A hydromechanical model for the analysis of concrete gravity dam foundations

Authors

  • Nuno Azevedo LNEC
  • Maria Farinha LNEC

DOI:

https://doi.org/10.24849/j.geot.2015.133.02

Keywords:

Foundations of gravity dams, Hydromechanical model, Joint finite elements

Abstract

The explicit formulation of a small displacement model for the hydromechanical analysis of concrete gravity dam foundations, based on joint finite elements, is presented. The proposed hydromechanical model requires a thorough pre-processing stage in order to ensure that the interactions between the various blocks which represent both the rock mass foundation and the dam are always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the joints. The hydraulic and the mechanical parts of the model are fully compatible. The hydromechanical model is validated using both a hypothetical situation of a gravity dam on a rock mass with a regular joint pattern and a real case of an operating dam, by comparison of the results with those obtained with a large displacement discrete model. Results of stability analyses are also compared, which lead to the conclusion that it is possible to assess the sliding stability of concrete gravity dams using small displacement models.

Downloads

Download data is not yet available.

References

Asgian, M. (1989). A numerical model of fluid-flow in deformable naturally fractured rock masses. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, vol. 26, nº3/4, pp. 317-328.

Azevedo, N. (2003). A rigid particle discrete element model for the fracture analysis of plane and reinforced concrete. Ph.D. Thesis, Heriot-Watt University, Scotland.

Azevedo, N.; Lemos, J.V.; Almeida, J. (2007). Modelo híbrido de elementos discretos/finitos com fronteira rugosa para a análise da fractura em materiais quase-frágeis. Conferência Métodos Numéricos em Engenharia, Porto.

Azevedo, N.; Bretas, E.; Lemos, J.V. (2012). Shear sliding of gravity dams for Maximum Design Earthquake analysis. Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa.

Barla, G.; Bonini, M.; Cammarata, G. (2004). Stress and seepage analyses for a gravity dam on a jointed granitic rock mass. Proceedings of the 1st international UDEC/3DEC Symposium: Numerical Modeling of Discrete Materials in Geotechnical Engineering, Civil Engineering, and Earth Sciences, pp. 263-268, Bochum.

Bear, J. (1988). Dynamics of fluids in porous media. Dover Publications, Inc., New York.

Biot, M.A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, vol. 12, nº2, pp. 155-164.

Bretas, E.; Lemos, J.V.; Lourenço, P. (2013). Hydromechanical analysis of masonry gravity dams and their foundations. Rock Mechanics and Rock Engineering, vol. 46, pp. 327-339.

Callari, C.; Fois, N.; Cicivelli, R. (2004). The role of hydro-mechanical coupling in the behaviour of dam-foundation system. Proceedings of the VI World Congress on Computational Mechanics, pp. 1-11, Pequim.

Cammarata, G.; Fidelibus, C.; Cravero, M.; Barla, G. (2007). The hydro-mechanically coupled response of rock fractures. Rock Mechanics and Rock Engineering, vol. 40, nº 1, pp. 41-61.

Carol, I.; Prat, P.; López, C. (1997). Normal/shear cracking mode: application to discrete crack analysis. Journal of Engineering Mechanics (ASCE), vol. 123, nº 8, pp. 765-773.

Erban, P.; Gell, K. (1988). Consideration of the interaction between dam and bedrock in a coupled mechanic-hydraulic FE-program. Rock Mechanics and Rock Engineering, vol. 21, nº 2, pp. 99-117.

Farinha, M.L.B. (2010). Hydromechanical behaviour of concrete dam foundations. In situ tests and numerical modelling. Ph.D. Thesis, Instituto Superior Técnico, Lisboa.

Farinha, M.L.B.; Lemos, J.V. (2010). Aplicação de um modelo hidromecânico na avaliação da segurança de uma barragem gravidade. 12º Congresso Nacional de Geotecnia, Guimarães.

George, L.; Hecht, F.; Saltel, L. (1991). Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering, vol. 92, nº 3, pp. 269-288.

Gimenes, E.; Fernández, G. (2006). Hydromechanical analysis of flow behavior in concrete gravity dam foundations. Canadian Geotechnical Journal, vol. 43, pp. 244-259.

Gomes de Mendonça, T. (1989). Modelo de elementos finitos tridimensionais para o estudo do comportamento hidromecânico de fundações de barragens de betão. Relatório 158/99, pp. 1-67. LNEC.

