Evaluation of the mechanical and environmental behaviour of inorganic waste materials for use in sustainable geotechnical works

Authors

  • Beatriz Bandarra CERES - Chemical Engineering and Renewable Resources for Sustainability(Universidade de Coimbra) https://orcid.org/0000-0003-2796-4996
  • Lana Monteiro Universidade Estadual Paulista (UNESP), FEG, Faculdade de Engenharia de Guaratinguetá, 13876-750 São João da Boa Vista, Brasil https://orcid.org/0000-0002-5093-5117
  • Margarida Quina Universidade de Coimbra, CERES, Departamento de Engenharia Química, 3030-790 Coimbra, Portugal https://orcid.org/0000-0002-9651-2427
  • Paulo Coelho Universidade de Coimbra, CITTA, Departamento de Engenharia Civil, 3030-788 Coimbra, Portugal https://orcid.org/0000-0001-6078-0393

DOI:

https://doi.org/10.14195/2184-8394_164_3

Keywords:

municipal solid waste incineration bottom ash, iron ore tailing, circular economy in geotechnical works

Abstract

The application of circular economy principles has been promoted. Environmental geotechnics may give a relevant contribution to waste and by-products valorisation through the replacement of natural aggregates. In this context, a multidisciplinary evaluation is essential to ensure safety and environmental protection. This study aims to support an informed application of certain types of waste in geotechnical works, complementing the geotechnical perspective with pertinent analyses. The materials studied were incineration bottom ash from municipal solid waste and its mixtures with sand and iron ore tailings. These wastes are abundant, and their management is not consensual. The assessment involved physical, geotechnical, chemical, and ecotoxicological characterization. The waste showed low leaching potential and did not cause relevant ecotoxic effects. The samples exhibited good one-dimensional stiffness, reasonable permeability, and shear strength similar to dense granular soils. Overall, the materials demonstrated geotechnical and environmental potential for use as sustainable construction materials in geotechnical works.

Downloads

Download data is not yet available.

References

Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G. A.; Asif Tahir, M.; Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, pp. 1295-1309. https://doi.org/10.1016/j.scitotenv.2018.01.066

Adiguzel, D.; Tuylu, S.; Eker, H. (2022). Utilization of tailings in concrete products: A review. Construction and Building Materials, 360, 129574. https://doi.org/10.1016/j.conbuildmat.2022.129574

Alam, Q.; Schollbach, K.; Hoek, C. V.; Laan, S. Van Der; Wolf, T. De; Brouwers, H. J. H. (2019). In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Waste Management, 87, pp. 1-12. https://doi.org/10.1016/j.wasman.2019.01.031

Ameratunga, J.; Sivakugan, N.; Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering. Springer.

Ashraf, M. S.; Ghouleh, Z.; Shao, Y. (2019). Production of eco-cement exclusively from municipal solid waste incineration residues. Resources, Conservation and Recycling, 149 (June), pp. 332-342. https://doi.org/10.1016/j.resconrec.2019.06.018

Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; Van Gerven, T.; Van Zomeren, A. (2016). Treatment and Reuse of Incineration Bottom Ash. In M. N. V. Prasad & K. Shih (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention, pp. 607-645. Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00024-X

Azeiteiro, R. J. N.; Coelho, P. A. L. F.; Taborda, D. M. G.; Grazina, J. C. D. (2017). Critical state–based interpretation of the monotonic behavior of Hostun sand. J. Geotechn. Geoenviron. Eng., 143 (5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001659

Bandarra, B. S.; Passos, H.; Vidal, T.; Martins, R. C.; Quina, M. J.; Pereira, J. L.; Römbke, J. (2023a). Evaluation of a battery of biotests to improve waste ecotoxicity assessment (HP 14), using incineration bottom ash as a case study. Journal of Environmental Management, 344, 118513. https://doi.org/10.1016/j.jenvman.2023.118513

Bandarra, B. S.; Monteiro, L.; Veloso, G.; Abreu, P.; Sousa, H.; Martins, R. C.; Pereira, J. L.; Coelho, P. A. L. F.; Quina, M. J. (2024). Evaluation of MSW incineration bottom ash for environmentally safe geotechnical applications. Construction and Building Materials, 427, 136011. https://doi.org/10.1016/j.conbuildmat.2024.136011

Bandarra, B. S.; Mesquita, C.; Passos, H.; Martins, R. C.; Coelho, P. A. L. F.; Pereira, J. L.; Quina, J. (2023b). An integrated characterisation of incineration bottom ashes towards sustainable application : Physicochemical , ecotoxicological , and mechanical properties. Journal of Hazardous Materials, 455, 131649. https://doi.org/10.1016/j.jhazmat.2023.131649

