Cisalhamento direto de lastro ferroviário: modelo numérico e sua calibração

Autores

  • Sílvio Tumelero de Moraes Universidade de São Paulo, Departamento de Engenharia de Estruturas e Geotécnica
  • Paulo Pereira Universidade de São Paulo, Departamento de Engenharia de Transportes https://orcid.org/0000-0002-4499-9384
  • Alfredo Gay Neto Universidade de São Paulo, Departamento de Engenharia de Estruturas e Geotécnica https://orcid.org/0000-0002-3961-1488
  • Liedi Liedi Bernucci Universidade de São Paulo, Departamento de Engenharia de Transportes
  • Rosângela Mota Universidade de São Paulo, Departamento de Engenharia de Transportes
  • Edson Moura Universidade de São Paulo, Departamento de Engenharia de Transportes

DOI:

https://doi.org/10.14195/2184-8394_155_5

Palavras-chave:

Método dos elementos discretos, calibração, cisalhamento direto

Resumo

Esse trabalho objetiva comparar as formas de representação, por meio de modelagem numérica computacional pelo Método dos Elementos Discretos (MED), do lastro ferroviário, quando submetido ao ensaio da caixa de cisalhamento direto. Os parâmetros de maior variabilidade na literatura são analisados: coeficiente de atrito, módulo de elasticidade e coeficiente de resistência ao rolamento. Essa análise ocorre com a finalidade de compreender como estes afetam o resultado macroscópico final da simulação de calibração, verificando-se tanto a tensão de cisalhamento quanto a variação volumétrica. Comparam-se modelos compostos por partículas esféricas e poliédricas digitalizadas, sendo possível verificar a dificuldade do modelo composto por partículas esféricas em alcançar o nível de tensão esperado, adicionalmente à variação volumétrica, não se conseguindo representar a contração inicial vista em laboratório. Por fim, foram possíveis melhores calibrações empregando-se o modelo composto por partículas poliédricas digitalizadas, que proveram melhor descrição do nível de tensão e variação volumétrica do material de lastro.

Downloads

Não há dados estatísticos.

Referências

Ai, J.; Chen, J.; Rotter, J.; Ooi, J. (2011). Assessment of rolling resistance models in discrete element simulations. Powder Technology, v. 206, n. 3, p. 269–282.

ASTM D3080/D3080M (2011). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International.

Azéma, E.; Radjai, F.; Saussine, G. (2009). Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mechanics of Materials, v. 41, n. 6, p. 729–741.

Battini, J. M. (2012). The non-linear influence of ballast on the vibrations of railway bridges. Civil-Comp Proceedings, v. 99.

Bian, X.; Li, W.; Qian, Y.; Tutumluer, E. (2019). Micromechanical Particle Interactions in Railway Ballast through DEM Simulations of Direct Shear Tests. International Journal of Geomechanics, v. 19, n. 5, p. 1–19.

Campello, E. M. B. (2018). A computational model for the simulation of dry granular materials. International Journal of Non-Linear Mechanics, v. 106, p. 89–107.

Cheng, Y. P.; Minh, N. H. (2009). DEM investigation of particle size distribution effect on direct shear behaviour of granular agglomerates. AIP Conference Proceedings, v. 1145, p. 401–404.

Cundall, P. A.; Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, v. 30, n. 3, p. 331–336.

Danesh, A.; Mirghasemi, A. A.; Palassi, M. (2020). Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM). Transportation Geotechnics, v. 23, p. 100357.

ESSS (2020). Rocky DEM Technical Manual: version 4.3.

Estaire, J.; Santana, M. (2018). Large Direct Shear Tests Performed with Fresh Ballast. Railroad Ballast Testing and Properties. ASTM International. p. 144–161.

Ferellec, J.-F.; Perales, R.; Nhu, V.-H.; Wone, M.; Saussine, G. (2017). Analysis of compaction of railway ballast by different maintenance methods using DEM. EPJ Web of Conferences, v. 140, p. 15032.

Gajjar, P.; Johnson, C. G.; Carr, J.; Chrispeels, K.; Gray, J. M. N. T.; Withers, P. J. (2021). Size segregation of irregular granular materials captured by time-resolved 3D imaging. Scientific Reports, v. 11, n. 1, p. 8352.

Gay Neto, A.; Wriggers, P. (2021). Discrete element model for general polyhedra. Computational Particle Mechanics.

González, F. S. (2015). Numerical Modelling of Railway Ballast Using the Discrete Element Method. UPC Barcelonatech.

