Desenvolvimento da geotecnia. Algumas perspetivas específicas (1)

Autores

  • António Silva Cardoso Faculdade de Engenharia, Universidade do Porto
  • Pedro Costa Faculdade de Engenharia, Universidade do Porto

DOI:

https://doi.org/10.24849/j.geot.2016.137.02

Palavras-chave:

tendências emergentes, Engenharia geotécnica

Resumo

A engenharia geotécnica é um dos primeiros domínios técnico-científicos a intervir em qualquer projeto de infraestruturas ou de desenvolvimento urbano, sendo, muitas vezes, o mais importante. No decurso dos tempos muitas inovações metodológicas, analíticas, numéricas e tecnológicas foram sendo descobertas e utilizadas nas investigações de campo e de laboratório e nas áreas da análise, do projeto e da construção de estruturas geotécnicas. Os campos em que a geotecnia tem forte intervenção e onde essas inovações foram sendo introduzidas são muito vastos e espraiam-se por escalas muito diversas. A globalização mundial, a utilização não sustentável dos recursos, as alterações ambientais causadas por razões antrópicas, o aumento dos desastres naturais e a carência de infraestruturas para dar resposta às necessidades das populações criam um quadro que condiciona decisivamente a evolução da engenharia geotécnica. Neste conjunto de quatro artigos perspetiva-se o futuro da geotecnia: parte-se de uma caracterização, feita no 1º artigo, das diversas condicionantes, tanto sociais, económicas e ambientais, como geotécnicas, e das necessidades das sociedades humanas, sumariadas no 2º artigo, e apontam-se vias de desenvolvimento futuro consideradas como das mais relevantes.

Downloads

Não há dados estatísticos.

Referências

Alves Costa, P.; Calçada, R.; Couto Marques, J.; Cardoso, A.S. (2010). A 2.5D finite element model for simulation of unbounded domains under dynamic loading. Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, T. Benz & S. Nordal (Eds.): Trondheim, pp. 782-790.

Alves Costa, P.; Calçada, R.; Cardoso, A.S. (2012). Track-ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model. Soil Dynamics and Earthquake Engineering, 32(1):111-128.

Amado Mendes, P.; Godinho, L.; Alves Costa, P. (2014). 2.5D modeling of soil-structure interaction using a coupled MFS-FEM formulation. Proceedings of the 11th World Congress on Computational Mechanics. E. Oñate, J. Oliver & A. Huerta (Eds.).

Andersen, L. (2002). Wave propagation in infinite structures and media, Aalborg University.

Andersen, L.; Nielsen, S.; Krenk, S. (2007). Numerical methods for analysis of structure and ground vibration from moving loads. Computers and Structures, 85, pp. 43-58.

Arroyo, K.; Bhattacharya, P.; Biljecki, F.; Kalpoe, D.; Muñoz, A.; Van der Torren, P.T.; Verlaar, S.; Yu, H.; Verbree, E.; Eleftherakis, D.; Van Zwieten, G.J.; Hanssen, R. (2009). Satellite radar observation feasibility study for large infrastructural public works: A case study on the Delft train tunnel. Final report. Geomatics Synthesis Project 4, Delft University of Technology.

ASCE - American Society of Civil Engineers (2007). The vision for Civil Engineering in 2025 (based on the Summit on the Future of Civil Engineering, June 21-22, 2006). Task Committee to Plan a Summit on The Future of the Civil Engineering Profession.

Babu, G.L.S. (2012). Emerging aspects in Microbial Geotechnology and Ground Improvement. Indian Institute of Science, Bangalore. (http://nptel.ac.in/courses/105108075/module9/ Lecture39.pdf)

Barbour, S.L.; Krahn, J. (2004). Numerical Modelling – Prediction or Process? Geotechnical News, December 2004.

Boyd, P.D. (2008). Ranking geo-engineering schemes. Nature Geoscience, 1: 722-724.

Brandl, H. (2011). Importance of geotechnics in today’s and future civil engineering - Public image, risks and responsibilities and future aspects of civil/geotechnical engineering. e-GFOS, Electronic Journal of the Faculty of Civil Engineering Osijek, no.3, pp. 120-136.

Butlanska, J.; Arroyo, M.; Gens, A.; O’Sullivan, C. (2014). Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Canadian Geotechnical Journal, 51(1): 51-66.