Bandarra, B. S.; Pereira, J. L.; Martins, R. C.; Maldonado-Alameda, A.; Chimenos, J. M.; Quina, M. J. (2021). Opportunities and barriers for valorizing waste incineration bottom ash: Iberian countries as a case study. Applied Sciences, 11, 9690. https://doi.org/10.3390/app11209690

Bastos, L. A. de C.; Silva, G. C.; Mendes, J. C.; Peixoto, R. A. F. (2016). Using Iron Ore Tailings from Tailing Dams as Road Material. Journal of Materials in Civil Engineering, 28, pp. 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0001613

Becquart, F.; Bernard, F.; Edine, N.; Zentar, R. (2009). Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Management, 29 (4), pp. 1320-1329. https://doi.org/10.1016/j.wasman.2008.08.019

BIO by Deloitte. (2015). Study to assess the impacts of different classification approaches for hazard property “HP 14” on selected waste streams - Final report.

Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M. J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J. M.; Dahlbo, H.; Fagerqvist, J.; Giro-Paloma, J.; Hjelmar, O.; Hyks, J.; Keaney, J.; Lupsea-Toader, M.; O’Caollai, C. J.; Orupõld, K.; Pająk, T.; … Fellner, J. (2020). Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Management, 102, pp. 868-883. https://doi.org/10.1016/j.wasman.2019.11.031

Born, J.-P.; Van Brecht, A. (2014). Recycling potentials of MSWI Bottom Ash. https://www.cewep.eu/wp-content/uploads/2017/10/1318_avb_and_jp_born_2014_cewep_conference_bottom_ash_reuse.pdf

Carmignano, O. R.; Vieira, S. S.; Teixeira, A. P. C.; Lameiras, F. S.; Brandão, P. R. G.; Lago, R. M. (2021). Iron Ore Tailings: Characterization and Applications. Journal of the Brazilian Chemical Society, 32 (10), pp. 1895-1911. https://doi.org/10.21577/0103-5053.20210100

Cele, E. N.; Maboeta, M. (2016). A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation. Journal of Environmental Management, 165, pp. 167-174. https://doi.org/10.1016/j.jenvman.2015.09.029

CEWEP (2019). Confederation of European Waste-to-Energy Plants. Bottom Ash Factsheet. http://www.cewep.eu/2017/09/08/bottom-ash-factsheet/

Chandler, A. J.; Eighmy, T. T.; Hartlén, J.; Hjelmar, O.; Kosson, D. S.; Sawell, S. E.; Sloot, H. A. van der; Vehlow, J. (1997). Municipal Solid Waste Incinerator Residues. The International Ash Working Group (IAWG). Studies in Environmental Science, 67. Elsevier.

Chaturvedi, N.; Ahmed, M. J.; Dhal, N. K. (2014). Effects of iron ore tailings on growth and physiological activities of Tagetes patula L. Journal of Soils and Sediments, 14, pp. 721-730. https://doi.org/10.1007/s11368-013-0777-0

Chimenos, J. M.; Fernández, A. I.; Miralles, L.; Segarra, M.; Espiell, F. (2003). Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23 (10), pp. 887-895. https://doi.org/10.1016/S0956-053X(03)00074-6

Chimenos, J. M.; Fernández, A. I.; Nadal, R.; Espiell, F. (2000). Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials, 79 (3), pp. 287-299. https://doi.org/10.1016/S0304-3894(00)00270-3

Chimenos, J. M.; Segarra, M.; Fernández, M. A.; Espiell, F. (1999). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64 (3), pp. 211-222. https://doi.org/10.1016/S0304-3894(98)00246-5

Choi, Y. W.; Kim, Y. J.; Choi, O.; Lee, K. M.; Lachemi, M. (2009). Utilization of tailings from tungsten mine waste as a substitution material for cement. Construction and Building Materials, 23, pp. 2481-2486. https://doi.org/10.1016/j.conbuildmat.2009.02.006

Coelho, P.; Camacho, D. (2024). The Experimental Characterization of Iron Ore Tailings from a Geotechnical Perspective. Applied Sciences, 14, 5033. https://doi.org/10.3390/app14125033

Das, B. M. (2019). Advanced Soil Mechanics (5th Editio). CRC Press. Taylor & Francis Group.

