A geotecnia na transição eco-digital das infraestruturas de transporte

Autores

DOI:

https://doi.org/10.14195/2184-8394_extra2024_1_3

Palavras-chave:

geotecnia, infraestruturas de transporte, transformação digital, transição verde

Resumo

O artigo apresenta uma compilação de exemplos nacionais de investigação, desenvolvimento e inovação relacionados com a transição verde e a transformação digital no âmbito da geotecnia nos transportes e associados às terraplenagens, pavimentos e vias-férreas. No âmbito da transição verde, são apresentados exemplos de aplicação de materiais não convencionais e renováveis e de técnicas de estabilização baseadas na ativação alcalina de excedentes industriais. Em relação à transformação digital, são descritos desenvolvimentos com aplicação às terraplenagens, aos pavimentos rodoviários e à via-férrea (morfologia das partículas de agregado de balastro). Os exemplos apresentados no artigo demonstram a capacidade geotécnica que as empresas e as instituições do sistema científico e tecnológico em Portugal têm para o cumprimento das metas estabelecidas para a sustentabilidade e resiliência no setor das infraestruturas de transporte.

Downloads

Não há dados estatísticos.

Referências

Ahmed, S.; Harkness, J.; Le Pen, L.; Powrie, W.; Zervos, A. (2016). Numerical modelling of railway ballast at the particle scale. International Journal of Numerical and Analytical Methods in Geomechanics, 40 (5), pp. 713-737, https://doi.org/10.1002/nag.2424.

Amândio, M.; Parente, M., Neves, J.; Fonseca, P. (2021). Integration of smart pavementdData with decision support systems: A Systematic Review. Buildings, 11 (12), 579.

https://doi.org/10.3390/buildings11120579.

Antunes, V.; Freire, A. C.; Neves, J. (2019). A review on the effect of RAP recycling on bituminous mixtures properties and the viability of multi-recycling. Construction and Building Materials, 211, pp. 453-469, https://doi.org/10.1016/j.conbuildmat.2019.03.258.

Antunes, V.; Neves., J.; Freire, A. C. (2021). Performance assessment of Reclaimed Asphalt Pavement (RAP) in road surface mixtures. Recycling, 6 (2), 32.

https://doi.org/10.3390/recycling6020032.

ARRB (2022). Best practice expert advice on the use of recycled materials in road and rail infrastructures: Part A. Technical Review an Assessment. Commonwealth Sustainable Procurement Advocacy and Resource Centre. Department of Agriculture, Water, and the Environment.

Aschenbrenner, B. (1956). A new method of expressing particle sphericity. Journal of Sedimentary Research, 26 (1), pp. 15-31.

https://doi.org/10.1306/74D704A7-2B21-11D7-8648000102C1865D.

Bilal, M.; Oyedele, L. O.; Qadir, J.; Munir, K.; Ajayi, S. O.; Akinade, O. O.; Owolabi, H. A.; Alaka, H. A.; Pasha, M. (2016). Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 30 (3), pp. 500-521. https://doi.org/10.1016/j.aei.2016.07.001.

Blott, S. J.; Pye, K. (2008). Particle shape: a review and new methods of characterization and classification. Sedimentology, 55 (1), pp. 31-63.

https://doi.org/10.1111/j.1365-3091.2007.00892.x.

Cabaço, L.; Brás, H.; Motta, G. (2017). Relatório nacional sobre a implementação da Agenda 2030 para o Desenvolvimento Sustentável. PORTUGAL. Por ocasião da Apresentação Nacional Voluntária no Fórum Político de Alto Nível das Nações Unidas. Ministério dos Negócios Estrangeiros.

CE (2023). As prioridades da Comissão Europeia. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024_pt (consultado em 18/02/2023).

CEN (2002). EN 13450 – Aggregates for railway ballast. Comité Européen de Normalisation, Brussels, Belgium.

Chen, C.; McDowell, G. R. (2016). An investigation of the dynamic behaviour of track transition zones using discrete element modelling. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230 (1), pp. 117-128, https://doi.org/10.1177/0954409714528892.

