An approach for the tridimensional numerical modelling of the long-term behaviour of railway tracks considering the dynamic train-track interaction
DOI:
https://doi.org/10.14195/2184-8394_155_6Keywords:
railway track, permanent deformation, non-linear resilient behaviour, numerical modellingAbstract
The complexity of the railway track system, in terms of its structural and material behaviour variability throughout its life cycle, has been an obstacle to the establishment of robust methods to predict its long-term behaviour. This work presents a computational implementation that incorporates some features for a more realistic reproduction of this behaviour, compared to other existing approaches. To demonstrate the potential of this tool, plain track scenarios are analysed, having introduced, in some of them, a sleeper without support in the ballast layer (“hanging sleeper”), to analyse the impact of this anomaly on the performance of the track under the application of millions of load cycles, regarding different vehicles. This approach allowed to evaluate the interdependence between dynamic effects, such as the wheel-rail interaction, and long-term effects, such as the evolution of stress trajectories within the ballast layer, evidencing a feedback loop between these two processes.
Downloads
References
Abadi, T.; Le Pen, L.; Zervos, A.; Powrie, W. (2016). A Review and Evaluation of Ballast Settlement Models using Results from the Southampton Railway Testing Facility (SRTF); Procedia Engineering; Vol. 143; pp. 999-1006.
Alves Costa, P.; Calçada, R.; Silva Cardoso, A. (2012). Track–ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model; Soil Dynamics and Earthquake Engineering; Vol. 32; n.º 1; pp. 111-128.
Aursudkij, B.; McDowell, G.R.; Collop, A.C. (2009). Cyclic loading of railway ballast under triaxial conditions and in a railway test facility; Granular Matter; Vol. 11; n.º 6; pp. 391-401.
Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Application; Kitware; ISBN: 978-1930934306.
Bathe, K.J. (1996). Finite Element Procedures; Prentice Hall; ISBN: 9780133014587.
Bowles, J.E. (1997). Foundation Analysis and Design; Ed. 5; Singapore: McGraw-Hill; ISBN: 978-0-07-118844-9.
Brown, S.; Pell, P. (1967). An experimental investigation of the stresses, strains and deflections in layered pavement structure subjected to dynamic loads; 2nd Int. Conf. on Structural Design of Asphalt Pavements; Michigan, Ann Arbor; pp. 487–504.
Calçada, R. (1995). Efeitos dinâmicos em pontes resultantes do tráfego ferroviário a alta velocidade; M.Sc. Thesis; Porto: Faculdade de Engenharia da Universidade do Porto.
Charoenwong, C.; Connolly, D.P.; Woodward, P.K.; Galvín, P.; Alves Costa, P. (2022). Analytical forecasting of long-term railway track settlement; Computers and Geotechnics; Vol. 143; pp. 104601.
Chen, C.; McDowell, G.R. (2016). An investigation of the dynamic behaviour of track transition zones using discrete element modelling; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 230; n.º 1; pp. 117-128.
Connolly, D.P.; Galvín, P.; Olivier, B.; Romero, A.; Kouroussis, G. (2019). A 2.5D time-frequency domain model for railway induced soil-building vibration due to railway defects; Soil Dynamics and Earthquake Engineering; Vol. 120; pp. 332-344.
Cundall, P.A.; Strack, O.D.L. (1979). A discrete numerical model for granular assemblies; Geotechnique; Vol. 29; n.º 1; pp. 47-65.
Dahal, B.; Mishra, D. (2020). Discrete Element Modeling of Permanent Deformation Accumulation in Railroad Ballast Considering Particle Breakage; Frontiers in Built Environment; Vol. 5; n.º 145.
Dahlberg, T. (2001). Some railroad settlement models - a critical review; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 215; n.º 4; pp. 289-300.
Fortunato, E.; Paixão, A.; Fontul, S. (2012). Improving the use of unbound granular materials in railway sub-ballast layer; Advances in Transportation Geotechnics Ii; Hokkaido University, Japan; 10-12 Sep. 2012; pp. 522-527.
Fortunato, E.; Paixão, A.; Varandas, J.N. (2021). Modelação numérica avançada do comportamento estrutural de vias-férreas; In: Modelação matemática em engenharia de transportes: a experiência do Departamento de Transportes do LNEC; Lemonde de Macedo, A., et al. (eds.); pp. 1-32; Lisboa: LNEC-Laboratório Nacional de Engenharia Civil; ISBN: 978-972-49-2314-7.
Galvín, P.; Romero, A.; Domínguez, J. (2010). Fully three-dimensional analysis of high-speed train–track–soil-structure dynamic interaction; Journal of Sound and Vibration; Vol. 329; n.º 24; pp. 5147-5163.
Grassie, S.L.; Cox, S.J. (1985). The Dynamic Response of Railway Track With Unsupported Sleepers; Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering; Vol. 199; n.º 2; pp. 123-136.