Goodman, R.; Taylor, R.; Brekke, T. (1968). A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division (ASCE), vol. 94(SM3), pp. 637-659.

Hohberg, J. (1992). A joint element for the nonlinear dynamic analysis of arch dams. Ph.D. Thesis. Institute of Structural Engineering, ETH, Zurich, Switzerland.

Itasca (2004). UDEC - Universal Distinct Element Code, Version 4.0, Itasca Consulting Group, Minneapolis.

Jing, L.; Stephansson, O. (2007). Fundamentals of discrete element methods for rock engineering: theory and applications. Elsevier, Rotterdam.

Kafritsas, J.C. (1987). Coupled flow/deformation analysis of jointed rock with the distinct element method. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.

Lamas, L.N. (1993). Contributions to understanding the hydromechanical behaviour of pressure tunnels. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, University of London, London.

Latham J.-P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.-F.; Blunt, M.J. (2013). Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. International Journal of Rock Mechanics and Mining Sciences, vol. 57, pp. 100-112.

Leitão, N.S.; Lamas, L.N. (2006). Modeling of the high pressure circuit of the Venda Nova hydroelectric scheme. Proceedings of the 4th International FLAC Symposium, pp. 131-137, Madrid.

Lemos, J.V. (1987). A distinct element model for dynamic analysis of jointed rock with application to dam foundations and fault motion. Ph.D. Thesis, University of Minnesota, Minneapolis.

Lemos, J.V.; Cundall, P. (1999). Earthquake analysis of concrete gravity dams on jointed rock foundations. Distinct Element Modelling in Geomechanics, A.A. Balkema, Rotterdam, pp. 117-143.

Lemos, J.V. (2004). Os modelos de elementos discretos em geomecânica - evolução e perspectivas futuras. Geotecnia - Revista da Sociedade Portuguesa de Geotecnia, vol. 100, pp. 333-344.

Londe, P.; Sabarly, F. (1966). La distribution des perméabilités dans la fondation des barrages voûtes en fonction du champ de contrainte. Proceedings of the 1st International Congress on Rock Mechanics, vol.II, pp. 517-522, Lisboa.

Louis, C. (1969). A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Ph.D. Thesis, University of Karlsruhe (in German), English translation, Imperial College Rock Mechanics Research Report nº10, London.

Louis, C.; Maini, Y.N. (1970). Determination of in situ hydraulic parameters in jointed rock. Proceedings of the 2nd International Congress on Rock Mechanics. vol.I, pp. 235-245, Belgrade.

Miranda, M.P.; Maia, M.C. (2004). Main features of the Alqueva and Pedrógão Projects. The International Journal on Hydropower and Dams, vol.11, nº5, pp. 95-99.

Mostyn, G.; Helgstedt, M.D.; Douglas, K.J. (1997). Towards field bounds on rock mass failure criteria. International Journal of Rock Mechanics and Mining Sciences, vol. 34, nº 3-4, pp. 208.e1-208.e18.

Ng, K.L.A.; Small, J.C. (1997). Behavior of joints and interfaces subjected to water pressure. Computers and Geotechnics, vol. 20, nº 1, pp. 71-93.

Noorishad, J.; Ayatollahi, M.S.; Witherspoon, P.A. (1982). A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, vol.19, pp. 185-193.

Rutqvist, J.; Stephansson, O. (2003). The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal, vol. 11, nº 1, pp. 7-40.

Segura, J.M.; Carol, I. (2004). On zero thickness interface elements for diffusion problems. International Journal of Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 947-962.

Segura, J.M.; Carol, I. (2008). Coupled HM analysis using zero thichness interface elements with double nodes: Theoretical model. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, pp. 2083-2101.

Snow, D.T. (1965). A parallel plate model of fractured permeable media. Ph.D. Thesis, University of California, Berkeley.

USACE (1994). Rock foundations. Engineer Manual 1110-1-2908. United States Army Corps of Engineers. Washington, DC.

Wei, L.; Hudson, J. (1988). A hybrid discrete–continuum approach to model hydro-mechanical behaviour of jointed rocks. Engineering Geology, vol. 49, nº 3-4, pp. 317-325.

Published

2015-03-21

Issue

Section

Articles