Correa-Silva, M.; Rouainia, M.; Miranda, T.; Cristelo, N. (2021). Predicting the mechanical behaviour of a sandy clay stabilised with an alkali-activated binder. Engineering Geology, 292, 106260, https://doi.org/10.1016/j.enggeo.2021.106260.

Cristelo, N.; Fernández-Jiménez, A.; Vieira, C.; Miranda, T.; Palomo, A. (2018). Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash. Construction and Building Materials, 170, pp. 26-39.

https://doi.org/10.1016/j.conbuildmat.2018.03.057.

Crucho, J.; Picado-Santos, L.; Neves, J. (2022). Camadas de base e sub-base com misturas de agregados reciclados de betão tratadas com cimento e adição de fibra de coco. 10º Congresso Rodoferroviário Português, Lisboa, Portugal.

Deiros, I.; Combe, G.; Emeriault, F.; Voivret, C.; Ferellec, J.-F. (2019). X-ray CT analysis of the evolution of ballast grain morphology along a Micro-Deval test: key role of the asperity scale. Granular Matter, 21 (30), https://doi.org/10.1007/s10035-019-0881-y.

Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6, pp. 182–197.

Descantes, Y.; Russo, F.; Balabaud, J. M. (2007). Angularity assessment of several railroad ballast sources using image processing. Advanced Characterisation of Pavement and Soil Engineering Materials, Loizos, Scarpas, Al-Qadi (Eds.), 20-22 junho, p. 1809-1816, Athens, Greece, ISBN: 9780415448826.

EAPA (2023). Asphalt in Figures 2021. European Asphalt Pavement Association. https://eapa.org/asphalt-in-figures (consultado em 18/02/2023).

Elsamex (2014a). Projeto de Execução dos Muros M14 e M24. Autoestrada do Marão, A4/IP4 Amarante / Vila Real, Sublanço S3 – Nó de ligação ao IP4 / Nó de Campeã. Estradas de Portugal. Elsamex Portugal, Lisboa.

Elsamex (2014b). Projeto de Execução dos Muros M40 e M41A. Autoestrada do Marão, A4/IP4 Amarante / Vila Real, Sublanço S3 – Nó de ligação ao IP4 / Nó de Campeã. Estradas de Portugal. Elsamex Portugal, Lisboa

European Commission (2001a). ALT-MAT: Alternative materials in road construction. Project Funded by European Commission under the Transport RTD Programme of the 4th Framework Programme, Final Report for Publication, ALT-MAT Contract No.: RO-97-SC.2238.

European Commission (2011b). Final Report Summary – DIRECT_MAT (DISmantling and RECycling Techniques for road MATerials – Sharing knowledge and practices). Funded by European commission under the Seventh Framework Programme (FP7).

Fernandes, E. M.; Monteiro, B. P. B; Antunes, P.; Ramalho, J.; Simões, J. P. (2016). Execução e controlo da qualidade aplicado na construção de aterros em solo-cimento. 15º Congresso Nacional de Geotecnia. Porto.

Freire, A. C.; Neves, J. M.; Roque, A. J.; Martins, I. M.; Antunes, M. L. (2019). Feasibility study of milled and crushed reclaimed asphalt pavement for application in unbound granular layers. Road Materials and Pavement Design, 22 (7), pp- 1500-1520.

https://doi.org/10.1080/14680629.2019.1701539.

Folk, R. L. (1955). Student operator error in determination of roundness, sphericity, and grain size. Journal of Sedimentary Research, 25 (4), pp. 297-301.

https://doi.org/10.1306/74D70493-2B21-11D7-8648000102C1865D.

Garcia-Lodeiro, I.; Cristelo, N.; Palomo, A.; Fernández-Jiménez, A. (2020). Use of industrial by-products as alkaline cement activators. Construction and Building Materials, 253, 119000, https://doi.org/10.1016/j.conbuildmat.2020.119000.

Gates, L.; Masad, E.; Pyle, R.; Bushee, D. (2011). Aggregate Image Measurement System 2 (AIMS2): Final Report. Federal Highway Administration (FHWA), U.S. DoT, Washington DC, USA.

Gomes Correia, A.; Magnan, J. P. (2012). Trends and challenges in earthworks for transportation infrastructures. Advances in Transportation Geotechnics, 2, pp. 1–12, ISBN: 9780415621359.

