aznalcóllar). Por otro lado, mediante análisis de sensibilidad utilizando el “método del punto material”, se muestra que el desplazamiento esperable depende del Índice de Fragilidad de la roca arcillosa. La geometría de las superficies de deslizamiento, a menudo consecuencia de la geología y los planos o estratos de debilidad, determina la evolución del movimiento y el desarrollo de superficies de corte en el interior de la masa movilizada que cruzan los planos de sedimentación. Este aspecto se analiza mediante ejemplos de deslizamientos compuestos y el caso del deslizamiento de Cortes (Valencia).
Downloads
Referências
Abbo, A.; Sloan, S. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 54, No. 3, 427-441.
Alonso, E.E. (2000). General report: cuttings and natural slopes. The geotechnics of hard soils-soft rocks. Evangelista, A., Picarelli, L. (eds). Balkema, Rotterdam, vol 3, pp 1557-1588.
Alonso, E.E. (2021). Triggering and motion of landslides. Géotechnique 71(1), 3-59.
Alonso, E.E.; Gens, A. (2006a). Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 56, No. 3, 165-183.
Alonso, E.E.; Gens, A. (2006b). Aznalcóllar dam failure. Part 3: Dynamics of the motion. Géotechnique 56, No. 3, 203-210
Alonso, E.E.; Pinyol, N.M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology 114 (3-4), 198-210. doi.org/10.1016/j.enggeo.2010.04.018
Alonso, E.E.; Pinyol, N.M. (2014). Slope Stability in Slightly Fissured Claystones and Marls. Landslides 12, no. 4 (2014): 643-56.
Alonso, E.E.; Gens, A.; Lloret, A. (1993). The Landslide of Cortes de Pallas, Spain. Géotechnique 43 (4): 507-21. https://doi.org/10.1680/geot.1993.43.4.507.
Alonso, E.E.; Pineda J.A.; Cardoso, R. (2010b). Degradation of marls; two case studies from the Iberian Peninsula. Calcaterra, D. & Parise, M. (eds) Weathering as a Predisposing Factor to Slope Movements. Geological Society, London, Engineering Geology Special Publications, 23, 47-75.
Alonso, E.E.; Pinyol, N.M.; Puzrin, A.M. (2010) Geomechanics of Failures. Advanced Topics. Springer. ISBN 978-90-481-3538-7.
Alonso, E.E.; Pinyol, N.M.; Pineda J. (2013) Foundation of a Gravity Dam on Layered Soft Rock: Shear Strength of Bedding Planes in Laboratory and Large ‘In Situ’ Tests. Geotechnical and Geological Engineering, July 9, 2013.
Alonso, E.E.; Vaunat, J.; Pereira, J.-M.; Olivella, S. (2010) A Microstructurally based effective stress for unsaturated soils. Géotechnique 60 (12), 913-25.
Azañón, J.M.; Azor, A.; Yesares, J.; Tsige, M.; Mateos, R.M.; Nieto, F.; Delgado, J.; López- Chicano, M.; Martín, W.; Rodríguez-Fernández, J. (2010) Regional-scale high-plasticity clay- bearing formation as controlling factor on landslides in SE Spain. Geomorphology 120:26- 37
Bishop, A.W. (1967) Progressive failure-with special reference to the mechanism causing it. Proc Geotech Conf, Oslo, 2:142-50.
Cooper, M. (1996). The progressive development of a failure slip surface in over-consolidated clay at Selborne, UK. Proceedings of the 7th international symposium on landslides, Trondheim, Norway (ed. K. Senneset), Rotterdam, the Netherlands: Balkema, pp. 683-688.
Cooper, M.R.; Bromhead, E.N.; Petley, D.J.; Grant, D.I. (1998). The Selbourne cutting stability experiment. Géotechnique 48, No. 1, 83-101 Gens, A.; Alonso, E.E. (2006). Aznalcóllar dam failure. Part 2: Stability conditions and failure mechanism. Géotechnique 56, No. 3, 185-201.
Gens, A.; Ledesma, A.; Alonso, E.E. (1996) Estimation of parameters in geotechnical backanalysis. II Application to a tunnel excavation problem. Computers and Geotechnics, 18, 1, 29-46.