Cardoso, A.S. (2004). Modelação e segurança. Conferência temática, 9º Congresso Nacional de Geotecnia, 19-23 abril, Aveiro.

Cardoso, A.S. (2015). Desenvolvimento da Geotecnia. Condicionantes gerais e específicas. Revista Geotecnia, nº 135, pp. 05-39.

Cardoso, A.S. (2016). Desenvolvimento da Geotecnia. Necessidade infraestruturais e perspetivas genéricas. Revista Geotecnia, nº 136, pp. 03-26.

Carter, J.P.; Desai, C.S.; Potts, D.M.; Schweiger, H.F.; Sloan, S.W. (2000). Computing and Computer Modelling in Geotechnical Engineering. International Conference on Geotechnical and Geological Engineering, GeoEng 2000, 19-24 November 2000, Melbourne, Australia, 1157-1252.

Cascini, L.; Peduto, D.; Reale, D.; Arena, L.; Ferlisi, S.; Verde, S.; Fornaro, G. (2013). Detection and monitoring of facilities exposed to subsidence phenomena via past and current generation SAR sensors. Journal of Geophysics and Engineering, 10, 6, 64001-64014. IOP Publishing.

Chowdhury, R.; Flentje, P. (2007). Perspectives for the future of Geotechnical Engineering. Proceedings of the International Conference on Civil Engineering for the New Millennium: Opportunities and Challenges, Bengal Engineering College, Shibpur, India.

Clough, G.W. (2006). The Past and Future of Computing in Geotechnical Engineering: The Inside out View. Geo Institute’s 2006 Geo Congress, Atlanta, Georgia.

Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J. (2002) Concepts and Applications of Finite Element Analysis, 4th edition. John Wiley & Sons.

Couto Marques, J.; Alves Costa, P.; Monteiro, A. (2002). Modelação numérica de maciços semi indefinidos. Atas do 8º Congresso Nacional de Geotecnia: Lisboa, pp. 959-968.

Cundall, P.A. (2001). A discontinuous future for numerical modelling in geomechanics? Proc. Instit. Civ. Eng. Geotech. Eng., 149(1), 41-47.

Cundall, P.; Strack, O. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47-65.

DeJong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.;

Chen, C.Y.; Cheng, X.; Chu, J.; Ciurli, S.; Esnault Filet, A.; Fauriel, S.; Hamdan, N.; Hata, T.; Inagaki, Y.; Jefferis, S.; Kuo, M.; Laloui, L.; Larrahondo, J.; Manning, D.A.C.; Martinez, B.; Montoya, B.M.; Nelson, D.C.; Palomino, A.; Renforth, P.; Santamarina, J.C.; Seagren, E.A.; Tanyu, B.; Tsesarsky, M.; Weaver, T. (2013). Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique, 63(4), 287-301.

Estorff, O.V.; Kausel, E. (1989). Coupling of boundary and finite elements for soil-structure interaction problems. Earthquake Engineering and Structural Dynamics, 18, pp. 1065-1075.

Fenton, G.A.; Griffiths, D.V. (1993). Statistics of block conductivity through a simple bounded stochastic medium. Water Resource Res., 29(6), 1825-1830.

Fragaszy, R.J.; Santamarina, J.C.; Amekudzi, A.; Assimaki, D.; Bachus, R.; Burns, S.E.; Cha, M.; Cho, G.C.; Cortes, D.D.; Dai, S.; Espinoza, D.N.; Garrow, L.; Huang, H.; Jang, J.; Jung, J.W.; Kim, S.; Kurtis, K.; Lee, C.; Pasten, C.; Phadnis, H.; Rix, G.; Shin, H.S.; Torres, M.C.; Tsouris, C. (2011). Sustainable development and energy geotechnology - Potential roles for geotechnical engineering, KSCE Journal of Civil Engineering, Vol. 15, Issue 4, pp. 611-621.

Francisca, F.M. (2011). About the future of geotechnical engineering: a view from South America. Proceedings of the 2011 Pan-Am CGS Geotechnical Conference (14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering), Paper 1211.

François, S.; Schevenels, M.; DeGrande, G.; Borgions, J.; Thyssen, B. (2008). A 2.5D finite element-boundary element model for vibration isolating screens. Proceedings of ISMA 2008 - International Conference on Noise and Vibration Engineering, P. Sas & B. Bergen (Eds), Leuven, pp. 2765-2776.