Gomes Correia, A.; Neves, J.; Fortunato, E.; Parente, M. (2022). A geotecnia nos pavimentos e vias-férreas e prospetivas para a era digital. Geotecnia, 152, pp. 113-141

https://doi.org/10.14195/2184-8394_152_4.

Gomes Correia, A.; Winter, M. G.; Puppala, A. J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, pp. 21–28, https://doi.org/10.1016/j.trgeo.2016.03.003.

Gomes Correia, A.; Ferreira, S.; Roque, A.; Cavalheiro, A. (2009). Portuguese steel slags. A new geomaterial. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, pp. 15-18, https://doi.org/10.3233/978-1-60750-031-5-15.

Gomes Correia, A.; Roque, A.; Ferreira, S.; Fortunato, E. (2012). Case study to promote the use of industrial byproducts: The Relevance of Performance Tests. Journal of ASTM International. 9 (2), pp. 1-18, https://doi.org/10.1520/JAI103705.

Guo, Y.; Markine, V.; Zhang, X.; Qiang, W.; Jing, G. (2019). Image analysis for morphology, rheology and degradation study of railway ballast: A review. Transportation Geotechnics, 18, pp. 173-211, https://doi.org/10.1016/j.trgeo.2018.12.001.

Hossain, M. U; Ng, S. T.; Antwi-Afari, P.; Amor, B. (2020). Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renewable and Sustainable Energy Reviews, 130, 109948.

https://doi.org/10.1016/j.rser.2020.109948.

Huang, H.; Chrismer, S. (2013). Discrete element modeling of ballast settlement under trains moving at "Critical Speeds". Construction and Building Materials, 38, pp. 994-1000, https://doi.org/10.1016/j.conbuildmat.2012.09.007.

Indraratna, B.; Salim, W.; Rujikiatkamjorn, C. (2011). Advanced Rail Geotechnology – Ballasted Track, 1ª edição, Taylor & Francis, London, UK, ISBN: 978-0-203-81577-9, https://doi.org/10.1201/b10861.

Jerónimo, P.; Resende, R.; Fortunato, E. (2020). An assessment of contact and laser-based scanning of rock particles for railway ballast. Transportation Geotechnics, 22, pp. 100302, https://doi.org/10.1016/j.trgeo.2019.100302.

Kalman, B. et al. (2013). Final Report Summary – Re-Road (End of Life Strategies of Asphalt Pavements). Funded by European commission under the Seventh Framework Programme (FP7).

Krumbein, W. C. (1941). Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research, 11 (2), pp. 64-72.

https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D.

Le Pen, L. M.; Powrie, W.; Zervos, A.; Ahmed, S.; Aingaran, S. (2013). Dependence of shape on particle size for a crushed rock railway ballast. Granular Matter, 15 (6), pp. 849-861.

https://doi.org/10.1007/s10035-013-0437-5.

Marques, R.; Gomes Correia, A.; Cortez, P. (2008). Data mining applied to compaction of geomaterials. Eight International Conference on the Bearing Capacity of Roads, Railways and Airfields, Champaign, Illinois, USA.

Miranda, T.; Leitão, D.; Oliveira, J.; Correa-Silva, M.; Araújo, N.; Coelho, J.; Fernández-Jiménez, A.; Cristelo, N. (2020). Application of alkali-activated industrial wastes for the stabilisation of a full-scale (sub)base layer. Journal of Cleaner Production, 242, 118427.

https://doi.org/10.1016/j.jclepro.2019.118427.

Moaveni, M.; Qian, Y.; Boler, H.; Mishra, D.; Tutumluer, E. (2014). Investigation of ballast degradation and fouling trends using image analysis. 2nd International Conference on Railway Technology: Research, Development and Maintenance – Railways 2014, Pombo, J. (Ed.), 8-11 abril, Ajaccio, Corsica, France.

Nålsund, R. (2014). Railway ballast characteristics – Selection criteria and performance. Tese de Doutoramento, Norwegian University of Science and Technology, Trondheim, Norway.

Neves, J.; Martins, A.; Freire, A. C. (2016). Catálogo de pavimentos com Resíduos de Construção e Demolição para estradas e arruamentos de baixo tráfego. 8º Congresso Rodoviário Português, Lisboa, Portugal.