Davila, R. B.; Fontes, M. P. F.; Pacheco, A. A.; Ferreira, M. da S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151

del Valle-zermeño, R.; Chimenos, J. M.; Giró-paloma, J.; Formosa, J. (2014). Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier. Chemosphere, 117, pp. 402-409. https://doi.org/10.1016/j.chemosphere.2014.07.095

Di Gianfilippo, M.; Hyks, J.; Verginelli, I.; Costa, G.; Hjelmar, O.; Lombardi, F. (2018). Leaching behaviour of incineration bottom ash in a reuse scenario : 12 years-field data vs . lab test results. Waste Management, 73, pp. 367-380. https://doi.org/10.1016/j.wasman.2017.08.013

Dou, X.; Ren, F.; Nguyen, M. Q.; Ahamed, A.; Yin, K.; Chan, W. P.; Chang, V. W. C. (2017). Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79 (February), pp. 24-38. https://doi.org/10.1016/j.rser.2017.05.044

El-Deeb Ghazy, M. M.; Habashy, M. M.; Mohammady, E. Y. (2011). Effects of pH on survival, growth and reproduction rates of the crustacean, Daphnia Magna. Australian Journal of Basic and Applied Sciences, 5 (11), pp. 1-10.

EPA. (2001). Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA-821-R-01-015.

Eurostat. (2024). Waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation

Forteza, R.; Far, M.; Seguí, C.; Cerdá, V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24 (9), pp. 899-909. https://doi.org/10.1016/j.wasman.2004.07.004

Fulladosa, E.; Murat, J. C.; Martínez, M.; Villaescusa, I. (2005). Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere, 60, pp. 43-48. https://doi.org/10.1016/j.chemosphere.2004.12.026

Gao, B. (2012). Phosphorus Recovery from Sorted MSWI Bottom Ash : the acidic dissolution – precipitation method. Chalmers University of Technology. Göteborg, Sweden.

Ginés, O.; Chimenos, J. M.; Vizcarro, A.; Formosa, J.; Rosell, J. R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169, pp. 643-650. https://doi.org/10.1016/j.jhazmat.2009.03.141

Godlewski, T. (2018). Evaluation of stiffness degradation curves from in situ tests in various soil types. Archives of Civil Engineering, 64 (4), pp. 285-307.

Gupta, G.; Datta, M.; Ramana, G. V.; Alappat, B. J. (2021). MSW incineration bottom ash ( MIBA ) as a substitute to conventional materials in geotechnical applications : A characterization study from India and comparison with literature. Construction and Building Materials, 308, 124925. https://doi.org/10.1016/j.conbuildmat.2021.124925

Han, X.; Wang, F.; Zhao, Y.; Meng, J.; Tian, G.; Wang, L.; Liang, J. (2023). Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review. Environmental Chemistry Letters, 21, pp. 1005-1028. https://doi.org/10.1007/s10311-022-01541-7

Hennebert, P. (2018). Proposal of concentration limits for determining the hazard property HP 14 for waste using ecotoxicological tests. Waste Management, 74, pp. 74-85. https://doi.org/10.1016/j.wasman.2017.11.048

Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. (2017). Geotechnical Properties of Mine Tailings. Journal of Materials in Civil Engineering, 29 (2), pp. 1-10. https://doi.org/10.1061/(asce)mt.1943-5533.0001736

Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. (2019). Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Management, 95, pp. 593-603. https://doi.org/10.1016/j.wasman.2019.06.047

Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements, 7, pp. 381-386. https://doi.org/10.2113/gselements.7.6.381

Jiang, P.; Lv, S.; Wang, Y.; Li, N.; Wang, W. (2019). Investigation on direct shear and energy dissipation characteristics of iron tailings powder reinforced by polypropylene fiber. Applied Sciences, 9, 5098. https://doi.org/10.3390/app9235098

Klymko, T.; Dijkstra, J. J.; van Zomeren., A. (2017). Guidance document on hazard classification of MSWI bottom ash. ECN report.

Krishna, R. S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. (2021). Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceramics International, 47, pp. 17826-17843. https://doi.org/10.1016/j.ceramint.2021.03.180

Le, N. H.; Razakamanantsoa, A.; Nguyen, M. L.; Phan, V. T.; Dao, P. L.; Nguyen, D. H. (2018). Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction. Waste Management, 80, pp. 168–174. https://doi.org/10.1016/j.wasman.2018.09.007

Lee, M. T.; Nicholson, P. G. (1997). An Engineering Test Program of MSW Ash Mixed with Quarry Tailings for Use as a Landfill Construction Material. ASTM Special Technical Publication, 1275, pp. 205-218.

