Behavior of chemically stabilized soils reinforced with fibers under monotonic and cyclic loading

Authors

DOI:

https://doi.org/10.14195/2184-8394_152_16

Keywords:

Chemically stabilized soil, Steel fibers, Polypropylene fibers, Unconfined compressive strength test, Cyclic loading

Abstract

This work analyzes the behavior of chemically stabilized soils unreinforced and reinforced with steel and polypropylene fibers. Initially, the behavior under monotonic compressive and tensile loads is addressed, using as reference the soft soil of Baixo Mondego. Subsequently, the effect of cyclic loading on the behavior of a sand, a silt and an organic soil is analyzed. This is based on the comparison of the results of monotonic unconfined compressive strength (UCS) and Brazilian tests with equivalent tests previously subjected to cyclic loading. Additionally, the accumulated permanent deformations obtained in the cyclic phase are also analyzed. From the results it was found that: i) the reinforcement with both types of fibers increases the ductility of the stabilized soil; ii) the effect of the inclusion of fibers on the mechanical properties depends on the cementation level, i.e., for low binder content the inclusion of fibers has a positive effect, while for high binder content the effect is negative; iii) regardless of the soil type, the cyclic loading induces the increase of the mechanical properties of the stabilized soils.

Downloads

Download data is not yet available.

References

Ahmed, A.; Naggar, M. H. (2018). Effect of cyclic loading on the compressive strength of soil stabilized with basanite-tire mixtures. Journal of Material Cycles and Waste Management, 20, no 1, pp. 525-532.

Al-Tabbaa, A.; Barker, P.; Evans, C. W. (2009). Keynote Lecture: Design of deep mixing in infrastructure applications. International Symposium of Deep Mixing & Admixture Stabilization. Okinawa, Japan.

ASTM D2487 (1998). Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohoken, PA.

BS 1377-3 (1990): Methods of test for soils for civil engineering purposes - part 7: Chemical and electro-chemical tests. BSI, London, UK.

Cai, Y.; Shi, B.; Ng, C. W. W.; Tang, C. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayed soil. Engineering Geology, 87, pp. 230-240.

Cajada, J. C. A. (2017). Estabilização química de diferentes solos reforçados com fibras de polipropileno. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.

Chauhan, M. S.; Mittal, S.; Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and Geomembranes, 26, no 5, pp. 429-435.

Coelho, P. A. L. F. (2000). Caracterização geotécnica de solos moles. Estudo experimental do local da Quinta da Foja. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.

Consoli, N. C.; Vendruscolo M. A.; Fonini, A.; Rosa, F. D. (2009). Fibre reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27, no 3, pp. 196- 203.

Consoli, N. C.; Bassani, M. A. A.; Festugato, L. (2010). Effect of fibre-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28, no 4, pp. 344-351.

Consoli, N. C.; Zortéa, F.; Souza, M.; Festugato, L. (2011a). Studies on the dosage of fibre- reinforced cemented soils. Journal of Materials in Civil Engineering, 23, no 12, pp. 1624-1632.

Consoli, N. C.; Moraes, R. R.; Festugato, L. (2011b). Split tensile strength of monofilament polypropylene fibre-reinforced cemented sandy soils. Geosynthetics International, 18, no 2, pp. 57-62.

Consoli, N. C.; Bellaver Corte, M.; Festugato, L. (2012). Key parameter for tensile and compressive strength of fibre-reinforced soil-lime mixtures. Geosynthetics International, 19, no 5, pp. 409- 414.

Consoli, N. C.; Scapini B.; Festugato, L. (2013a). A practical methodology for the determination of failure envelopes of fibre-reinforced cemented sands. Geotextiles and Geomembranes, 41, pp. 50-54.

Consoli, N. C.; Moraes, R. R.; Festugato, L. (2013b). Parameters controlling tensile and compressive strength of fibre-reinforced cemented soil. Journal of Materials in Civil Engineering, 25, no 10, pp. 1568-1573.

Consoli, N. C.; Moraes, R. R.; Festugato, L. (2013c). Variables controlling strength of fibre- reinforced cemented soils. Ground Improvement, 166, no 4, pp. 221-232.

Correia, A. A. S. (2011). Aplicabilidade da técnica de deep mixing ao solo mole do Baixo Mondego. Dissertação de Doutoramento, Universidade de Coimbra, Coimbra, Portugal.

Correia, A. A. S.; Venda Oliveira, P. J.; Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43, no 2, pp. 97-106.

Custódio, D. G. (2013). Comportamento mecânico do solo mole do Baixo Mondego quimicamente estabilizado com adição de fibras de polipropileno. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.

Dall’Aqua, G. P.; Ghataora, G. S.; Ling, U. K. (2010). Behaviour of fibre-reinforced and stabilized clayey soils subjected to cyclic loading. Studia Geotechnica et Mechanica, 32, no 3, pp. 3-16.

EN 197-1 (2000). Cement e Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization.

Estabragh, A. R.; Namdar, P.; Javadi, A. A. (2012). Behaviour of cement-stabilized clay reinforced with nylon fibre. Geosynthetics International, 19, no 1, pp. 85-92.