Neves, J.; Freire, A. C.; Qamhia, I.; Al-Qadi, I. L.; Tutumler, E. (2023). Full-scale accelerated pavement testing and instrumentation. In: Chastre, C., Neves, J., Ribeiro, D., Neves, M.G., Faria, P. (eds) Advances on Testing and Experimentation in Civil Engineering. Springer Tracts in Civil Engineering. Springer, Cham, https://doi.org/10.1007/978-3-031-05875-2_7.

Onishi, M.; Tatano, H.; Marcelo, D.; House, S.; Raina, A.; Shibuya, N.; Newman, J.; Imura, S. (2018). Infrastructure priorization incorporating resilience. International Seminar on Disaster and Risk Management for Roads. November 7-8, 2018. Hanoi, Vietnam.

Paixão, A.; Fortunato, E. (2021). Abrasion evolution of steel furnace slag aggregate for railway ballast: 3D morphology analysis of scanned particles by close-range photogrammetry. Construction and Building Materials, 267, 121225.

https://doi.org/10.1016/j.conbuildmat.2020.121225.

Paixão, A.; Muralha, J.; Resende, R.; Fortunato, E. (2022). Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mechanics and Rock Engineering, 55 (6), pp. 3213-3233, https://doi.org/10.1007/s00603-022-02789-9.

Paixão, A.; Resende, R.; Fortunato, E. (2018). Photogrammetry for digital reconstruction of railway ballast particles – A cost-efficient method. Construction and Building Materials, 191, pp. 963-976, https://doi.org/10.1016/j.conbuildmat.2018.10.048.

Palomo, A.; Maltseva, O.; Garcia-Lodeiro, I.; Fernández-Jiménez, A. (2021). Portland versus alkaline cement: Continuity or clean break: “A Key Decision for Global Sustainability”. Frontiers in Chemistry, 9, 705475, https://doi.org/10.3389/fchem.2021.705475.

Parente, M.; Amândio, A.; Moutinho, J.; Gomes Correia, A. (2022). Digital Twin optimization framework for earthworks production optimization and management. Proceedings of the 11th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA2022), Trondheim, Norway.

Parente, M.; Cortez, P.; Gomes Correia, A. (2015). An evolutionary multi-objective optimization system for earthworks. Expert Systems with Applications, 42 (19), pp. 6674-6685, https://doi.org/10.1016/j.eswa.2015.04.051.

Parente, M.; Gomes Correia, A.; Cortez, P. (2014). Use of Data Mining techniques in earthwork management: A case study. Earthwork Project Management, Slope Stability Analysis, and Wave-Based Testing Techniques. American Society of Civil Engineers, Geotechnical Special Publication (GSP), 252, pp. 1-8, https://doi.org/10.1061/9780784478523.001.

Parente, M.; Gomes Correia, A.; Figueira, G.; Mehrsai, A. (2018). Towards improving earthworks production from an Industry 4.0 perspective: the role of remote information technologies and dynamic optimization techniques. Proceedings of 7th Transport Research Arena (TRA 2018), Vienna, Austria.

Pereira, G.; Parente, M.; Moutinho, J.; Sampaio, M. (2021). Fuel consumption prediction for construction trucks: A noninvasive approach using dedicated sensors and machine learning. Infrastructures, 6 (157), https://doi.org/10.3390/infrastructures6110157.

PIARC (2021). Increasing resilience of earth structures to natural hazards. A PIARC literature review. Report 2021R04EN. Technical Committee 4.3 Earthworks. PIARC.

Pomponi, F.; Moncaster, A. (2017). Circular economy for the built environment: A research framework. Journal of Cleaner Production, 143, pp. 710-718.

https://doi.org/10.1016/j.jclepro.2016.12.055.

Pourakbar, S.; Huat, B. (2017). A review of alternatives traditional cementitious binders for engineering improvement of soils. International Journal of Geotechnical Engineering, 11 (2), pp. 206-216, https://doi.org/10.1080/19386362.2016.1207042.

Provis, J.; Van Deventer, J. (2014). Alkali Activated Materials, State-Of-The-Art Report. RILEM TC 224-AAM, first ed., Springer, Netherlands, https://doi.org/10.1007/978-94-007-7672-2.

