Dynamics of landslides in argillaceous rocks

Authors

DOI:

https://doi.org/10.14195/2184-8394_152_8

Keywords:

Landslides, dynamics, soft rocks, case histories, numerical simulation

Abstract

The paper analyses landslides in argillaceous rocks characterized by the loss of shear strength on the basal surface. The article focusses on first failures and the effect of internal shearing planes developed because of kinematic compatibility. First failures in strain-softening materials are preceded by progressive failure phenomena, which ends in an accelerated motion. The boundary conditions (loading, unloading, changes in pore water pressure) control the failure and its evolution. This is illustrated by several case histories (Selborne, Viladeses, Sabadell, Aznalcóllar). Through a sensitivity analysis, performed with the help of the “material point method”, it is shown that the run-out depends on the fragility index of the argillaceous rock. The geometry of the sliding surface, mainly determined by the geology and by the weakness planes, controls the evolution of motion and the development shearing surfaces within the mobilized mass. This is analysed in academic examples of compound landslides and also for the case of Cortes landslide (Valencia, Spain).

Downloads

Download data is not yet available.

References

Abbo, A.; Sloan, S. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures 54, No. 3, 427-441.

Alonso, E.E. (2000). General report: cuttings and natural slopes. The geotechnics of hard soils-soft rocks. Evangelista, A., Picarelli, L. (eds). Balkema, Rotterdam, vol 3, pp 1557-1588.

Alonso, E.E. (2021). Triggering and motion of landslides. Géotechnique 71(1), 3-59.

Alonso, E.E.; Gens, A. (2006a). Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 56, No. 3, 165-183.

Alonso, E.E.; Gens, A. (2006b). Aznalcóllar dam failure. Part 3: Dynamics of the motion. Géotechnique 56, No. 3, 203-210

Alonso, E.E.; Pinyol, N.M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology 114 (3-4), 198-210. doi.org/10.1016/j.enggeo.2010.04.018

Alonso, E.E.; Pinyol, N.M. (2014). Slope Stability in Slightly Fissured Claystones and Marls. Landslides 12, no. 4 (2014): 643-56.

Alonso, E.E.; Gens, A.; Lloret, A. (1993). The Landslide of Cortes de Pallas, Spain. Géotechnique 43 (4): 507-21. https://doi.org/10.1680/geot.1993.43.4.507.

Alonso, E.E.; Pineda J.A.; Cardoso, R. (2010b). Degradation of marls; two case studies from the Iberian Peninsula. Calcaterra, D. & Parise, M. (eds) Weathering as a Predisposing Factor to Slope Movements. Geological Society, London, Engineering Geology Special Publications, 23, 47-75.

Alonso, E.E.; Pinyol, N.M.; Puzrin, A.M. (2010) Geomechanics of Failures. Advanced Topics. Springer. ISBN 978-90-481-3538-7.

Alonso, E.E.; Pinyol, N.M.; Pineda J. (2013) Foundation of a Gravity Dam on Layered Soft Rock: Shear Strength of Bedding Planes in Laboratory and Large ‘In Situ’ Tests. Geotechnical and Geological Engineering, July 9, 2013.

Alonso, E.E.; Vaunat, J.; Pereira, J.-M.; Olivella, S. (2010) A Microstructurally based effective stress for unsaturated soils. Géotechnique 60 (12), 913-25.

Azañón, J.M.; Azor, A.; Yesares, J.; Tsige, M.; Mateos, R.M.; Nieto, F.; Delgado, J.; López- Chicano, M.; Martín, W.; Rodríguez-Fernández, J. (2010) Regional-scale high-plasticity clay- bearing formation as controlling factor on landslides in SE Spain. Geomorphology 120:26- 37

Bishop, A.W. (1967) Progressive failure-with special reference to the mechanism causing it. Proc Geotech Conf, Oslo, 2:142-50.

Cooper, M. (1996). The progressive development of a failure slip surface in over-consolidated clay at Selborne, UK. Proceedings of the 7th international symposium on landslides, Trondheim, Norway (ed. K. Senneset), Rotterdam, the Netherlands: Balkema, pp. 683-688.

Cooper, M.R.; Bromhead, E.N.; Petley, D.J.; Grant, D.I. (1998). The Selbourne cutting stability experiment. Géotechnique 48, No. 1, 83-101 Gens, A.; Alonso, E.E. (2006). Aznalcóllar dam failure. Part 2: Stability conditions and failure mechanism. Géotechnique 56, No. 3, 185-201.

