Economia circular na geotecnia: Caso de estudo no Riomar Shopping
DOI:
https://doi.org/10.14195/2184-8394_164_1Palavras-chave:
Construção Civil, Economia Circular, Avaliação do Ciclo de VidaResumo
A construção civil permanece como um dos sectores que mais contribui para as emissões globais de gases com efeito de estufa e para o consumo de recursos naturais. Este estudo investigou a aplicação dos princípios da economia circular como estratégia para mitigar esses impactes ambientais, através de uma Avaliação do Ciclo de Vida comparativa entre dois cenários de pavimentação no estacionamento do RioMar Shopping, localizado em Recife, no nordeste do Brasil: um cenário de construção tradicional e outro baseado em práticas de construção circular. Os resultados demonstraram que a adoção do cenário circular reduziu as emissões de CO₂ em cerca de 91% e promoveu uma gestão mais eficiente dos resíduos. Conclui-se que a economia circular se revela uma abordagem viável para a sustentabilidade no sector, contribuindo para a mitigação das alterações climáticas e a conservação de recursos naturais.
Downloads
Referências
AASHTO (2019). M 319-02 - Standard Specification for Reclaimed Concrete Aggregate for Unbound Soil-Aggregate Base Course. M 319-19. American Association of State Highway and Transportation Officials, Washington, D.C.
ABNT (2021). NBR 15116 - Agregados reciclados para uso em argamassas e concretos de cimento Portland - Requisitos e métodos de ensaios. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brasil, 16 p.
ABNT (2014a). NBR ISO 14040 - Gestão ambiental - Avaliação do ciclo de vida - Princípios e estrutura. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 21 p.
ABNT (2014b). NBR ISO 14044 - Gestão ambiental - Avaliação do ciclo de vida - Requisitos e orientações. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brasil, 46 p.
ABNT (2004). NBR 15115 - Agregados reciclados de resíduos sólidos da construção civil - Execução de camadas de pavimentação - Procedimento. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brasil, 10 p.
ABREMA (2023). Panorama dos Resíduos Sólidos no Brasil 2023. Associação Brasileira de Resíduos e Meio Ambiente, 51 p. Disponível em: https://www.abrema.org.br/wp-content/uploads/dlm_uploads/2024/03/Panorama_2023_P1.pdf (Acesso em 05 de julho de 2024).
Angulo, S. C.; Oliveira, L. S.; Machado, L. C. (2022). Pesquisa setorial ABRECON 2020: A reciclagem de resíduos de construção e demolição no Brasil. Universidade de São Paulo, Escola Politécnica, São Paulo, SP, Brasil. https://doi.org/10.11606/9786589190103
ASTM (2015). ASTM D6155-15 - Standard Specification for Nontraditional Coarse Aggregates for Bituminous Paving Mixtures. ASTM International, West Conshohocken, PA, EUA.
Azam, A.; Gabr, A.; Ezzat, H.; Arab, M.; Alshammari, T. O.; Zeiada, W. (2024). Life cycle assessment and pavement performance of recycled aggregates in road construction. Case Studies in Construction Materials, 20, e03062. https://doi.org/10.1016/j.cscm.2024.e03062
Bayram, B.; Greiff, K. (2023). Life cycle assessment on construction and demolition waste recycling: A systematic review analyzing three important quality aspects. International Journal of Life Cycle Assessment, 28, 967–989. https://doi.org/10.1007/s11367-023-02145-1
Belizario-Silva, F.; Oliveira, L. S.; Reis, D. C.; Pato, G. T. G.; Marinho, A. C.; Degani, C.; Caldas, L. R.; Punhagui, K. R. G.; Pacca, S. A.; John, V. (2022). Sistema de informação do desempenho ambiental da construção: uma ferramenta para incorporar indicadores ambientais na construção civil brasileira. In: Anais do 19º Encontro Nacional de Tecnologia do Ambiente Construído, Canela, RS, Brasil. https://doi.org/10.46421/entac.v19i1.2034
Birgisdottir, H. (2005). Life cycle assessment model for road construction and use of residues from waste incineration. Institute of Environment & Resources, Technical University of Denmark, 45 p. ISBN 87-89220-92-7. Disponível em: https://orbit.dtu.dk/en/publications/life-cycle-assessment-model-for-road-construction-and-use-of-resi (Acesso em 23 de julho de 2024).