Li, W.; Coop, M. R. (2019). Mechanical behaviour of panzhihua iron tailings. Canadian Geotechnical Journal, 56, pp. 420-435. https://doi.org/10.1139/cgj-2018-0032

Lin, C.-L.; Weng, M.-C.; Chang, C.-H. (2012). Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material. Journal of Environmental Management, 113, pp. 377-382. https://doi.org/10.1016/j.jenvman.2012.09.013

Lindberg, D.,+; Molin, C.; Hupa, M. (2015). Thermal treatment of solid residues from WtE units: A review. Waste Management, 37, pp. 82-94. https://doi.org/10.1016/j.wasman.2014.12.009

LNEC (2015). Documento de aplicação. AEIRU - Agregados artificiais de escórias de incineração de resíduos urbanos para pavimentos rodoviários. Laboratório Nacional de Engenharia Civil, Lisboa, Portugal.

Luo, H.; Cheng, Y.; He, D.; Yang, E. H. (2019). Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the Total Environment, 668, pp. 90-103. https://doi.org/10.1016/j.scitotenv.2019.03.004

Lynn, C. J.; Ghataora, G. S.; Dhir OBE, R. K. (2017). Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. International Journal of Pavement Research and Technology, 10, pp. 185-201. https://doi.org/10.1016/j.ijprt.2016.12.003

Maldonado-Alameda, À.; Giro-Paloma, J.; Alfocea-Roig, A.; Formosa, J.; Chimenos, J. M. (2020a). Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation. Applied Sciences, 10, 4129. https://doi.org/10.3390/APP10124129

Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J. M. (2020b). Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. Journal of Cleaner Production, 242, 118443. https://doi.org/10.1016/j.jclepro.2019.118443

Maria, I.,; Enric, V.; Xavier, Q.; Barra, M.; López, A.; Plana, F. (2001). Use of bottom ash from municipal solid waste incineration as a road material. International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky.

Mei, S.; Zhong, Q.; Chen, S.; Shan, Y. (2022). Investigation of the overtopping-induced breach of tailings dams. Computers and Geotechnics, 149, 104864. https://doi.org/10.1016/j.compgeo.2022.104864

Mesri, G.; Vardhanabhuti, B. (2009). Compression of granular materials. Canadian Geotechnical Journal, 46, pp. 369-392.

Monteiro, L. S. V. E.; Bandarra, B. S.; Quina, M. J.; Coelho, P. A. L. F. (2024). A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions. Construction and Building Materials, 455, 139139. https://doi.org/10.1016/j.conbuildmat.2024.139139

Muhunthan, B.; Taha, R.; Said, J. (2004). Geotechnical Engineering Properties of Incinerator Ash Mixes. Journal of the Air & Waste Management Association, 54 (8), pp. 985-991. https://doi.org/10.1080/10473289.2004.10470959

Neuwahl, F.; Cusano, G.; Benavides, J. G.; Holbrook, S.; Serge, R. (2019). Best Available Techniques (BAT) Reference Document for Waste Incineration. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention). In Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control).

Nordstrom, D. K. (2011). Mine waters: Acidic to circumneutral. Elements, 7, pp. 393-398. https://doi.org/10.2113/gselements.7.6.393

Oehmig, W. N.; Roessler, J. G.; Zhang, J.; Townsend, T. G. (2015). Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes. Journal of Hazardous Materials, 283, pp. 500-506. https://doi.org/10.1016/j.jhazmat.2014.09.040

Oyediran, I. A.; Enya, N. I. (2021). Crude oil Effects on Some Engineering Properties of Sandy Alluvial Soil. International Journal of Mining and Geo-Engineering, 55 (1), pp. 7-10. https://doi.org/10.22059/IJMGE.2020.283051.594815

Pandard, P.; Römbke, J. (2013). Proposal for a “Harmonized” strategy for the assessment of the HP 14 property. Integrated Environmental Assessment and Management, 9 (4), pp. 665-672. https://doi.org/10.1002/ieam.1447

Raju, P. N. P.; Andian, N. S.; Nagaraj, T. S. (1995). Analysis and estimation of the coefficient of consolidation. Geotechnical Testing Journal. ASTM, 18 (2), pp. 252-258. https://doi.org/10.1520/GTJ10325J

Ribé, V.; Nehrenheim, E.; Odlare, M. (2014). Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Management, 34, pp. 1871-1876. https://doi.org/10.1016/j.wasman.2013.12.024

