Um modelo hidromecânico para análise de fundações de barragens gravidade em betão
DOI:
https://doi.org/10.24849/j.geot.2015.133.02Palavras-chave:
Fundações de barragens gravidade, modelo hidromecânico, elementos finitos de juntaResumo
Apresenta-se a formulação explícita de um modelo hidromecânico em pequenos deslocamentos, baseado numa tecnologia de elementos finitos de junta. O modelo hidromecânico proposto requer um esquema de pré-processamento robusto, de modo a garantir que os contactos entre os diversos blocos que representam o maciço rochoso de fundação e a barragem são somente aresta/aresta. A parte mecânica do modelo, apesar de limitada a pequenos deslocamentos, tem a vantagem de permitir uma representação rigorosa da distribuição de tensões ao longo das juntas. A parte hidráulica do modelo é perfeitamente compatível com a parte me câ ni ca. O modelo hidromecânico é validado recorrendo a uma situação hipotética de uma barragem gravidade fundada num maciço com fraturação regular e a uma situação real de uma barragem em serviço, comparando os resultados com os obtidos com um modelo discreto em grandes deslocamentos. São também comparados os resultados de análises de estabilidade, concluindo-se que é possível avaliar a segurança ao deslizamento de barragens gravidade em betão recorrendo a modelos de interação em pequenos deslocamentos.
Downloads
Referências
Asgian, M. (1989). A numerical model of fluid-flow in deformable naturally fractured rock masses. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, vol. 26, nº3/4, pp. 317-328.
Azevedo, N. (2003). A rigid particle discrete element model for the fracture analysis of plane and reinforced concrete. Ph.D. Thesis, Heriot-Watt University, Scotland.
Azevedo, N.; Lemos, J.V.; Almeida, J. (2007). Modelo híbrido de elementos discretos/finitos com fronteira rugosa para a análise da fractura em materiais quase-frágeis. Conferência Métodos Numéricos em Engenharia, Porto.
Azevedo, N.; Bretas, E.; Lemos, J.V. (2012). Shear sliding of gravity dams for Maximum Design Earthquake analysis. Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa.
Barla, G.; Bonini, M.; Cammarata, G. (2004). Stress and seepage analyses for a gravity dam on a jointed granitic rock mass. Proceedings of the 1st international UDEC/3DEC Symposium: Numerical Modeling of Discrete Materials in Geotechnical Engineering, Civil Engineering, and Earth Sciences, pp. 263-268, Bochum.
Bear, J. (1988). Dynamics of fluids in porous media. Dover Publications, Inc., New York.
Biot, M.A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, vol. 12, nº2, pp. 155-164.
Bretas, E.; Lemos, J.V.; Lourenço, P. (2013). Hydromechanical analysis of masonry gravity dams and their foundations. Rock Mechanics and Rock Engineering, vol. 46, pp. 327-339.
Callari, C.; Fois, N.; Cicivelli, R. (2004). The role of hydro-mechanical coupling in the behaviour of dam-foundation system. Proceedings of the VI World Congress on Computational Mechanics, pp. 1-11, Pequim.
Cammarata, G.; Fidelibus, C.; Cravero, M.; Barla, G. (2007). The hydro-mechanically coupled response of rock fractures. Rock Mechanics and Rock Engineering, vol. 40, nº 1, pp. 41-61.
Carol, I.; Prat, P.; López, C. (1997). Normal/shear cracking mode: application to discrete crack analysis. Journal of Engineering Mechanics (ASCE), vol. 123, nº 8, pp. 765-773.
Erban, P.; Gell, K. (1988). Consideration of the interaction between dam and bedrock in a coupled mechanic-hydraulic FE-program. Rock Mechanics and Rock Engineering, vol. 21, nº 2, pp. 99-117.
Farinha, M.L.B. (2010). Hydromechanical behaviour of concrete dam foundations. In situ tests and numerical modelling. Ph.D. Thesis, Instituto Superior Técnico, Lisboa.
Farinha, M.L.B.; Lemos, J.V. (2010). Aplicação de um modelo hidromecânico na avaliação da segurança de uma barragem gravidade. 12º Congresso Nacional de Geotecnia, Guimarães.
George, L.; Hecht, F.; Saltel, L. (1991). Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering, vol. 92, nº 3, pp. 269-288.
Gimenes, E.; Fernández, G. (2006). Hydromechanical analysis of flow behavior in concrete gravity dam foundations. Canadian Geotechnical Journal, vol. 43, pp. 244-259.