Guo, Y.; Zhao, C.; Markine, V.; Jing, G.; Zhai, W. (2020). Calibration for discrete element modelling of railway ballast: A review; Transportation Geotechnics; Vol. 23; pp. 100341.
Hou, W.; Feng, B.; Li, W.; Tutumluer, E. (2018). Evaluation of Ballast Behavior under Different Tie Support Conditions using Discrete Element Modeling; Transportation Research Record; Vol. 2672; n.º 10; pp. 106-115.
Hughes, T.J.R. (2012). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications; ISBN: 9780486135021.
Hunt, H.E.M. (1997). Settlement of railway track near bridge abutments; Proceedings of the Institution of Civil Engineers: Transport; Vol. 123; n.º 1; pp. 68-73.
Jing, G.Q.; Aela, P.; Fu, H.; Yin, H. (2019). Numerical and experimental analysis of single tie push tests on different shapes of concrete sleepers in ballasted tracks; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 233; n.º 7; pp. 666-677.
Kempfert, H.-G.; Hu, Y. (1999). Prediction on the long-term behavior of subsoils under high-speed railways; Geotechnical Engineering for Transportation Infrastructure; Amsterdam.
Kouroussis, G.; Connolly, D.P.; Alexandrou, G. e Vogiatzis, K. (2015). The effect of railway local irregularities on ground vibration; Transportation Research Part D: Transport and Environment; Vol. 39; n.º Supplement C; pp. 17-30.
Lekarp, F.; Isacsson, U.; Dawson, A. (2000). State of the Art. I: Resilient Response of Unbound Aggregates; Journal of Transportation Engineering; Vol. 126; n.º 1; pp. 66-75.
Li, X.; Ekh, M.; Nielsen, J.C.O. (2016). Three-dimensional modelling of differential railway track settlement using a cycle domain constitutive model; International Journal for Numerical and Analytical Methods in Geomechanics; Vol. 40; n.º 12; pp. 1758-1770.
Li, X.; Nielsen, J.C.O.; Pålsson, B.A. (2014). Simulation of track settlement in railway turnouts; Vehicle System Dynamics; Vol. 52; n.º sup1; pp. 421-439.
Lim, W.L. (2004). Mechanics of Railway Ballast Behaviour; Ph.D. Thesis; Nottingham: University of Nottingham.
Lu, M.; McDowell, G.R. (2007). The importance of modelling ballast particle shape in the discrete element method; Granular Matter; Vol. 9; n.º 1; pp. 69-80.
Lundqvist, A.; Dahlberg, T. (2005). Load impact on railway track due to unsupported sleepers; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 219; n.º 2; pp. 67-77.
Lysmer, J.; Kuhlemeyer, R.L. (1969). Finite dynamic model for infinite media; Journal of the Engineering Mechanics Division; Vol. 95; n.º 4; pp. 859-877.
Mauer, L. (1995). An Interactive Track-Train Dynamic Model for Calculation of Track Error Growth; Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility; Vol. 24; n.º 1 supp 1; pp. 209 - 221.
Nålsund, R. (2014). Railway Ballast Characteristics, Selection Criteria and Performance; Ph.D Thesis; Trondheim, Norway: Norwegian University of Science and Technology.
Newton, S.G.; Clark, R.A. (1979). An Investigation into the Dynamic Effects on the Track of Wheelflats on Railway Vehicles; Journal of Mechanical Engineering Science; Vol. 21; n.º 4; pp. 287-297.
Nielsen, J.C.O.; Li, X. (2018). Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure; Journal of Sound and Vibration; Vol. 412; pp. 441-456.
Niemunis, A.; Wichtmann, T.; Triantafyllidis, T. (2005). A high-cycle accumulation model for sand; Computers and Geotechnics; Vol. 32; n.º 4; pp. 245-263.
Paixão, A. (2014). Transition zones in railway tracks: An experimental and numerical study on the structural behaviour; Ph.D. Thesis; Porto: University of Porto, Faculty of Engineering.
Paixão, A.; Fortunato, E.; Calçada, R. (2016a). A numerical study on the influence of backfill settlements in the train/track interaction at transition zones to railway bridges; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 230; n.º 3; pp. 866-878.
Paixão, A.; Varandas, J.N.; Fortunato, E. (2021). Dynamic Behavior in Transition Zones and Long-Term Railway Track Performance; Frontiers in Built Environment; Vol. 7; n.º 658909.
Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2016b). Non-linear behaviour of geomaterials in railway tracks under different loading conditions; 3rd International Conference on Transportation Geotechnics (CTG 2016); Guimarães, Portugal; 04-07 Sep. 2016.
Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2016c). Non-Linear Behaviour of Geomaterials in Railway Tracks under Different Loading Conditions; Procedia Engineering; Vol. 143; pp. 1128-1135.
Paixão, A.; Varandas, J.N.; Fortunato, E.; Calçada, R. (2018). Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges; Engineering Structures; Vol. 164; pp. 169-182.