Guo, Y.; Zhao, C.; Markine, V.; Jing, G.; Zhai, W. (2020). Calibration for discrete element modelling of railway ballast: A review. Transportation Geotechnics, v. 23, n. January, p. 100341.

Han, Y.; Zhao, D.; Jia, F.; Qiu, H.; Li, A.; Bai, S. (2020). Experimental and numerical investigation on the shape approximation of rice particle by multi-sphere particle models. Advanced Powder Technology, p. 1–13.

Hoang, T. M. P.; Alart, P.; Dureisseix, D.; Saussine, G. (2011). A domain decomposition method for granular dynamics using discrete elements and application to railway ballast. Annals of Solid and Structural Mechanics, v. 2, n. 2–4, p. 87–98.

Höhner, D.; Wirtz, S.; Scherer, V. (2015). A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method. Powder Technology, v. 278, p. 286–305.

Khatibi, F.; Esmaeili, M.; Mohammadzadeh, S. (2017). DEM analysis of railway track lateral resistance. Soils and Foundations, v. 57, n. 4, p. 587–602.

Kim, D. S.; Hwang, S. H.; Kono, A.; Matsushima, T. (2018). Evaluation of ballast compactness during the tamping process by using an image-based 3D discrete element method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, v. 232, n. 7, p. 1951–1964.

Kumar, N.; Suhr, B.; Marschning, S.; Dietmaier, P.; Marte, C.; Six, K. (2019). Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types. Granular Matter, v. 21, n. 4, p. 1–17.

Marangon, M. (2018). Resistência ao cisalhamento dos solos. Apostila Mecânica dos Solos II. ed. Juiz de Fora: Universidade Federal de Juiz de Fora - Faculdade de Engenharia - Núcleo de Geotecnologia, 2018. p. 101–115.

Marigo, M.; Stitt, E. H. (2015). Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets. KONA Powder and Particle Journal, v. 32, n. 32, p. 236–252.

Moraes, S. T.; Gay Neto, A.; Bernucci, L. L. B. (2020). Particle shape and its importance to Discrete Element Modeling in the context of railway ballast simulation. Proceedings of the Ibero-Latin-American Congress on Computational Methods in Engineering, Foz do Iguaçu.

Mortensen, J.; Faurholt, J. F.; Hovad, E.; Walther, J. H. (2021). Discrete element modelling of track ballast capturing the true shape of ballast stones. Powder Technology, v. 386, p. 144–153.

Ngo, N. T.; Indraratna, B.; Rujikiatkamjorn, C. (2014). DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Computers and Geotechnics, v. 55, n. March 2019, p. 224–231.

Paim Da Silva, F. H. (2018). Estudo do comportamento de um lastro ferroviário sob carga repetida em modelo físico de verdadeira grandeza. Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Paixão, A.; Resende, R.; Fortunato, E. (2018). Photogrammetry for digital reconstruction of railway ballast particles – A cost-efficient method. Construction and Building Materials, v. 191, p. 963–976.

Reis, J. H. C. (2006). Modelo de Atrito Estático em Interfaces de Contato entre Concreto e Areia. p. 188.

Roessler, T; Richter, C.; Katterfeld A.; Will, F. (2019). Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials – part I: Solving the problem of ambiguous parameter combinations. Powder Technology, v. 343, p. 803–812.

Rowe, A. P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, v. 269, n. 1339, p. 500–527.

Selig, E. T.; Waters, J. M. (1994). Track Geotechnology and Substructure Management. London: Thomas Telford Services Ltd.

Stahl, M.; Konietzky, H. (2011). Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granular Matter, v. 13, n. 4, p. 417–428.

Stark, T. D.; Swan, R. H.; Yuan, Z. (2014). Ballast direct shear testing. 2014 Joint Rail Conference.

Suhr, B.; Six, K. (2020). Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour. Granular Matter, v. 22, n. 2, p. 1–17.

Tutumluer, E.; Huang, H.; Hashash, Y.M.A.; Ghaboussi, J. (2009). AREMA Gradation Affecting Ballast Performance Using Discrete Element Modeling (DEM) Approach. Bifurcations, v. 45, n. 1, p. 1–19.

Wang, Z.; Jing G.; Yu, Q.; Yin, H. (2015). Analysis of ballast direct shear tests by discrete element method under different normal stress. Measurement: Journal of the International Measurement Confederation, v. 63, p. 17–24.

Wensrich, C. M.; Katterfeld, A. (2012). Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, v. 217, p. 409–417.

Zhao, S.; Zhou, X.; Liu, W. (2015). Discrete element simulations of direct shear tests with particle angularity effect. Granular Matter, v. 17, n. 6, p. 793–806.

##submission.downloads##

Publicado

2022-07-21