Georgiannou, V.N.; Burland, J.B. (2001). A laboratory study of post-rupture strength, Géotechnique 51, 665-675
Glastonbury, J.; Fell R. (2008a) A decision analysis framework for the assessment of likely post- failure velocity of translational and compound natural rock slope landslides. Can Geotech J 45(3):329-350. doi:10.1139/T07-082
Grant, D. (1996). Instrumentation systems for and failure mechanisms of an induced slope failure project. PhD thesis, University of Southampton, Southampton, UK.
Hawkins, A.B.; Lawrence, M.S.; Privett, K.D. (1988) Implications of weathering on the engineering properties of the Fuller’s Earth formation. Géotechnique. 38, 4: 517-532.
Hendron, A.J.; Patton, F.D. (1985) The Vajont slide, a geotechnical analysis based on new geologic observations of the failure surface. Technical Report GL-85-5, Washington DC
Hungr, O.; Leroueil, S.; Picarelli, L. (2014) The Varnes classification of landslide types, an update. Landslides 11(April):167-194
Lupini, J.F.; Skinner, A.E.; Vaughan, P.R. (1981) The drained residual strength of cohesive soils. Géotechnique 31(2):181-213
Montero-Cubillo, N.S.; Estaire, J. (2021) Ensayos de corte en laboratorio para determinar la resistencia residual de arcillas sobreconsolidadas, Geotecnia, 150, 27-50
Pinyol, N.M.; Di Carluccio, G. (2019). Excavation-Induced Instabilities. In The Material Point Method for Geotechnical Engineering: A Practical Guide. Editors: E.J. Fern, A. Rohe, K. Soga and E.E. Alonso, 271-286. CRC Press, 2019.
Pinyol, N.M.; Vaunat, J.; Alonso, E.E. (2007). A constitutive model for soft clayey rocks which includes weathering effects. Géotechnique 57, 137-151.
Potts, D.M.; Dounias, G.T.; Vaughan, P.R. (1990). Finite element analysis of progressive failure of Carsington embankment. Géotechnique 40, No. 1, 79-101
Potts D.M.; Kovacevic N.; Vaughan P. (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47:953-82
Romero E.; Vaunat, J.; Merchán, V. (2014) Suction effects on the residual shear strength of clays. Journal of Geo-Engineering Sciences 2 (2014) 17-37
Rots, J.; Nauta, P.; Kuster, G.; Blaauwendraad, J. (1985). Smeared crack approach and fracture localization in concrete. HERON 30, No. 1, 3-48.
Skempton, A.W. (1977). Slope stability of cuttings in brown London Clay. Proc. 9th Int. Conf. Soil Mech. Found. Engng, Tokyo 3, 261-270.
Soga, K.A.; Alonso, E.E.; Yerro, A.; Kumar, K.A.; Bandara, S.A. (2016). Trends in large- deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3): 248-273. DOI: 10.1680/jgeot.15.LM.005.
Stark, T.D.; Eid, H.T. (1994). Drained Residual Strength of Cohesive Soils. Journal of Geotechnical Engineering, ASCE, 120, No. 5, 856-871.
Yerro, A.; Alonso, E.; Pinyol, N. (2016a). Run-out of landslides in brittle soils. Computers and Geotechnics 80: 427-439. DOI: 10.1016/j.compgeo.2016.03.001.
Yerro, A.; Pinyol, N.; Alonso, E. (2016b). Internal progressive failure in deep seated landslides. Rock Mechanics and Rock Engineering 49(6):2317-2332. DOI 10.1007/s00603-015-0888-6.
Yerro, A.; Pinyol, N.; Alonso, E. (2016c), Internal rock damage during landsliding: kinematic effects. In: Proc. 12th International symposium on Landslides. 12th-19th June, Naples, Italy.
Zabala, F.; Alonso, E.E. (2011). Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61, No. 9, 795-808.
Zandarín, M. T.; Alonso, E. E.; Olivella, S. (2013) A constitutive law for rock joints considering the effects of suction and roughness on strength parameters. Int. Jnl. of Rock Mech. & Min. Sci, 60, 333-344