Ramos, A. (2021). Avaliação do comportamento dinâmico a longo prazo de soluções ferroviárias inovadoras; Ph.D. Thesis; Guimarães: Universidade do Minho.
Ribeiro, D.; Calçada, R.; Delgado, R.; Brehm, M.; Zabel, V. (2013). Finite-element model calibration of a railway vehicle based on experimental modal parameters; Vehicle System Dynamics; Vol. 51; n.º 6; pp. 821-856.
Selig, E.T.; Li, D. (1994). Track modulus: its meaning and factors influencing it; Transportation Research Record; Vol. 1470; pp. 47-74.
Selig, E.T.; Waters, J.M. (1994). Track geotechnology and substructure management; London: Thomas Telford; ISBN: 07-2772-013-9.
Shan, Y.; Albers, B.; Savidis, S.A. (2013). Influence of different transition zones on the dynamic response of track–subgrade systems; Computers and Geotechnics; Vol. 48; n.º -; pp. 21-28.
Shan, Y.; Zhou, S.; Zhou, H.; Wang, B.; Zhao, Z.; Shu, Y.; Yu, Z. (2017). Iterative Method for Predicting Uneven Settlement Caused by High-Speed Train Loads in Transition-Zone Subgrade; Transportation Research Record; Vol. 2607; n.º 1; pp. 7-14.
Shi, J.; Chan, A.H.; Burrow, M.P.N. (2013). Influence of unsupported sleepers on the dynamic response of a heavy haul railway embankment; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 227; n.º 6; pp. 657-667.
Shih, J.-Y.; Grossoni, I.; Bezin, Y. (2019). Settlement analysis using a generic ballasted track simulation package; Transportation Geotechnics; Vol. 20; pp. 100249.
Suiker, A.S.J. (2002). The Mechanical Behaviour of Ballasted Railway Tracks; Ph.D Thesis; Delft: Delft University of Technology.
Suiker, A.S.J.; Borst, R.d. (2003). A numerical model for the cyclic deterioration of railway tracks; International Journal for Numerical Methods in Engineering; Vol. 57; n.º 4; pp. 441-470.
Varandas, J.N. (2013). Long-term behaviour of railway transitions under dynamic loading; Ph.D. Thesis; Lisboa: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
Varandas, J.N.; Holscher, P.; Silva, M.A.G. (2014a). Settlement of ballasted track under traffic loading: application to transition zones; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 228; n.º 3; pp. 242-259.
Varandas, J.N.; Hölscher, P.; Silva, M.A.G. (2016a). Three-dimensional track-ballast interaction model for the study of a culvert transition; Soil Dynamics and Earthquake Engineering; Vol. 89; pp. 116-127.
Varandas, J.N.; Paixão, A.; Fortunato, E. (2017). A study on the dynamic train-track interaction over cut-fill transitions on buried culverts; Computers & Structures; Vol. 189; pp. 49-61.
Varandas, J.N.; Paixão, A.; Fortunato, E.; Hölscher, P. (2016b). A numerical study on the stress changes in the ballast due to train passages; 3rd International Conference on Transportation Geotechnics (CTG 2016); Guimarães, Portugal; 04-07 Sep. 2016.
Varandas, J.N.; Silva, R.; Silva, M.A.G.; Hölscher, P. (2012). The impact of rail corrugation on the degradation of ballast; 1st International Conference on Railway Technology: Research, Development and Maintenance (Railways 2012); Las Palmas, Gran Canaria, Spain; 18-20 Apr. 2012; pp. 534-546.
Varandas, J.N; Paixão, A.; Fortunato, E.; Hölscher, P.; Calçada, R. (2014b). Numerical modelling of railway bridge approaches: influence of soil non-linearity; The International Journal of Railway Technology; Vol. 3; n.º 4; pp. 73-95.
Varandas, J.N.; Paixão, A.; Fortunato, E.; Zuada Coelho, B.; Hölscher, P. (2020). Long-term deformation of railway tracks considering train-track interaction and non-linear resilient behaviour of aggregates – a 3D FEM implementation; Computers and Geotechnics; Vol. 126; pp. 103712.
Wang, H.; Markine, V. (2018). Modelling of the long-term behaviour of transition zones: Prediction of track settlement; Engineering Structures; Vol. 156; pp. 294-304.
Werkmeister, S.; Dawson, A.; Wellner, F. (2001). Permanent Deformation Behavior of Granular Materials and the Shakedown Concept; Transportation Research Record; n.º 1757; pp. 75-81.
Zhai, W.M. (1996). Two simple fast integration methods for large-scale dynamic problems in engineering; International Journal for Numerical Methods in Engineering; Vol. 39; n.º 24; pp. 4199-4214.
Zhu, J.Y.; Thompson, D.J.; Jones, C.J.C. (2011). On the effect of unsupported sleepers on the dynamic behaviour of a railway track; Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility.