Comportamento de solos estabilizados quimicamente e reforçados com fibras sob ações monotónicas e cíclicas
DOI:
https://doi.org/10.14195/2184-8394_152_16Palavras-chave:
Solo estabilizado quimicamente, Fibras metálicas, Fibras de polipropileno, Ensaio de compressão não confinado, Carregamento cíclicoResumo
No presente trabalho pretende-se analisar o comportamento de solos quimicamente estabilizados não reforçados e reforçados com fibras metálicas e de polipropileno. Inicialmente aborda-se o comportamento sob ações monotónicas de compressão e tração, tendo como referencial o solo mole do Baixo Mondego. Posteriormente, analisa-se o efeito do carregamento cíclico no comportamento de uma areia, um silte e de um solo orgânico, confrontando os resultados de ensaios de compressão não confinada (UCS) e de compressão diametral (CD) em condições monotónicas com os ensaios equivalentes previamente submetidos a carregamento cíclico. Em complemento, também se analisam as deformações permanentes acumuladas registadas na fase cíclica. Os resultados permitem observar que: i) o reforço com ambos os tipos de fibras aumenta a ductilidade do solo estabilizado; ii) o efeito da inclusão de fibras nas propriedades mecânicas depende do nível de cimentação, i.e., para reduzidos teores de ligante a inclusão de fibras tem efeito positivo, registando-se um efeito contraproducente para elevados teores de ligante; iii) independentemente do tipo de solo, a solicitação cíclica induz a melhoria das propriedades mecânicas dos solos estabilizados.
Downloads
Referências
Ahmed, A.; Naggar, M. H. (2018). Effect of cyclic loading on the compressive strength of soil stabilized with basanite-tire mixtures. Journal of Material Cycles and Waste Management, 20, no 1, pp. 525-532.
Al-Tabbaa, A.; Barker, P.; Evans, C. W. (2009). Keynote Lecture: Design of deep mixing in infrastructure applications. International Symposium of Deep Mixing & Admixture Stabilization. Okinawa, Japan.
ASTM D2487 (1998). Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohoken, PA.
BS 1377-3 (1990): Methods of test for soils for civil engineering purposes - part 7: Chemical and electro-chemical tests. BSI, London, UK.
Cai, Y.; Shi, B.; Ng, C. W. W.; Tang, C. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayed soil. Engineering Geology, 87, pp. 230-240.
Cajada, J. C. A. (2017). Estabilização química de diferentes solos reforçados com fibras de polipropileno. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.
Chauhan, M. S.; Mittal, S.; Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and Geomembranes, 26, no 5, pp. 429-435.
Coelho, P. A. L. F. (2000). Caracterização geotécnica de solos moles. Estudo experimental do local da Quinta da Foja. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.
Consoli, N. C.; Vendruscolo M. A.; Fonini, A.; Rosa, F. D. (2009). Fibre reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27, no 3, pp. 196- 203.
Consoli, N. C.; Bassani, M. A. A.; Festugato, L. (2010). Effect of fibre-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28, no 4, pp. 344-351.
Consoli, N. C.; Zortéa, F.; Souza, M.; Festugato, L. (2011a). Studies on the dosage of fibre- reinforced cemented soils. Journal of Materials in Civil Engineering, 23, no 12, pp. 1624-1632.
Consoli, N. C.; Moraes, R. R.; Festugato, L. (2011b). Split tensile strength of monofilament polypropylene fibre-reinforced cemented sandy soils. Geosynthetics International, 18, no 2, pp. 57-62.
Consoli, N. C.; Bellaver Corte, M.; Festugato, L. (2012). Key parameter for tensile and compressive strength of fibre-reinforced soil-lime mixtures. Geosynthetics International, 19, no 5, pp. 409- 414.
Consoli, N. C.; Scapini B.; Festugato, L. (2013a). A practical methodology for the determination of failure envelopes of fibre-reinforced cemented sands. Geotextiles and Geomembranes, 41, pp. 50-54.
Consoli, N. C.; Moraes, R. R.; Festugato, L. (2013b). Parameters controlling tensile and compressive strength of fibre-reinforced cemented soil. Journal of Materials in Civil Engineering, 25, no 10, pp. 1568-1573.
Consoli, N. C.; Moraes, R. R.; Festugato, L. (2013c). Variables controlling strength of fibre- reinforced cemented soils. Ground Improvement, 166, no 4, pp. 221-232.
Correia, A. A. S. (2011). Aplicabilidade da técnica de deep mixing ao solo mole do Baixo Mondego. Dissertação de Doutoramento, Universidade de Coimbra, Coimbra, Portugal.
Correia, A. A. S.; Venda Oliveira, P. J.; Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43, no 2, pp. 97-106.
Custódio, D. G. (2013). Comportamento mecânico do solo mole do Baixo Mondego quimicamente estabilizado com adição de fibras de polipropileno. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.
Dall’Aqua, G. P.; Ghataora, G. S.; Ling, U. K. (2010). Behaviour of fibre-reinforced and stabilized clayey soils subjected to cyclic loading. Studia Geotechnica et Mechanica, 32, no 3, pp. 3-16.
EN 197-1 (2000). Cement e Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization.
Estabragh, A. R.; Namdar, P.; Javadi, A. A. (2012). Behaviour of cement-stabilized clay reinforced with nylon fibre. Geosynthetics International, 19, no 1, pp. 85-92.