Borracheiro, M. V.; Payá, J.; Brito, S.; Segura, Y. P.; Soriano, L.; Tashima, M. M.; Monzó, J. M. (2022). Reusing construction and demolition waste to prepare alkali-activated cement. Materials, 15, 3437. https://doi.org/10.3390/ma15103437
BSI (2016). BIS. IS 383:2016 - Coarse and Fine Aggregate for Concrete - Specification. Bureau of Indian Standards, Nova Deli.
Bueno, C. (2014). Avaliação de ciclo de vida na construção civil: análise de sensibilidade. Tese de Doutorado, Universidade de São Paulo, São Carlos. https://doi.org/10.11606/T.102.2014.tde-10112014-144911
Caldas, L. R.; Saraiva, A. B.; Lucena, A. F. P.; Da Gloria, M. Y.; Santos, A. S.; Filho, R. D. T. (2021). Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resources, Conservation and Recycling, 166, 105346. https://doi.org/10.1016/j.resconrec.2020.105346
CalRecycle (2021). Construction and Demolition (C&D) Diversion Informational Guide. Disponível em: https://calrecycle.ca.gov/lgcentral/library/canddmodel/ (Acesso em 23 de julho de 2024).
Cardoso, R.; Silva, R. V.; Brito, J.; Dhir, R. (2016). Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, pp. 131–145. https://doi.org/10.1016/j.wasman.2015.12.021
CEN (2008a). EN 13242:2002+A1:2007 - Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. Comité Européen de Normalisation, Bruxelas, Bélgica.
CEN (2008b). EN 12620:2002+A1:2008 - Aggregates for concrete. Comité Européen de Normalisation, Bruxelas, Bélgica.
Chen, K.; Wang, J.; Yu, B.; Wu, H.; Zhang, J. (2021). Critical evaluation of construction and demolition waste and associated environmental impacts: A scientometric analysis. Journal of Cleaner Production, 287, 125071. https://doi.org/10.1016/j.jclepro.2020.125071
Chowdhury, R.; Apul, D.; Fry, T. (2010). A life cycle based environmental impacts assessment of construction materials used in road construction. Resources, Conservation and Recycling, 54 (4), 250–255. https://doi.org/10.1016/j.resconrec.2009.08.007
Comissão Europeia (2020). Plano de Ação para a Economia Circular. Disponível em: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (Acesso em 23 de julho de 2024).
CSA (2019). A23.1-19 - Concrete materials and methods of concrete construction. Canadian Standards Association, Toronto.
De Bortoli, A.; Baouch, Y.; Masdan, M. (2023). BIM can help decarbonize the construction sector: Primary life cycle evidence from pavement management systems. Journal of Cleaner Production, 391, 136056. https://doi.org/10.1016/j.jclepro.2023.136056
Dierks, C.; Hagedorn, T.; Mack, T.; Zeller, V. (2024). Consequential life cycle assessment of demolition waste management in Germany. Frontiers in Sustainability, 5. https://doi.org/10.3389/frsus.2024.1417637
Ellen MacArthur Foundation (2019a). Completing the picture: How the circular economy tackles climate change. Ellen MacArthur Foundation. Disponível em: https://www.ellenmacarthurfoundation.org/topics/climate/overview (Acesso em 23 de julho de 2024).
Ellen MacArthur Foundation (2019b). Artificial Intelligence and the circular economy: AI as a tool to accelerate the transition. Disponível em: https://www.ellenmacarthurfoundation.org/artificial-intelligence-and-the-circular-economy (Acesso em 23 de julho de 2024).
Eurostat (2022). Generation of waste by economic activity. Disponível em: https://doi.org/10.2908/TEN00106 (Acesso em 20 de julho de 2024).
Fanijo, E. O.; Kolawole, J. T.; Babafemi, A. J.; Liu, J. (2023). A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Cleaner Materials, 9, 100199. https://doi.org/10.1016/j.clema.2023.100199
Farias, A. B. (2013). Análise técnica e econômica de resíduos de construção e demolição aplicados em pavimentação. Dissertação de Mestrado, Universidade de Pernambuco, Recife, PE, Brasil.
Farias, L. N.; Rocha, J. H. A.; Caldas, L. R.; Filho, R. D. T. (2021). Avaliação dos impactos ambientais de concretos e argamassas contendo materiais cimentícios suplementares (MCS) e agregados reciclados (AR) por meio da avaliação do ciclo de vida (ACV): Uma revisão da literatura. Encontro Latino-Americano e Europeu sobre Edificações e Comunidades Sustentáveis, 290–303.
