Uma abordagem de modelação numérica tridimensional do comportamento de longo prazo de vias-férreas considerando a interação dinâmica veículo-via

Autores

DOI:

https://doi.org/10.14195/2184-8394_155_6

Palavras-chave:

via-férrea, deformação permanente, comportamento resiliente não-linear, modelação numérica

Resumo

A complexidade do sistema via-férrea, em termos da variabilidade do comportamento estrutural e material ao longo de seu ciclo de vida, tem-se constituído um obstáculo para o estabelecimento de métodos robustos de previsão do seu comportamento de longo-prazo. Neste trabalho apresenta-se uma implementação computacional que incorpora algumas funcionalidades para uma reprodução mais realista desse comportamento, face a outras existentes. Para demonstrar as potencialidades desta ferramenta, são analisados cenários de plena via, tendo-se introduzido, em alguns deles, uma travessa sem apoio na camada de balastro (“travessa suspensa”), de forma a analisar o impacto dessa anomalia no desempenho da via sob a aplicação de milhões de ciclos de carga, relativos a diferentes veículos. Esta abordagem permitiu avaliar a interdependência entre efeitos dinâmicos, como a interação roda-carril, e efeitos de longo prazo, como a evolução das trajetórias de tensões no interior da camada de balastro, evidenciando um ciclo retroalimentado entre esses dois processos.

Downloads

Não há dados estatísticos.

Referências

Abadi, T.; Le Pen, L.; Zervos, A.; Powrie, W. (2016). A Review and Evaluation of Ballast Settlement Models using Results from the Southampton Railway Testing Facility (SRTF); Procedia Engineering; Vol. 143; pp. 999-1006.

Alves Costa, P.; Calçada, R.; Silva Cardoso, A. (2012). Track–ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model; Soil Dynamics and Earthquake Engineering; Vol. 32; n.º 1; pp. 111-128.

Aursudkij, B.; McDowell, G.R.; Collop, A.C. (2009). Cyclic loading of railway ballast under triaxial conditions and in a railway test facility; Granular Matter; Vol. 11; n.º 6; pp. 391-401.

Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Application; Kitware; ISBN: 978-1930934306.

Bathe, K.J. (1996). Finite Element Procedures; Prentice Hall; ISBN: 9780133014587.

Bowles, J.E. (1997). Foundation Analysis and Design; Ed. 5; Singapore: McGraw-Hill; ISBN: 978-0-07-118844-9.

Brown, S.; Pell, P. (1967). An experimental investigation of the stresses, strains and deflections in layered pavement structure subjected to dynamic loads; 2nd Int. Conf. on Structural Design of Asphalt Pavements; Michigan, Ann Arbor; pp. 487–504.

Calçada, R. (1995). Efeitos dinâmicos em pontes resultantes do tráfego ferroviário a alta velocidade; M.Sc. Thesis; Porto: Faculdade de Engenharia da Universidade do Porto.

Charoenwong, C.; Connolly, D.P.; Woodward, P.K.; Galvín, P.; Alves Costa, P. (2022). Analytical forecasting of long-term railway track settlement; Computers and Geotechnics; Vol. 143; pp. 104601.

Chen, C.; McDowell, G.R. (2016). An investigation of the dynamic behaviour of track transition zones using discrete element modelling; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 230; n.º 1; pp. 117-128.

Connolly, D.P.; Galvín, P.; Olivier, B.; Romero, A.; Kouroussis, G. (2019). A 2.5D time-frequency domain model for railway induced soil-building vibration due to railway defects; Soil Dynamics and Earthquake Engineering; Vol. 120; pp. 332-344.

Cundall, P.A.; Strack, O.D.L. (1979). A discrete numerical model for granular assemblies; Geotechnique; Vol. 29; n.º 1; pp. 47-65.

Dahal, B.; Mishra, D. (2020). Discrete Element Modeling of Permanent Deformation Accumulation in Railroad Ballast Considering Particle Breakage; Frontiers in Built Environment; Vol. 5; n.º 145.

Dahlberg, T. (2001). Some railroad settlement models - a critical review; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 215; n.º 4; pp. 289-300.

Fortunato, E.; Paixão, A.; Fontul, S. (2012). Improving the use of unbound granular materials in railway sub-ballast layer; Advances in Transportation Geotechnics Ii; Hokkaido University, Japan; 10-12 Sep. 2012; pp. 522-527.

Fortunato, E.; Paixão, A.; Varandas, J.N. (2021). Modelação numérica avançada do comportamento estrutural de vias-férreas; In: Modelação matemática em engenharia de transportes: a experiência do Departamento de Transportes do LNEC; Lemonde de Macedo, A., et al. (eds.); pp. 1-32; Lisboa: LNEC-Laboratório Nacional de Engenharia Civil; ISBN: 978-972-49-2314-7.

Galvín, P.; Romero, A.; Domínguez, J. (2010). Fully three-dimensional analysis of high-speed train–track–soil-structure dynamic interaction; Journal of Sound and Vibration; Vol. 329; n.º 24; pp. 5147-5163.

Grassie, S.L.; Cox, S.J. (1985). The Dynamic Response of Railway Track With Unsupported Sleepers; Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering; Vol. 199; n.º 2; pp. 123-136.

Guo, Y.; Zhao, C.; Markine, V.; Jing, G.; Zhai, W. (2020). Calibration for discrete element modelling of railway ballast: A review; Transportation Geotechnics; Vol. 23; pp. 100341.

Hou, W.; Feng, B.; Li, W.; Tutumluer, E. (2018). Evaluation of Ballast Behavior under Different Tie Support Conditions using Discrete Element Modeling; Transportation Research Record; Vol. 2672; n.º 10; pp. 106-115.

Hughes, T.J.R. (2012). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications; ISBN: 9780486135021.

Hunt, H.E.M. (1997). Settlement of railway track near bridge abutments; Proceedings of the Institution of Civil Engineers: Transport; Vol. 123; n.º 1; pp. 68-73.

Jing, G.Q.; Aela, P.; Fu, H.; Yin, H. (2019). Numerical and experimental analysis of single tie push tests on different shapes of concrete sleepers in ballasted tracks; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 233; n.º 7; pp. 666-677.

Kempfert, H.-G.; Hu, Y. (1999). Prediction on the long-term behavior of subsoils under high-speed railways; Geotechnical Engineering for Transportation Infrastructure; Amsterdam.

Kouroussis, G.; Connolly, D.P.; Alexandrou, G. e Vogiatzis, K. (2015). The effect of railway local irregularities on ground vibration; Transportation Research Part D: Transport and Environment; Vol. 39; n.º Supplement C; pp. 17-30.

Lekarp, F.; Isacsson, U.; Dawson, A. (2000). State of the Art. I: Resilient Response of Unbound Aggregates; Journal of Transportation Engineering; Vol. 126; n.º 1; pp. 66-75.

Li, X.; Ekh, M.; Nielsen, J.C.O. (2016). Three-dimensional modelling of differential railway track settlement using a cycle domain constitutive model; International Journal for Numerical and Analytical Methods in Geomechanics; Vol. 40; n.º 12; pp. 1758-1770.

Li, X.; Nielsen, J.C.O.; Pålsson, B.A. (2014). Simulation of track settlement in railway turnouts; Vehicle System Dynamics; Vol. 52; n.º sup1; pp. 421-439.

Lim, W.L. (2004). Mechanics of Railway Ballast Behaviour; Ph.D. Thesis; Nottingham: University of Nottingham.

Lu, M.; McDowell, G.R. (2007). The importance of modelling ballast particle shape in the discrete element method; Granular Matter; Vol. 9; n.º 1; pp. 69-80.

Lundqvist, A.; Dahlberg, T. (2005). Load impact on railway track due to unsupported sleepers; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 219; n.º 2; pp. 67-77.

Lysmer, J.; Kuhlemeyer, R.L. (1969). Finite dynamic model for infinite media; Journal of the Engineering Mechanics Division; Vol. 95; n.º 4; pp. 859-877.

Mauer, L. (1995). An Interactive Track-Train Dynamic Model for Calculation of Track Error Growth; Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility; Vol. 24; n.º 1 supp 1; pp. 209 - 221.

Nålsund, R. (2014). Railway Ballast Characteristics, Selection Criteria and Performance; Ph.D Thesis; Trondheim, Norway: Norwegian University of Science and Technology.

Newton, S.G.; Clark, R.A. (1979). An Investigation into the Dynamic Effects on the Track of Wheelflats on Railway Vehicles; Journal of Mechanical Engineering Science; Vol. 21; n.º 4; pp. 287-297.

Nielsen, J.C.O.; Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure; Journal of Sound and Vibration; Vol. 412; pp. 441-456.

Niemunis, A.; Wichtmann, T.; Triantafyllidis, T. (2005). A high-cycle accumulation model for sand; Computers and Geotechnics; Vol. 32; n.º 4; pp. 245-263.

Paixão, A. (2014). Transition zones in railway tracks: An experimental and numerical study on the structural behaviour; Ph.D. Thesis; Porto: University of Porto, Faculty of Engineering.

Paixão, A.; Fortunato, E.; Calçada, R. (2016a). A numerical study on the influence of backfill settlements in the train/track interaction at transition zones to railway bridges; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 230; n.º 3; pp. 866-878.

Paixão, A.; Varandas, J.N.; Fortunato, E. (2021). Dynamic Behavior in Transition Zones and Long-Term Railway Track Performance; Frontiers in Built Environment; Vol. 7; n.º 658909.

Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2016b). Non-linear behaviour of geomaterials in railway tracks under different loading conditions; 3rd International Conference on Transportation Geotechnics (CTG 2016); Guimarães, Portugal; 04-07 Sep. 2016.

Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2016c). Non-Linear Behaviour of Geomaterials in Railway Tracks under Different Loading Conditions; Procedia Engineering; Vol. 143; pp. 1128-1135.

Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2018). Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges; Engineering Structures; Vol. 164; pp. 169-182.

Ramos, A. (2021). Avaliação do comportamento dinâmico a longo prazo de soluções ferroviárias inovadoras; Ph.D. Thesis; Guimarães: Universidade do Minho.

Ribeiro, D.; Calçada, R.; Delgado, R.; Brehm, M.; Zabel, V. (2013). Finite-element model calibration of a railway vehicle based on experimental modal parameters; Vehicle System Dynamics; Vol. 51; n.º 6; pp. 821-856.

Selig, E.T.; Li, D. (1994). Track modulus: its meaning and factors influencing it; Transportation Research Record; Vol. 1470; pp. 47-74.

Selig, E.T.; Waters, J.M. (1994). Track geotechnology and substructure management; London: Thomas Telford; ISBN: 07-2772-013-9.

Shan, Y.; Albers, B.; Savidis, S.A. (2013). Influence of different transition zones on the dynamic response of track–subgrade systems; Computers and Geotechnics; Vol. 48; n.º -; pp. 21-28.

Shan, Y.; Zhou, S.; Zhou, H.; Wang, B.; Zhao, Z.; Shu, Y.; Yu, Z. (2017). Iterative Method for Predicting Uneven Settlement Caused by High-Speed Train Loads in Transition-Zone Subgrade; Transportation Research Record; Vol. 2607; n.º 1; pp. 7-14.

Shi, J.; Chan, A.H.; Burrow, M.P.N. (2013). Influence of unsupported sleepers on the dynamic response of a heavy haul railway embankment; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 227; n.º 6; pp. 657-667.

Shih, J.-Y.; Grossoni, I.; Bezin, Y. (2019). Settlement analysis using a generic ballasted track simulation package; Transportation Geotechnics; Vol. 20; pp. 100249.

Suiker, A.S.J. (2002). The Mechanical Behaviour of Ballasted Railway Tracks; Ph.D Thesis; Delft: Delft University of Technology.

Suiker, A.S.J.; Borst, R.d. (2003). A numerical model for the cyclic deterioration of railway tracks; International Journal for Numerical Methods in Engineering; Vol. 57; n.º 4; pp. 441-470.

Varandas, J.N. (2013). Long-term behaviour of railway transitions under dynamic loading; Ph.D. Thesis; Lisboa: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.

Varandas, J.N.; Holscher, P.; Silva, M.A.G. (2014a). Settlement of ballasted track under traffic loading: application to transition zones; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 228; n.º 3; pp. 242-259.

Varandas, J.N.; Hölscher, P.; Silva, M.A.G. (2016a). Three-dimensional track-ballast interaction model for the study of a culvert transition; Soil Dynamics and Earthquake Engineering; Vol. 89; pp. 116-127.

Varandas, J.N.; Paixão, A.; Fortunato, E. (2017). A study on the dynamic train-track interaction over cut-fill transitions on buried culverts; Computers & Structures; Vol. 189; pp. 49-61.

Varandas, J.N.; Paixão, A.; Fortunato, E.; Hölscher, P. (2016b). A numerical study on the stress changes in the ballast due to train passages; 3rd International Conference on Transportation Geotechnics (CTG 2016); Guimarães, Portugal; 04-07 Sep. 2016.

Varandas, J.N.; Silva, R.; Silva, M.A.G.; Hölscher, P. (2012). The impact of rail corrugation on the degradation of ballast; 1st International Conference on Railway Technology: Research, Development and Maintenance (Railways 2012); Las Palmas, Gran Canaria, Spain; 18-20 Apr. 2012; pp. 534-546.

Varandas, J.N; Paixão, A.; Fortunato, E.; Hölscher, P.; Calçada, R. (2014b). Numerical modelling of railway bridge approaches: influence of soil non-linearity; The International Journal of Railway Technology; Vol. 3; n.º 4; pp. 73-95.

Varandas, J.N.; Paixão, A.; Fortunato, E.; Zuada Coelho, B.; Hölscher, P. (2020). Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation; Computers and Geotechnics; Vol. 126; pp. 103712.

Wang, H.; Markine, V. (2018). Modelling of the long-term behaviour of transition zones: Prediction of track settlement; Engineering Structures; Vol. 156; pp. 294-304.

Werkmeister, S.; Dawson, A.; Wellner, F. (2001). Permanent Deformation Behavior of Granular Materials and the Shakedown Concept; Transportation Research Record; n.º 1757; pp. 75-81.

Zhai, W.M. (1996). Two simple fast integration methods for large-scale dynamic problems in engineering; International Journal for Numerical Methods in Engineering; Vol. 39; n.º 24; pp. 4199-4214.

Zhu, J.Y.; Thompson, D.J.; Jones, C.J.C. (2011). On the effect of unsupported sleepers on the dynamic behaviour of a railway track; Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility.

##submission.downloads##

Publicado

2022-07-21