Eurosoilstab (2001). Development of design and construction methods to stabilise soft organic soils. Design guide soft soil stabilization. CT97-0351, EC Project No. BE 96-3177, Industrial and Materials Technologies Programme (BriteEuRam III), European Commission, pp. 94.
Festugato, L.; Fourie, A.; Consoli, N. C. (2013). Cyclic shear response of fibre-reinforced cemented paste backfill. Géotechnique Letters, 3, pp. 5-12.
Güllü, H.; Khudir A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fibre, steel fibre and lime. Cold Regions Science and Technology, 106-107, pp. 55-65.
Hernandez-Martinez, F. G.; Sparrevik, M.; Kvalvåg; Eggen, A.; Kvennås, A.; Grini, R. S. (2009). Stabilization/solidification of two contaminate marine sediments. International Symposium of Deep Mixing &Admixture Stabilization. Okinawa, Japan.
Holm, G. (2005). Keynote Lecture: Towards a sustainable society - recent advances in deep mixing. International Conference on Deep Mixing - Best Practice and Recent Advances: k13-k24. Swedish Deep Stabilization Centre. Stockholm, Sweden.
Janz, M.; Johansson, S.-E. (2002). The function of different binding agents in deep stabilization. Swedish Deep Stabilization Research Centre, Report 9, Linköping, Sweden.
Kaïkea, A.; Achoura, D.; Duplan, F.; Rizzuti, L. (2014). Effect of mineral admixtures and steel fibre volume contents on the behaviour of high performance fibre reinforced concrete. Materials and Design, 63, pp. 493-499.
Kaniraj, S. R.; Havanaji, V. J. (2001). Behavior of cement-stabilized fiber- reinforced fly ash-soil mixtures. J. Geotech. Geoenviron. Eng. 127, no 7, pp. 574-584.
Khaloo, A.; Raisi, E. M.; Hosseini, P.; Tahrisi, H. (2014). Mechanical performance of self- compacting concrete reinforced with steel fibres. Construction and Building Materials, 51, pp. 179-186.
Khattak, M. J.; Alrashidi, M. (2006). Durability and mechanistic characteristics of fibre reinforced soil-cement mixtures. International Journal of Pavement Engineering, 7, no 1, pp. 53-62.
Maher, M.; Ho, Y. (1993). Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16, no 3, pp. 330-338.
Olgun, M (2013). Effects of polypropylene fibre inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20, no 4, pp. 263-275.
Park, S. (2009). Effect of fibre reinforcement and distribution on unconfined compressive strength of fibre-reinforced cemented sand. Geotextiles and Geomembranes, 27, no 2, pp. 162-166.
Park, S. (2011). Unconfined compressive strength and ductility of fibre-reinforced cemented sand. Construction and Building Materials, 25, no 2, pp. 1134-1138.
Sarma, S. S.; Fahey, M. (2003). Degradation of stiffness of cemented calcareous soil in cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 129, no 7, pp. 619- 629.
Sukontasukkul, P.; Jamsawang, P. (2012). Use of steel and polyprolylene fibres to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, no 1, pp. 201-205.
Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. (2007). Strength and mechanical behaviour of short polypropylene fibre reinforced and cement stabilized clayed soil. Geotextiles and Geomembranes, 25, pp. 194-202.
Taylor, H. F. W. (1997). Cement Chemistry. 2nd edition, Thomas Telford.
Teles J. M. N. P. C. (2013). Comportamento mecânico do solo mole do “Baixo Mondego” quimicamente estabilizado com fibras metálicas. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.
Terashi, M.; Kitazume, M. (2009). Keynote Lecture: Current practice and future perspective of QA/QC for deep-mixed ground. International Symposium of Deep Mixing &Admixture Stabilization. Okinawa, Japan.
Terashi, M. (2005). Keynote Lecture: Design of deep mixing in infrastructure applications. International Conference on Deep Mixing - Best Practice and Recent Advances: k25-k45. Swedish Deep Stabilization Centre. Stockholm, Sweden.
Venda Oliveira, P. J.; Correia, A. A. S.; Teles, J. M. N. P. C.; Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23, no 3, pp. 171-182.
Venda Oliveira, P. J.; Correia, A. A. S.; Teles, J. M. N. P. C.; Pedro, A. M. G. (2017). Effect of cyclic loading on the behaviour of a chemically stabilised soft soil reinforced with steel fibres. Soil Dynamics and Earthquake Engineering, 92, pp. 122-125.
Venda Oliveira, P. J.; Correia, A. A. S.; Cajada J. C. A. (2018). Effect of the type of soil on the cyclic behaviour of chemically stabilised soils unreinforced and reinforced with polypropylene fibres. Soil Dynamics and Earthquake Engineering, 115, pp. 336-343.
Viana da Fonseca, A.; Rios, S.; Amaral, M. F.; Panico, F. (2013). Fatigue Cyclic Tests on Artificially Cemented Soil. Geotechnical Testing Journal, 36, no 2, pp. 1-9.
Yang, C.; Cui, Y. J.; Pereira, J. M.; Huang, M. S. (2008). A constitutive model for unsaturated cemented soils under cyclic loading. Computers and Geotechnics, 35, no 6, pp. 853-859.