François, S.; Schevenels, M.; Galvin, P.; Lombaert, G.; DeGrande, G. (2010). A 2.5D coupled FE BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace. Computer Methods in Applied Mechanics and Engineering, 199 (23-24), pp. 1536-1548.

Griffiths, D.V.; Fenton, G.A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique, 43(4), 577-587.

Hjiaj, M.; Lyamin, A.V.; Sloan, S.W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. Int. J. Solids and Structures, 42 (5-6), pp. 1681-1704.

Idelsohn, S.R.; Oñate, E.; Del Pin, F. (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering, 61: 964-989.

Idelsohn, S.R.; Oñate, E.; Del Pin, F.; Calvo, N. (2006). Fluid–structure interaction using the particle finite element method. Computer Methods in Applied Mechanics and Engineering, Volume 195, Issues 17-18, pp. 2100-2123.

Jardine, R. (2013). Advanced laboratory testing in research and practice. The 2nd Bishop Lecture. Proceedings of the 18th ICSMGE, Paris.

Jardine, R. (2014). Advanced laboratory testing in research and practice: the 2nd Bishop Lecture. ICE - Geotechnical Research, Volume 1, Issue 1, pp. 2-31.

Jiang, M.; Yu, H.-S. (2006). Application of Discrete Element Method to Geomechanics. Modern Trends in Geomechanics, W. Wu and H.-S. Yu (Eds.), Springer, 560 p.

Kim, D.; Park, K.; Kim, D. (2014). Effects of Ground Conditions on Microbial Cementation in Soils. Materials 7, 143-156.

Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.O.; Fischer, T.; Görke, U.J.; Kalbacher, T.; Kosakowski, G.; McDermott, C.I.; Park, C.H.; Radu, F.; Rink, K.; Shao, H.; Shao, H.B.; Sun, F.; Sun, Y.Y.; Singh, A.K.; Taron, J.; Walther, M.; Wang, W.; Watanabe, N.; Wu, Y.; Xie, M.; Xu, W.; Zehner, B. (2012). OpenGeoSys: an open source initiative for numerical simulation of

thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences 67(2): 589-599.

Long, J.C.S. (2006). Preface of Geological and Geotechnical Engineering in the New Millennium. Opportunities for Research and Technological Innovation. Committee on Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation, Committee on Geological and Geotechnical Engineering, Board on Earth Sciences and Resources, Division on Earth and Life Studies, National Research Council, The National Academies Press.

Lopes, P.; Alves Costa, P.; Ferraz, M.; Cardoso, A.S. (2014). Numerical modelling of vibrations induced by railway traffic in tunnels: from the source to the nearby buildings. Soil Dynamics and Earthquake Engineering, 61-62, pp. 269-285.

Misra, A.; Basu, D. (2011). Sustainability in geotechnical engineering. Internal Geotechnical Report 2011-2, Department of Civil and Environmental Engineering, University of Connecticut.

Nelson, P.P. (2013). Uncertainty and Resilience as Key Frameworks for the Future of Urban Geotechnical Engineering. A Presentation to the Geotechnical Group of the ASCE Metropolitan Section, October 31, 2013.

NRC - National Research Council (2006). Geological and Geotechnical Engineering in the New Millennium. Opportunities for Research and Technological Innovation. Committee on Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation, Committee on Geological and Geotechnical Engineering, Board on Earth Sciences and Resources, Division on Earth and Life Studies, National Research Council, The National Academies Press.

Oñate, E.; Celigueta, M.A.; Idelsohn, S.R.; Salazar, F.; Suárez, B. (2011). Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Computational Mechanics, 48(3):307-318.

Oñate, E.; Idelsohn, S.R.; Del Pin, F.; Aubry, R. (2004). The particle finite element method. An overview. International Journal of Computational Methods, Vol. 1 No. 2 (2004), 267-307.

Oñate, E.; Idelsohn, S.R.; Celigueta, M.A.; Rossi, R. (2006). Advances in the Particle Finite Element Method for Fluid-Structure Interaction Problems. III European Conference on Computational Mechanics.

O’Sullivan, C. (2011). Particle-based discrete element modeling: geomechanics perspective. International Journal of Geomechanics, ASCE, 11(6): 449-464.

Perissin, D.; Wangb, Z.; Lin, H. (2012). Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS Journal of Photogrammetry and Remote Sensing 73, 58-67.

