Comportamiento mecánico de pilotes geotérmicos. Estudios experimentales

Autores

DOI:

https://doi.org/10.14195/2184-8394_152_11

Palavras-chave:

Pilote geotérmico, Comportamiento termo-mecánico, Ensayo a escala real

Resumo

El artículo se centra en los estudios experimentales sobre el comportamiento mecánico de los pilotes geotérmicos. Se presenta de forma resumida el proyecto español PITERM (2011-2013), sobre un pilote experimental de hormigón prefabricado, hincado en Valencia, y sometido a cargas mecánicas y térmicas, simulando su funcionamiento durante el verano, en modo climatización. Se incluye una breve revisión de pruebas experimentales realizadas en diferentes países, cuyos resultados van al encuentro de los obtenidos en PITERM, confirman el modelo conceptual representativo de un comportamiento termo-elástico, para los niveles de cargas térmicas esperables en las aplicaciones reales, y revelan la importancia del perfil de terreno atravesado y de las condiciones de restricción en pie y cabeza del pilote. Se hace también una pequeña revisión de trabajos experimentales sobre modelos a escala reducida en centrífuga, y se finaliza con algunos apuntes sobre las líneas de investigación más recientes a nivel internacional.

Downloads

Não há dados estatísticos.

Referências

Amatya, B. L.; Soga, K.; Bourne-Webb, P. J.; Amis, T.; Laloui, L. (2012). Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6), 503-519.

Amis, A.; Bourne-Webb, P.; Amatya, B.; Soga, K.; Davidson, C. (2008). The effects of heating and cooling energy piles under working load at Lambeth College. Proc. 33rd Ann. and 11th Int. DFI Conf., New York, 10 pp.

Bouazza, A.; Singh, R.M.; Wang, B.; Barry-Macaulay, D; Haberfield, C.; Chapman, G.; Baycan, S.; Carden, Y. (2011). Harnessing on site renewable energy through pile foundations. Australian Geomech. J. , 46(4), 79-90, dic 2011.

Bourne-Webb, P.J. 2013. Observed response of energy geostructures. Energy geostructures: innovation in underground engineering. Editado por L. Laloui y A. Di Donna. ISTE Ltd., and John Wiley and Sons, Hoboken. pp. 45-67.

Bourne-Webb, P.J.; Amatya, B.; Soga, K.; Amis, T.; Davidson, C.; Payne, P. (2009). Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3): 237-248.

Bourne-Webb P.J.; Amatya, B.; Soga, K. (2013). A framework for understanding energy pile behaviour. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 166(2): 170-177, http://dx.doi.org/10.1680/geng.10.00098.

Bourne-Webb, P.J.; Bodas Freitas, T.M. (2020) Thermally activated piles and pile groups under monotonic and cyclic thermal loading - A review. Renewable Energy 147: 1040 2572-2581.

Brandl, H. (2006). Energy foundations and other Thermo-Active Ground Structures. Geotechnique 56(2), 81-122.

Casagrande, B.; Fernando Saboya, F.; Tibana, S.; McCartney, J.S. (2020). Mechanical response of a thermal micro-pile installed in stratified sedimentary soil. E3S Web of Conferences 205, 05007 (2020), ICEGT 2020.

CEDEX (2014). Caracterización termo-mecánica y nuevas técnicas de diseño de pilotes termoactivos. PROYECTO PITERM (2011-2014). Informe Técnico del Laboratorio de Geotecnia del CEDEX, Madrid, España.

CFMS/SYNTEC Ingénierie (2016) Recommendations pour la conception, le dimensionnement et la mise en oeuvre des géostructures thermiques. Revue Française de Géotechnique 149(1): 1-120, https://doi.org/10.1051/geotech/2017012.

De Groot, M. (2017) Comportamiento termodinámico de pilotes prefabricados. Ph.D. thesis, Universidad Politécnica de Valencia, Spain.

De Santiago, C., Pardo de Santayana, F., de Groot, M., Uchueguía, Badenes, B., Magraner, T., J., Arcos, J. L. and Martín, F. (2016) Thermo-mechanical behavior of a thermo-active precast pile. Bulgarian Chemical Communications, Volume 48, Special Issue E; pp. 41-54.