Gens, A.; Ledesma, A.; Alonso, E.E. (1996) Estimation of parameters in geotechnical backanalysis. II Application to a tunnel excavation problem. Computers and Geotechnics, 18, 1, 29-46.

Georgiannou, V.N.; Burland, J.B. (2001). A laboratory study of post-rupture strength, Géotechnique 51, 665-675

Glastonbury, J.; Fell R. (2008a) A decision analysis framework for the assessment of likely post- failure velocity of translational and compound natural rock slope landslides. Can Geotech J 45(3):329-350. doi:10.1139/T07-082

Grant, D. (1996). Instrumentation systems for and failure mechanisms of an induced slope failure project. PhD thesis, University of Southampton, Southampton, UK.

Hawkins, A.B.; Lawrence, M.S.; Privett, K.D. (1988) Implications of weathering on the engineering properties of the Fuller’s Earth formation. Géotechnique. 38, 4: 517-532.

Hendron, A.J.; Patton, F.D. (1985) The Vajont slide, a geotechnical analysis based on new geologic observations of the failure surface. Technical Report GL-85-5, Washington DC

Hungr, O.; Leroueil, S.; Picarelli, L. (2014) The Varnes classification of landslide types, an update. Landslides 11(April):167-194

Lupini, J.F.; Skinner, A.E.; Vaughan, P.R. (1981) The drained residual strength of cohesive soils. Géotechnique 31(2):181-213

Montero-Cubillo, N.S.; Estaire, J. (2021) Ensayos de corte en laboratorio para determinar la resistencia residual de arcillas sobreconsolidadas, Geotecnia, 150, 27-50

Pinyol, N.M.; Di Carluccio, G. (2019). Excavation-Induced Instabilities. In The Material Point Method for Geotechnical Engineering: A Practical Guide. Editors: E.J. Fern, A. Rohe, K. Soga and E.E. Alonso, 271-286. CRC Press, 2019.

Pinyol, N.M.; Vaunat, J.; Alonso, E.E. (2007). A constitutive model for soft clayey rocks which includes weathering effects. Géotechnique 57, 137-151.

Potts, D.M.; Dounias, G.T.; Vaughan, P.R. (1990). Finite element analysis of progressive failure of Carsington embankment. Géotechnique 40, No. 1, 79-101

Potts D.M.; Kovacevic N.; Vaughan P. (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47:953-82

Romero E.; Vaunat, J.; Merchán, V. (2014) Suction effects on the residual shear strength of clays. Journal of Geo-Engineering Sciences 2 (2014) 17-37

Rots, J.; Nauta, P.; Kuster, G.; Blaauwendraad, J. (1985). Smeared crack approach and fracture localization in concrete. HERON 30, No. 1, 3-48.

Skempton, A.W. (1977). Slope stability of cuttings in brown London Clay. Proc. 9th Int. Conf. Soil Mech. Found. Engng, Tokyo 3, 261-270.

Soga, K.A.; Alonso, E.E.; Yerro, A.; Kumar, K.A.; Bandara, S.A. (2016). Trends in large- deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3): 248-273. DOI: 10.1680/jgeot.15.LM.005.

Stark, T.D.; Eid, H.T. (1994). Drained Residual Strength of Cohesive Soils. Journal of Geotechnical Engineering, ASCE, 120, No. 5, 856-871.

Yerro, A.; Alonso, E.; Pinyol, N. (2016a). Run-out of landslides in brittle soils. Computers and Geotechnics 80: 427-439. DOI: 10.1016/j.compgeo.2016.03.001.

Yerro, A.; Pinyol, N.; Alonso, E. (2016b). Internal progressive failure in deep seated landslides. Rock Mechanics and Rock Engineering 49(6):2317-2332. DOI 10.1007/s00603-015-0888-6.

Yerro, A.; Pinyol, N.; Alonso, E. (2016c), Internal rock damage during landsliding: kinematic effects. In: Proc. 12th International symposium on Landslides. 12th-19th June, Naples, Italy.

Zabala, F.; Alonso, E.E. (2011). Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61, No. 9, 795-808.

Zandarín, M. T.; Alonso, E. E.; Olivella, S. (2013) A constitutive law for rock joints considering the effects of suction and roughness on strength parameters. Int. Jnl. of Rock Mech. & Min. Sci, 60, 333-344

Published

2021-07-30