Geissdoerfer, M.; Savaget, P.; Bocken, N. M. P.; Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm. Journal of Cleaner Production, 143, pp. 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048
Ginga, C. P.; Ongpeng, J. M. C.; Daly, M. K. M. (2020). Circular economy on construction and demolition waste: A literature review on material recovery and production. Materials, 13, 2970. https://doi.org/10.3390/ma13132970
Huijbregts, M. A. J.; Steinmann, Z. J. N.; Elshout, P. M. F.; Stam, G.; Verones, F.; Vieira, M.; Zipj, M.; Hollander, A.; Zelm, R. V. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22 (2), pp. 138–147. https://doi.org/10.1007/s11367-016-1246-y
IPCC (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. https://doi.org/10.1017/9781009157896
JIS (2018). A 5021:2018 - Recycled aggregate for concrete-class H. Japanese Standards Association, Tóquio.
Kirchherr, J.; Reike, D.; Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, pp. 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005
Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S. E. (2018). Circular economy as an essentially contested concept. Journal of Cleaner Production, 175, pp. 544–552. https://doi.org/10.1016/j.jclepro.2017.12.111
Koroxenidis, E.; Karanafti, A.; Tsikaloudaki, K.; Theodosiou, T. (2023). Towards the digitalization and automation of circular and sustainable construction and demolition waste management – project RECONMATIC. IOP Conference Series: Earth and Environmental Science, 1196, 012044. https://doi.org/10.1088/1755-1315/1196/1/012044
Lee, J. C.; Edil, T. B.; Benson, C. H. (2010). Quantitative assessment of environmental and economic benefits of recycled materials in highway construction. Transportation Research Record, 2158 (1), pp. 138–142. https://doi.org/10.3141/2158-17
Leite, F. C.; Motta, R. S.; Vasconcelos, K. L.; Bernucci, L. (2011). Laboratory evaluation of recycled construction and demolition waste for pavements. Construction and Building Materials, 25 (6), pp. 2972–2979. https://doi.org/10.1016/j.conbuildmat.2010.11.105
Lucanto, D. (2022). Advanced Circular Design, a Life Cycle Approach: Methods and Tools for an Eco-Innovative Life Cycle Approach for Buildings Energy and Resource Optimization. In: Calabrò, F., Della Spina, L., & Piñeira Mantiñán, M.J. (Eds.), New Metropolitan Perspectives, Lecture Notes in Networks and Systems. Springer International Publishing, Cham, pp. 1870–1878. https://doi.org/10.1007/978-3-031-06825-6_180
Marinković, S.; Radonjanin, V.; Malešev, M.; Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30 (11), pp. 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012
Ng, S.; Engelsen, C. J. (2018). Construction and demolition wastes. In: Siddique, R., & Cachin, P. (Eds.), Waste and Supplementary Cementitious Materials in Concrete, Woodhead Publishing, pp. 229–255. https://doi.org/10.1016/B978-0-08-102156-9.00008-0
Park, T. (2003). Application of construction and building debris as base and subbase materials in rigid pavement. Journal of Transportation Engineering, 129 (5), pp. 558–563. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(558)
Paz, C. F.; Biela, R.; Punhagui, K. R. G.; Possan, E. (2023). Life cycle inventory of recycled aggregates derived from construction and demolition waste. Journal of Material Cycles and Waste Management, 25, pp. 1082–1095. https://doi.org/10.1007/s10163-023-01594-y
Penteado, C. S. G.; Rosado, L. P. (2016). Comparison of scenarios for the integrated management of construction and demolition waste by life cycle assessment: A case study in Brazil. Waste Management & Research, 34 (10), pp. 1026–1035. https://doi.org/10.1177/0734242X16657605
Pereira, P. M.; Vieira, C. S. (2022). A literature review on the use of recycled construction and demolition materials in unbound pavement applications. Sustainability 14, 13918. https://doi.org/10.3390/su142113918
Portugal. (2020). Decreto-Lei n.º 102-D/2020 de 10 de dezembro – Regime geral da gestão de resíduos, o regime jurídico da deposição de resíduos em aterro e altera o regime da gestão de fluxos específicos de resíduos, transpondo as Diretivas (UE) 2018/849, 2018/850, 2018/851 e 2018/852. Diário da República, 1.ª série, n.º 239 (Suplemento), pp. 2-(1)–2-(62).
Disponível em: https://diariodarepublica.pt/dr/detalhe/decreto-lei/102-d-2020-150908012 (Acesso em 23 de julho de 2024).
Pourkhorshidi, S.; Sangiorgi, C.; Torreggiani, D.; Tassinari, P. (2020). Using recycled aggregates from construction and demolition waste in unbound layers of pavements. Sustainability 12, 9386. https://doi.org/10.3390/su12229386
RioMar Recife (2018). Socioambiental. Disponível em: https://vivariomarrecife.com.br/socioambiental/ (Acesso em 5 de agosto de 2024).