Faizal, M.; Bouazza, A.; McCartney, J.S.; Haberfield, C. (2018). Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes. Journal of Geotechnical and Geoenvironmental Engineering, oct. 2018, vol. 144, no 10, ASCE.

Faizal, M.; Bouazza, A.; McCartney, J.S.; Haberfield, C. (2019). Effects of cyclic temperature variations on thermal response of an energy pile under a residential building. Journal of Geotechnical and Geoenvironmental Engineering, oct. 2019, vol. 145, no 10, ASCE.

Gawecka, K.A.; Taborda, D.M.G.; Potts, D.M.; Cui, W.; Zdravkovic, L.; Haji Kasri, M.S. (2017). Numerical modelling of thermo-active piles in London Clay. Geotechnical Engineering, Volume 170 Issue GE3, ICE, jun. 2017.

Gangqiang, K.; Zhou, Y.; Wu, D.; Yin, G.; Pu, H. (2020). Field test on thermal response characteristics of an energy pile in underground row piles. E3S Web of Conferences 205, 05011 (2020), ICEGT 2020.

Goode Ill, J. C.; McCartney, J. S. (2015). Centrifuge Modeling of End-Restraint Effects in Energy Foundations. Journal of Geotechnical and Geoenvironmental Engineering, ago. 2015, vol. 141, no 8, ASCE.

GSHPA Association (2012) Thermal pile design, installation and material standards. Issue 1.0, 1st October 2012.

Katzenbach, R.; Clauss, F.; Waberseck, T.; Wagner, I. (2008). Coupled Numerical Simulation of Geothermal Energy Systems. 12 th International Conference of Inter-national Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.

Katzenbach, R.; Clauss, F.; Waberseck, T. (2011). Sustainable energy supply and storage with enhanced geothermal energy systems. Topical Issues of subsoil Usage, S. Petersburgo, Rusia.

Laloui, L. (2008). Heat exchanger geostructures. Static behaviour under temperature variations. Energetic geostructures. Workshop, London.

Laloui, L. (2011). In-situ testing of heat exchanger pile. Proc., GeoFrontiers 2011, J. Han and D. E. Alzamora, eds., ASCE, Reston, VA, 410-419.

Laloui, L.; Moreni, M.; Vulliet, L. (2003). Comportement d’un pieu bifonction, fondation et échangeur de chaleur. Can. Geotech. J. 40, 388-402.

Laloui, L.; Nuth, M.; Vulliet, L. (2006). Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical & Analytical Methods in Geomechanics 30(8), 401-413.

Laloui, L.; di Donna, A. (2011). Understanding the behaviour of energy geostructures. Proceedings of Institution of Civil Engineers. Civil Engineering 164, 184-191.

Loveridge, F.; McCartney, J. S.; Narsilio, G. A.;Marcelo Sanchez, M. (2020). Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments. Geomechanics for Energy and the Environment, 22 (2020) 1001730.

Luo, J.; Zhang, Q.; Zhao, H.; Gui, S.; Xiang, W.; Rohn, J.; Soga, K. (2019). Thermal and Thermomechanical Performance of Energy Piles with Double U-Loop and Spiral Loop Heat Exchangers. Journal of Geotechnical and Geoenvironmental Engineering, dic. 2019, vol. 145, no 12, ASCE.

McCartney, J. S.; Rosenberg, J.E. (2011). Impact of heat exchange on side shear in thermoactive foundations. Proc. , Geo-Frontiers 2011 (GSP 2 I 1 ), J. Han and D. E. Alzamora, eds., ASCE, Res ton, VA, 488-498.

McCartney, J. S.; Murphy, K. D. (2012). Strain distributions in full-scale energy foundations. (DFI Young Professor Paper Competition 2012), DFI Journal - The Journal of the Deep Foundations Institute, 6:2, 26-38, DOI: 10.1179/dfi.2012.008.

McCartney, J.S.; Murphy, K.D. (2017). Investigation of potential dragdown/uplift effects on energy piles. Geomechanics for Energy and the Environment. http://dx.doi.org/10.1016/j.gete.2017.03.001.

Mimouni, T.; Lalui, L. (2015). Behaviour of a group of energy piles. Can. Geotech. J. 52: 1913- 1929, may. 2015.

