Cyclic and dynamic behaviour of an artificially cemented silty sand




Soil-cement, long-term permanent deformation, resilient modulus, deformation due to cyclic loading


The cyclic and dynamic behaviour of an artificially cemented silty sand was analysed with cyclic triaxial tests and shear wave velocities measured with ultrasonic transducers. For the cyclic triaxial tests, the European standard EN 13286-7 (CEN, 2004) was followed in a first stage. The evolution of the resilient modulus with stress level was analysed as well as the permanent deformation evolution with the number of cycles at the light of the shakedown concept. In a second stage, cyclic triaxial tests were performed to analyse the long-term permanent deformation in cemented and uncemented specimens to check its evolution with cementation level. It was demonstrated that, in cemented specimens, although very small deformations were observed for the first cycles, after a significant number of cycles the permanent deformation can be quantified, possibly due to the degradation of the cement bonds. On the contrary, in the unbounded materials, there is a very significant permanent deformation accumulation in the first load cycles, which then tends to stabilise as the number of cycles increases. For that reason, the material classification according to the shakedown theory, as suggested in the European standard, is not applicable to cemented materials, and does not reflect its long-term behaviour which is dependent on bond breakage.



Download data is not yet available.


Abu-Farsakh, M.; Dhakal, S.; Chen, Q. (2015). Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading. Soils and Foundations 55(3): 504-516.

Amaral, M. (2012). Caracterização e Modelação de Comportamento Dinâmico e Cíclico de Misturas de Solo-Cimento para Infraestruturas de Transportes. Tese de Doutoramento em Engenharia Civil, Universidade do Porto.

Amaral, M.; Viana da Fonseca, A.; Arroyo, M.; Cascante, G.; Carvalho, J.M. (2011) Compression and shear wave propagation in cemented-sand specimens. Géotechnique Letters, 1(3): 79–84, ICE.

Amaral, M.; Viana da Fonseca, A.; Rios, S. (2013). Numerical Methodology to Minimize Resolution and Sensitivity Effects in P-Wave Measurements. Geotechnical Testing Journal. Vol. 36, No. 2, pp. 178-186, doi:10.1520/GTJ20120111

CEN (2004), EN 13286-7 - Unbound and hydraulically bound mixtures - Part 7: Cyclic load triaxial test for unbound mixtures, Comité Européen de Normalisation, Brussels.

Chen, W.-B.; Feng, W.-Q.; Yin, J.-H., Borana, L.; Chen, R.-P. (2019). Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory. Construction and Building Materials 198: 751-761.

Consoli, N.; Viana da Fonseca, A.; Cruz, R.; Rios, S. (2011). Voids/Cement ratio controlling tensile strength of cement treated soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(11), 1126-1131, doi:10.1061/(ASCE)GT.1943-5606.0000524

Consoli, N.; Viana da Fonseca, A.; Rios, S.; Cruz, R.; Fonini, A. (2012). Parameters controlling stiffness and strength of artificially cemented soils. Géotechnique 62(2), 177-183, doi:10.1680/geot.8.P.084

Coop, M.; Atkinson, J. (1993). The mechanics of cemented carbonate sands. Géotechnique, 43(1), 53-67.

Cuccovillo, T.; Coop, M.R. (1999). On the mechanics of structured sands. Géotechnique, 49(6), 741-760.

EP (2009). Caderno de Encargos Tipo Obra, Estradas de Portugal

Ferreira, C.; S. Rios; Cristelo, N.; Fonseca, A. V. (2021). Evolution of the optimum ultrasonic testing frequency of alkali-activated soil–ash. Géotechnique Letters 11(3): 158-163,

Gomes Correia, A.; Ramos, A. (2021). A geomechanics classification for the rating of railroad subgrade performance. Railway Engineering Science.

Ladd, R. S. (1978). Preparing test specimen using undercompaction. Geotechnical Testing Journal, 1(1), 16-23.

Leroueil, S.; High, D.W. (2003). Behaviour and properties of natural soils and soft rocks. In Characterization and Engineering Properties of Natural Soils (Tan et al., eds.), 29-254, Swets and Zeitlinger, Lisse.