Gomes de Mendonça, T. (1989). Modelo de elementos finitos tridimensionais para o estudo do comportamento hidromecânico de fundações de barragens de betão. Relatório 158/99, pp. 1-67. LNEC.
Goodman, R.; Taylor, R.; Brekke, T. (1968). A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division (ASCE), vol. 94(SM3), pp. 637-659.
Hohberg, J. (1992). A joint element for the nonlinear dynamic analysis of arch dams. Ph.D. Thesis. Institute of Structural Engineering, ETH, Zurich, Switzerland.
Itasca (2004). UDEC - Universal Distinct Element Code, Version 4.0, Itasca Consulting Group, Minneapolis.
Jing, L.; Stephansson, O. (2007). Fundamentals of discrete element methods for rock engineering: theory and applications. Elsevier, Rotterdam.
Kafritsas, J.C. (1987). Coupled flow/deformation analysis of jointed rock with the distinct element method. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.
Lamas, L.N. (1993). Contributions to understanding the hydromechanical behaviour of pressure tunnels. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, University of London, London.
Latham J.-P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.-F.; Blunt, M.J. (2013). Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. International Journal of Rock Mechanics and Mining Sciences, vol. 57, pp. 100-112.
Leitão, N.S.; Lamas, L.N. (2006). Modeling of the high pressure circuit of the Venda Nova hydroelectric scheme. Proceedings of the 4th International FLAC Symposium, pp. 131-137, Madrid.
Lemos, J.V. (1987). A distinct element model for dynamic analysis of jointed rock with application to dam foundations and fault motion. Ph.D. Thesis, University of Minnesota, Minneapolis.
Lemos, J.V.; Cundall, P. (1999). Earthquake analysis of concrete gravity dams on jointed rock foundations. Distinct Element Modelling in Geomechanics, A.A. Balkema, Rotterdam, pp. 117-143.
Lemos, J.V. (2004). Os modelos de elementos discretos em geomecânica - evolução e perspectivas futuras. Geotecnia - Revista da Sociedade Portuguesa de Geotecnia, vol. 100, pp. 333-344.
Londe, P.; Sabarly, F. (1966). La distribution des perméabilités dans la fondation des barrages voûtes en fonction du champ de contrainte. Proceedings of the 1st International Congress on Rock Mechanics, vol.II, pp. 517-522, Lisboa.
Louis, C. (1969). A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Ph.D. Thesis, University of Karlsruhe (in German), English translation, Imperial College Rock Mechanics Research Report nº10, London.
Louis, C.; Maini, Y.N. (1970). Determination of in situ hydraulic parameters in jointed rock. Proceedings of the 2nd International Congress on Rock Mechanics. vol.I, pp. 235-245, Belgrade.
Miranda, M.P.; Maia, M.C. (2004). Main features of the Alqueva and Pedrógão Projects. The International Journal on Hydropower and Dams, vol.11, nº5, pp. 95-99.
Mostyn, G.; Helgstedt, M.D.; Douglas, K.J. (1997). Towards field bounds on rock mass failure criteria. International Journal of Rock Mechanics and Mining Sciences, vol. 34, nº 3-4, pp. 208.e1-208.e18.
Ng, K.L.A.; Small, J.C. (1997). Behavior of joints and interfaces subjected to water pressure. Computers and Geotechnics, vol. 20, nº 1, pp. 71-93.
Noorishad, J.; Ayatollahi, M.S.; Witherspoon, P.A. (1982). A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, vol.19, pp. 185-193.
Rutqvist, J.; Stephansson, O. (2003). The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal, vol. 11, nº 1, pp. 7-40.
Segura, J.M.; Carol, I. (2004). On zero thickness interface elements for diffusion problems. International Journal of Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 947-962.
Segura, J.M.; Carol, I. (2008). Coupled HM analysis using zero thichness interface elements with double nodes: Theoretical model. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, pp. 2083-2101.
Snow, D.T. (1965). A parallel plate model of fractured permeable media. Ph.D. Thesis, University of California, Berkeley.
USACE (1994). Rock foundations. Engineer Manual 1110-1-2908. United States Army Corps of Engineers. Washington, DC.
Wei, L.; Hudson, J. (1988). A hybrid discrete–continuum approach to model hydro-mechanical behaviour of jointed rocks. Engineering Geology, vol. 49, nº 3-4, pp. 317-325.