Römbke, J.; Moser, T.; Moser, H. (2009). Ecotoxicological characterisation of 12 incineration ashes using 6 laboratory tests. Waste Management, 29 (9), pp. 2475-2482. https://doi.org/10.1016/j.wasman.2009.03.032

Sarathchandra, S. S.; Rengel, Z.; Solaiman, Z. M. (2022). Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 288, 132573. https://doi.org/10.1016/j.chemosphere.2021.132573

Segui, P.; Safhi, A. el M.; Amrani, M.; Benzaazoua, M. (2023). Mining Wastes as Road Construction Material: A Review. Minerals, 13, 90. https://doi.org/10.3390/min13010090

Silva, R. V.; de Brito, J.; Lynn, C. J.; Dhir, R. K. (2019). Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling, 140, pp. 23-35. https://doi.org/10.1016/j.resconrec.2018.09.011

Sivakugan, N. (2011). Engineering Properties of Soil. In B. M. Das (Ed.), Geotechnical engineering handbook. J. Ross Publishing.

Sorlini, S.; Collivignarelli, M. C.; Abbà, A. (2017). Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Management and Research, 35 (9), pp. 978-990. https://doi.org/10.1177/0734242X17721340

Sormunen, L. A.; Rantsi, R. (2015). To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Waste Management and Research, 33 (11), pp. 995-1004. https://doi.org/10.1177/0734242X15600052

Spreadbury, C. J.; McVay, M.; Laux, S. J.; Townsend, T. G. (2021). A field-scale evaluation of municipal solid waste incineration bottom ash as a road base material: Considerations for reuse practices. Resources, Conservation and Recycling, 168, 105264. https://doi.org/10.1016/j.resconrec.2020.105264

Sridharan, A.; Gurtug, Y. (2004). Swelling behaviour of compacted fine-grained soils. Engineering Geology, 72, pp. 9-18. https://doi.org/10.1016/S0013-7952(03)00161-3

Tang, J.; Steenari, B. M. (2016). Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Management, 48, pp. 315-322. https://doi.org/10.1016/j.wasman.2015.10.003

Wagner, A. C.; de Sousa Silva, J. P.; de Azambuja Carvalho, J. V.; Cezar Rissoli, A. L.; Cacciari, P. P.; Chaves, H. M.; Scheuermann Filho, H. C.; Consoli, N. C. (2023). Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths. Journal of Rock Mechanics and Geotechnical Engineering, 15, pp. 1883-1894. https://doi.org/10.1016/j.jrmge.2022.11.013

Wang, C.; Jing, J.; Qi, Y.; Zhou, Y.; Zhang, K.; Zheng, Y.; Zhai, Y.; Liu, F. (2023). Basic characteristics and environmental impact of iron ore tailings. Frontiers in Earth Science, 11, 1181984. https://doi.org/10.3389/feart.2023.1181984

Wiles, C. C. (1996). Municipal solid waste combustion ash: State-of-the-knowledge. Journal of Hazardous Materials, 47 (1–3), pp. 325-344. https://doi.org/10.1016/0304-3894(95)00120-4

Xu, D.-M.; Zhan, C.-L.; Liu, H.-X.; Lin, H.-Z. (2019). A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environmental Science and Pollution Research, 26, pp. 35657-35669. https://doi.org/10.1007/s11356-019-06555-3

Young, G.; Chen, Y.; Yang, M. (2021). Concentrations, distribution, and risk assessment of heavy metals in the iron tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere, 271, 129546. https://doi.org/10.1016/j.chemosphere.2021.129546

Yusoff, S. A. N. M.; Bakar, I.; Wijeyesekera, D. C.; Zainorabidin, A.; Azmi, M.; Ramli, H. (2017). The effects of different compaction energy on geotechnical properties of kaolin and laterite. AIP Conference Proceedings, 1875 (030009). https://doi.org/10.1063/1.4998380

Zamani, M.; Badv, K. (2019). Assessment of the Geotechnical Behavior of Collapsible Soils: A Case Study of the Mohammad-Abad Railway Station Soil in Semnan. Geotechnical and Geological Engineering, 37, pp. 2847-2860. https://doi.org/10.1007/s10706-018-00800-1

Zhang, X.; Yang, H.; Cui, Z. (2018). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production, 172, pp. 475-480. https://doi.org/10.1016/j.jclepro.2017.09.277

Zhang, Z.; Zhang, L.; Li, A. (2015). Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite. Waste Management, 38 (1), pp. 185-193. https://doi.org/10.1016/j.wasman.2014.12.028

Published

2025-08-01

Issue

Section

Articles