Robayo-Salazar, R.; Valencia-Saavedra, W.; Gutiérrez, R. M. (2022). Reuse of powders and recycled aggregates from mixed construction and demolition waste in alkali-activated materials and precast concrete units. Sustainability 14, 9685. https://doi.org/10.3390/su14159685
Rosado, L. P.; Vitale, P.; Penteado, C. S. G.; arena, U. (2017). Life cycle assessment of natural and mixed recycled aggregate production in Brazil. Journal of Cleaner Production, 151, pp. 634–642. https://doi.org/10.1016/j.jclepro.2017.03.068
Santolini, E.; Tarsi, G.; Torreggiani, D.; Sangiorgi, C. (2024). Towards more sustainable infrastructures through circular processes: Environmental performance assessment of a case study pavement with recycled asphalt in a life cycle perspective. Journal of Cleaner Production, 448, 141380. https://doi.org/10.1016/j.jclepro.2024.141380
Santolini, E.; Bovo, M.; Barbaresi, A.; Torreggiani, D.; Tassinari, P. (2023). LCA of virgin and recycled materials to assess the sustainability of paved surfaces in agricultural environment. Journal of Cleaner Production, 393, 136291. https://doi.org/10.1016/j.jclepro.2023.136291
Scrucca, F.; Ingrao, C.; Maalouf, C.; Moussa, T.; Polidori, G.; Messineo, A.; Arcidiacono, C.; Asdrubali, F. (2020). Energy and carbon footprint assessment of production of hemp hurds for application in buildings. Environmental Impact Assessment Review, 84, 106417. https://doi.org/10.1016/j.eiar.2020.106417
Shi, X.; Mukhopadhyay, A.; Zollinger, D.; Grasley, Z. (2019). Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate. Journal of Cleaner Production, 225, pp. 414–425. https://doi.org/10.1016/j.jclepro.2019.03.288
Standards Australia (2014). AS 2758.1:2014 - Aggregates and rock for engineering purposes - Concrete aggregates. Standards Australia, Sydney.
Tefa, L.; Bianco, L.; Blengini, G. A.; Bassani, M. (2022). Integrated and comparative Structural-LCA analysis of unbound and cement-stabilized construction and demolition waste aggregate for subbase road pavement layers formation. Journal of Cleaner Production, 352, 131599. https://doi.org/10.1016/j.jclepro.2022.131599
Terán-Cuadrado, G.; Sbahieh, S.; Tahir, F.; Nurdiawati, A.; Almarshoud, M. A.; Al-Ghamdi, S. G. (2024). Evaluating the influence of functional unit on life cycle assessment (LCA) reliability of concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2024.04.079
Thapa, I.; Baral, N. P.; Adhikari, K. R. (2023). Comprehensive review of LCA studies in Civil Engineering. BIBECHANA, 20 (3), 326–338. https://doi.org/10.3126/bibechana.v20i3.58552
União Europeia (2008). Diretiva 2008/98/CE do Parlamento Europeu e do Conselho de 19 de novembro de 2008 relativa aos resíduos e que revoga determinadas diretivas (Diretiva 2008/98/CE). Jornal Oficial da União Europeia, L312/3.
United Nations Environment Programme (2024). Global Status Report for Buildings and Construction - Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. https://doi.org/10.59117/20.500.11822/45095
Vieira, C. S.; Pereira, P. M. (2015). Use of recycled construction and demolition materials in geotechnical applications: A review. Resources, Conservation and Recycling, 103, pp. 192–204. https://doi.org/10.1016/j.resconrec.2015.07.023
Visintin, P.; Xie, T.; Bennett, B. (2020). A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243. https://doi.org/10.1016/j.jclepro.2019.119243
Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. (2016). The Ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21 (9), pp. 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
World Green Building Council (2021). Beyond The Business Case. Disponível em: https://viewer.ipaper.io/worldgbc/beyond-the-business-case/?page=20 (Acesso em 19 de julho de 2024).
Zhang, J.; Ding, L.; Li, F.; Peng, J. (2020). Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 120223. https://doi.org/10.1016/j.jclepro.2020.120223
Zhao, Y.; Goulias, D.; Tefa, L.; Bassani, M. (2021). Life cycle economic and environmental impacts of CDW recycled aggregates in roadway construction and rehabilitation. Sustainability, 13 (15), 8611. https://doi.org/10.3390/su13158611