Leroueil, S.;Vaughan, P. (1990). The General and Congruent Effects of Structure in Natural Soils and Weak Rocks, Géotechnique, 40(3), 467-488.

Paixão, A.; Fortunato, E.; Calçada, R. (2015). Design and construction of backfills for railway track transition zones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; 229(1):58-70. doi:10.1177/0954409713499016

Panico, A. F. (2018). Modelling the Long Term Cyclic Behaviour of Porto Silty-Sand Stabilised with Cement. Tese de Doutoramento em Engenharia Civil, Universidade do Porto.

Panico, F.; Viana da Fonseca, A. (2016). Long Term Cyclic Response of a Soil-Cement Mixture: Experimental Study and Modelling. Procedia Engineering, 143, pp. 178-186.

Ramos, A.; Gomes Correia, A.; Indraratna, B.; Ngo, T.; Calçada, R.; Costa, P. A. (2020). Mechanistic-empirical permanent deformation models: Laboratory testing, modelling and ranking. Transportation Geotechnics 23: 100326.

Rios, S. (2011). A General Framework for the Geomechanical Characterisation of Artificially Cemented Soil. Tese de Doutoramento em Engenharia Civil, Universidade do Porto.

Rios, S.; Cristelo, C.; Viana da Fonseca, A.; Ferreira, C. (2017). Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains. International Journal of Geomechanics, 17(3), 1-12 doi: 10.1061/(ASCE)GM.1943-5622.0000783

Rios, S.; Viana da Fonseca, A.; Baudet, B. (2012). The effect of the porosity/cement ratio on the compression behaviour of cemented soil. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1422–1426, doi: 10.1061/(ASCE)GT.1943-5606.0000698

Rios, S.; Viana da Fonseca, A.; Baudet, B. (2014). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9(2), 215-226, doi: 10.1007/s11440-013-0242-7

Sharp (1983). Shakedown Analyses and the Design of Pavement under Moving Surface Load. Ph.D. thesis, University of Sydney, Sydney, Australia

Viana da Fonseca, A. (1996). Geomecânica dos Solos Residuais do Granito do Porto. Critérios para Dimensionamento de Fundações Directas. Tese de doutoramento em Engenharia Civil, Faculdade de Engenharia da Universidade do Porto.

Viana da Fonseca, A.; Carvalho, J.; Ferreira, C.; Santos, J.A.; Almeida, F.; Pereira, E.; Feliciano, J.; Grade, J.; Oliveira, A. (2006). Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotechnical and Geological Engineering, 24, pp.1307-1348.

Viana da Fonseca, A.; Coop, M.R.; Fahey, M.; Consoli, N. (2011). The interpretation of conventional and non-conventional laboratory tests for challenging geotechnical problems. ‘Deformation Characteristics of Geomaterials’, 1: 84-119. IOS Press, Amsterdam.

Viana da Fonseca, A.; Rios, S.; Amaral, M.; Panico, F. (2013). Fatigue cyclic tests on artificially cemented soil. Geotechnical Testing Journal. Vol. 36, No. 2, pp. 227-235, doi:10.1520/GTJ20120113 (ISSN 0149-6115).

Viana da Fonseca, A.; Amaral, M.F.; Panico, F.; Rios, S. (2014). Indexation of Dynamic and Static Geomechanical Properties of a Cemented Aggregate for Transportation Engineering. Transportation Geotechnics, 1(1), 31-44, doi:10.1016/j.trgeo.2014.02.001

Viana da Fonseca, A., Santos, J.; Coelho, P. (2021). 30 anos de progresso em 3 laboratórios de geotecnia de Universidades Portuguesas: caracterização de solos não plásticos, Geotecnia nº 152 – pp. 143-185: doi:10.14195/2184-8394_152_5 (Volume especial dedicado aos 50 anos da revista Geotecnia)

Werkmeister, S.; Dawson, A.; Wellner, F. (2005). Permanent Deformation Behavior of Granular Materials and the Shakedown Concept. International Journal of Road Materials and Pavement Design, 32-52.

Yu, H. S.; Khong, C.; Wang, J. (2007). A Unified Plasticity Model for Cyclic Behaviour of Clay and Sand, Mechanics Research Communications, 34, pp.97-114.