Ministerio de Vivienda (2006). Documento Básico-Seguridad Estructural-Cimientos del Código Técnico de la Edificación (Documento Básico SE-C, 2006), Spain.

Murphy, K.D.; McCartney, J.S.; Karen S. Henry, K.S. (2015). Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotechnica (2015) 10:179-195, DOI 10.1007/s11440-013-0298-4.

Ng, C. W. W.; Shi, C.; Gunawan, A.; Laloui, L. (2014). Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Géotechnique Letters 4, 310-316, oct. 2014.

Ng, C. W. W.; Gunawan, A.; Shi, C.; Ma, Q.J.; Liu, H.L. (2016). Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: a comparative study. Géotechnique Letters 6, 34-38, mar. 2016.

Olgun, C. G.; Ozodogr, T.Y.; Arson, C. F. (2014). Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile-soil interface. Géotechnique Letters, jul. 2014.

Pardo de Santayana, F., de Santiago, C., de Groot, M., and Arcos, J. L. (2016) Comportamiento de un pilote prefabricado experimental bajo ensayos de aplicación de cargas estáticas. 10o Simposio Nacional de Ingeniería Geotécnica, SEMSIG. ISBN :978-84-945282-2-2, La Coruña, Spain; pp. 461-470.

Pardo de Santayana, F.; de Santiago, C.; de Groot, M.; Uchueguía, J.; Arcos, J. L.; Badenes, B. (2020). Effect of thermal loads on pre-cast concrete thermopile in Valencia, Spain. Environmental Geotechnics 7(3) 208-222.

Ravera, E.; Sutman, M.; Laloui, L. (2020). Analysis of the interaction factor method for energy pile groups with slab. Computers and Geotechnics, 119 (2020) 103294.

Rotta Loria, A. F.; Gunawanb, A.; Shi, C.; Laloui, L. (2015). Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomechanics for Energy and the Environment 1 (2015) 1-15.

Rotta Loria, A. F.; Laloui, L. (2016). The interaction factor method for energy pile groups. Comput. Geotech. 80, https://doi.org/10.1016/j.compgeo.2016.07.002.

Rotta Loria, A. F.; Laloui, L. (2017). The equivalent pier method for energy pile groups. Géotechnique 2017; 67(8):691-702.

Rui, Y.; Yin, M. (2017). Investigations of pile-soil interaction under thermo-mechanical loading. Canadian Geotechnical Journal, nov. 2017.

Soga, K. (2011). Soil-structure interactions for thermal piles/walls; Fundamentals; Design considerations; Future research needs. GSHPA Workshop, November 2011.

Suryatriyastuti, M.E.; Mroueh, H.; Burlon, S. (2014). A load transfer approach for studying the cyclic behavior of thermo-active piles. Computers and Geotechnics, 55 (enero):378-91.

Stewart, M.A.; McCartney, J. S. (2014). Centrifuge Modeling of Soil-Structure Interaction in Energy Foundations. Journal of Geotechnical and Geoenvironmental Engineering, abr. 2014, vol. 140, no 4, ASCE.

Sutman, M. (2016). Thermo-Mechanical Behavior of Energy Piles: Full-Scale Field Testing and Numerical Modeling. Ph.D. Dissertation, Virginia Polytechnic Institute and State University. Blacksburg, VA, EE.UU., ago. 2016.

Sutman, M.; Tracy Brettmann, T.; Guney Olgun, C. (2019a). Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles. Geomechanics for Energy and the Environment, 18 (2019), pp. 56-68.

Sutman, M.; Olgun, G.; Laloui, L. (2019b). Cyclic load-transfer approach for the analysis of energy piles. Journal of Geotechnical and Geoenvironmental Engineering, 2019; 145(1):04018101.

Wang, B.; Bouazza, A.; Singh, R.M.; Haberfield, C.; Barry-Macaulay,D.; Baycan, S. (2015). Posttemperature Effects on Shaft Capacity of a Full-Scale Geothermal Energy Pile. Journal of Geotechnical and Geoenvironmental Engineering, abr. 2015, vol. 141, no 4, ASCE.

##submission.downloads##

Publicado

2021-07-30