Eurosoilstab (2001). Development of design and construction methods to stabilise soft organic soils. Design guide soft soil stabilization. CT97-0351, EC Project No. BE 96-3177, Industrial and Materials Technologies Programme (BriteEuRam III), European Commission, pp. 94.

Festugato, L.; Fourie, A.; Consoli, N. C. (2013). Cyclic shear response of fibre-reinforced cemented paste backfill. Géotechnique Letters, 3, pp. 5-12.

Güllü, H.; Khudir A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fibre, steel fibre and lime. Cold Regions Science and Technology, 106-107, pp. 55-65.

Hernandez-Martinez, F. G.; Sparrevik, M.; Kvalvåg; Eggen, A.; Kvennås, A.; Grini, R. S. (2009). Stabilization/solidification of two contaminate marine sediments. International Symposium of Deep Mixing &Admixture Stabilization. Okinawa, Japan.

Holm, G. (2005). Keynote Lecture: Towards a sustainable society - recent advances in deep mixing. International Conference on Deep Mixing - Best Practice and Recent Advances: k13-k24. Swedish Deep Stabilization Centre. Stockholm, Sweden.

Janz, M.; Johansson, S.-E. (2002). The function of different binding agents in deep stabilization. Swedish Deep Stabilization Research Centre, Report 9, Linköping, Sweden.

Kaïkea, A.; Achoura, D.; Duplan, F.; Rizzuti, L. (2014). Effect of mineral admixtures and steel fibre volume contents on the behaviour of high performance fibre reinforced concrete. Materials and Design, 63, pp. 493-499.

Kaniraj, S. R.; Havanaji, V. J. (2001). Behavior of cement-stabilized fiber- reinforced fly ash-soil mixtures. J. Geotech. Geoenviron. Eng. 127, no 7, pp. 574-584.

Khaloo, A.; Raisi, E. M.; Hosseini, P.; Tahrisi, H. (2014). Mechanical performance of self- compacting concrete reinforced with steel fibres. Construction and Building Materials, 51, pp. 179-186.

Khattak, M. J.; Alrashidi, M. (2006). Durability and mechanistic characteristics of fibre reinforced soil-cement mixtures. International Journal of Pavement Engineering, 7, no 1, pp. 53-62.

Maher, M.; Ho, Y. (1993). Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16, no 3, pp. 330-338.

Olgun, M (2013). Effects of polypropylene fibre inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20, no 4, pp. 263-275.

Park, S. (2009). Effect of fibre reinforcement and distribution on unconfined compressive strength of fibre-reinforced cemented sand. Geotextiles and Geomembranes, 27, no 2, pp. 162-166.

Park, S. (2011). Unconfined compressive strength and ductility of fibre-reinforced cemented sand. Construction and Building Materials, 25, no 2, pp. 1134-1138.

Sarma, S. S.; Fahey, M. (2003). Degradation of stiffness of cemented calcareous soil in cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 129, no 7, pp. 619- 629.

Sukontasukkul, P.; Jamsawang, P. (2012). Use of steel and polyprolylene fibres to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, no 1, pp. 201-205.

Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. (2007). Strength and mechanical behaviour of short polypropylene fibre reinforced and cement stabilized clayed soil. Geotextiles and Geomembranes, 25, pp. 194-202.

Taylor, H. F. W. (1997). Cement Chemistry. 2nd edition, Thomas Telford.

Teles J. M. N. P. C. (2013). Comportamento mecânico do solo mole do “Baixo Mondego” quimicamente estabilizado com fibras metálicas. Dissertação de Mestrado, Universidade de Coimbra, Coimbra, Portugal.

Terashi, M.; Kitazume, M. (2009). Keynote Lecture: Current practice and future perspective of QA/QC for deep-mixed ground. International Symposium of Deep Mixing &Admixture Stabilization. Okinawa, Japan.

Terashi, M. (2005). Keynote Lecture: Design of deep mixing in infrastructure applications. International Conference on Deep Mixing - Best Practice and Recent Advances: k25-k45. Swedish Deep Stabilization Centre. Stockholm, Sweden.

Venda Oliveira, P. J.; Correia, A. A. S.; Teles, J. M. N. P. C.; Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23, no 3, pp. 171-182.

Venda Oliveira, P. J.; Correia, A. A. S.; Teles, J. M. N. P. C.; Pedro, A. M. G. (2017). Effect of cyclic loading on the behaviour of a chemically stabilised soft soil reinforced with steel fibres. Soil Dynamics and Earthquake Engineering, 92, pp. 122-125.

Venda Oliveira, P. J.; Correia, A. A. S.; Cajada J. C. A. (2018). Effect of the type of soil on the cyclic behaviour of chemically stabilised soils unreinforced and reinforced with polypropylene fibres. Soil Dynamics and Earthquake Engineering, 115, pp. 336-343.

Viana da Fonseca, A.; Rios, S.; Amaral, M. F.; Panico, F. (2013). Fatigue Cyclic Tests on Artificially Cemented Soil. Geotechnical Testing Journal, 36, no 2, pp. 1-9.

Yang, C.; Cui, Y. J.; Pereira, J. M.; Huang, M. S. (2008). A constitutive model for unsaturated cemented soils under cyclic loading. Computers and Geotechnics, 35, no 6, pp. 853-859.

Published

2021-07-30