Randolph, M.F. (2005). Challenges of Offshore Geotechnical Engineering. 16th ICSMGE, Osaka, Japan.

Randolph, M.F.; Gaudin, C.; Gourvenec, S.M.; White, D.J.; Boylan, N.; Cassidy, M.J. (2011). Recent advances in offshore geotechnics for deep water oil and gas developments. Ocean Engineering, 38, pp. 818-834.

Rocca, R.J.; Redolfi, E.R.; Terzariol, R.E. (2006). Características geotécnicas de los loess de Argentina. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6(2), 149-166.

Santamarina, J.C. (2012). Energy Geotechnology: The Role of Geotechnical Engineers in the Energy Challenge. The British Geotechnical Association BGA Touring Lecture 2012. (http://www.ice.org.uk/ICE_Web_Portal/media/northernireland/Santamarina—-Energy Geotechnology—-BGA-2012—-DISTRIBUTION.pdf)

Santamarina, J.C. (2014). Energy Geotechnology: Enabling New Insights into Soil Behavior. Karl Terzaghi Lecture. Geo-Congress 2014, Geo-Characterization and Modeling for Sustainability, A.J. Puppala, P. Bandini and T.C. Sheahan (Eds.), Geotechnical Special Publication No. 235, Geo-Institute, ASCE.

Santamarina J.C.; Cho, G.C. (2011). Energy geotechnology. KSCE Journal of Civil Engineering, 15(4): 607-610.

Santos, R.N.C. (2014). Experimental Investigation on Limitation of the Progression of Internal Erosion in Zoned Dams. PhD Thesis, Instituto Superior Técnico, Universidade de Lisboa.

Schlosser, F.; Plumelle, C.; Frank, R.; Puech, A.; Gonin, H.; Rocher-Lacoste, F.; Simon, B.; Bernardini, C. (2013). Innovations Françaises en Géotechnique: les Projets Nationaux de Recherche. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris.

Shackelford, C.D. (2005). Environmental Issues in Geotechnical Engineering. Proceedings of the 16th Inter. Conf. on Soil Mechanics and Geotechnical Engineering, Osaka, Millpress, Vol.1.

Sheng, X.; Jones, C.; Thompson, D. (2006). Prediction of ground vibration from trains using wavenumber finite and boundary element method. Journal of Sound and Vibration, 293: 575-586.

Simões, J.T.; Neves, L.C.; Antão, A.N.; Guerra, N.M.C. (2014). Probabilistic analysis of bearing capacity of shallow foundations using 3D limit analyses. International Journal of Computational Methods, Volume 11, Issue 02.

Simpson, B.; Tatsuoka, F. (2008). Geotechnics: the next 60 years. Géotechnique, 58(5): 357-368. Sommerfeld, A. (1949). Partial Differential Equations in Physics. New York: Academic Press.

Tatsuoka, F. (2011). Laboratory stress-strain tests for developments in geotechnical engineering research and practice. The 1st Bishop Lecture. Proceedings of the 5th International Symposium on Deformation Characteristics of Geomaterials, Seoul.

Terzaghi, K. (1936). Relation between soil mechanics and foundation engineering. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Harvard University, Vol.3, pp. 13-18.

Terzariol, R.E. (2009). 40 años de estudio de los suelos loessicos en Córdoba, Argentina. Desafíos y avances de la geotecnia joven en Sudamérica (F.M. Francisca, Ed.), Alejandría, Córdoba, Argentina.

Van Paassen, L.A. (2010). Biological ground improvement. Predicting mechanical properties during biocementation? Delft University of Technology (http://alertgeomaterials.eu/data/ workshop/2010/Session%20III/05_VanPaassen.pdf)

Van Paassen, L.A.; Harkes, M.P.; Van Zwieten, G.A.; Van der Zon, W.H.; Van der Star, W.R.L.; Van Loosdrecht, M.C.M. (2009). Scale up of BioGrout: a biological ground reinforcement method. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, M. Hamza et al. (Eds.), IOS Press, 2328-2333.

Venda Oliveira, P.; da Costa, M.; Costa, J.; Nobre, M. (2015). Comparison of the ability of two bacteria to improve the behavior of sandy soil. Journal of Materials in Civil Engineering, ASCE, 27(1):06014025.

Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24: 417-423.

##submission.downloads##

Publicado

2016-07-21

Edição

Secção

Artigos