PRR (2023). Plano de Recuperação e Resiliência. https://recuperarportugal.gov.pt/#conteudo

Reis, G. S.; Quattrone, M.; Ambrós, W.; Cazacliu, B.; Sampaio, C. (2021). Current applications of recycled aggregates from construction and demolition: A review. Materials, 14, 1700, https://doi.org/10.3390/ma14071700.

Sachs J.; Lafortune G.; Kroll C.; Fuller G.; Woelm F. (2022). Sustainable Development Report 2022. From Crisis to Sustainable Development: the SDGs as Roadmap to 2030 and Beyond. Cambridge University Press. https://doi.org/10.1017/9781009210058.

SAMARIS (2004). Literature review of recycling of by products in road construction in Europe. Deliverable 5 (SAM-06-DE05). Sustainable and Advanced Materials for Road Infrastructure.

Saussine, G.; Allain, E.; Vaillant, A.; Ribourg, M.; Neel, O. (2013). High speed in extreme conditions: Ballast projection phenomenon. International Workshop on Train Aerodynamics, 8-10 abril, Birmingham, UK.

Shtayat, A.; Moridpour, S.; Best, B.; Shroff, A.; Raol, D. (2020). A review of monitoring systems of pavement condition in paved and unpaved roads. Journal of Traffic and Transportation Engineering (English Edition), 7 (5), pp. 629-638, https://doi.org/10.1016/j.jtte.2020.03.004.

Sousa, M. J. N.; Monteiro, B. P. B. (2009). Do princípio do equilíbrio de materiais ao Plano de Gestão de Resíduos – Equívocos e benefícios. Seminário Valorização de Resíduos em Obras Geotécnicas: Caracterização e Medidas para o Desenvolvimento do Sector. CT-VROG/SPG/UA, Aveiro.

Tinoco, J.; Gomes Correia, A.; Cortez, P.; Toll, D. (2017). Stability condition identification of rock and soil cutting slopes based on soft computing. Journal of Computing in Civil Engineering, 32 (2), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000739.

Tutumluer, E.; Huang, H.; Hashash, Y.; Ghataora, J. (2006). Aggregate shape effects on ballast tamping and railroad. Track lateral stability. Proceedings of the AREMA 2006 Annual Conference, Louisville, Kentucky, USA.

Tutumluer, E.; Qian, Y.; Hashash, Y. M. A.; Ghaboussi, J.; Davis, D. D. (2013). Discrete element modelling of ballasted track deformation behaviour. International Journal of Rail Transportation, 1, pp. 57, https://doi.org/10.1080/23248378.2013.788361.

UN (2023). The 17 goals. Department of Economics and Social Affairs. Sustainable Development https://sdgs.un.org/goals (consultado em 18/02/2023).

UEPG (2022). Sustainable Supply of Aggregates in Europe. Final Report 12/2022.

Vasenev, A.; Hartmann, T.; Dorée, A. (2014). A distributed data collection and management framework for tracking construction operations. Advanced Engineering Informatics, 28 (2), https://doi.org/10.1016/j.aei.2014.01.003.

Voivret, C.; Perales, R.; Saussine, G.; Costa D’aguiar, S.; Laurans, E.; Petit, P. (2013). Multi-unit tamping machine: beyond the linear performance. WCRR 2013 - World Congress on Railway Research, 25-28 Nov. 2013, Sydney, Australia.

Wadell, H. C. (1932). Volume, shape, and roundness of rock particles. The Journal of Geology, 40 (5), pp. 443-451, https://doi.org/10.1086/623964.

Xu, Y.; Yu, W.; Qie, L.; Wang, H.; Ning, N. (2021). Analysis of influence of ballast shape on abrasion resistance using discrete element method. Construction and Building Materials, 273, 121708, https://doi.org/10.1016/j.conbuildmat.2020.121708.

Zhao, L.; Zhang, S.; Huang, D.; Wang, X. (2020). A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate. Construction and Building Materials, 247, 117906, https://doi.org/10.1016/j.conbuildmat.2019.117906.

##submission.downloads##

Publicado

2024-03-08

Edição

Secção

Artigos