Avaliação do comportamento mecânico e ambiental de resíduos inorgânicos para uso em obras geotécnicas sustentáveis

Autores

  • Beatriz Bandarra Universidade de Coimbra, CERES, Departamento de Engenharia Química, 3030-790 Coimbra, Portugal https://orcid.org/0000-0003-2796-4996
  • Lana Monteiro Universidade Estadual Paulista (UNESP), FEG, Faculdade de Engenharia de Guaratinguetá, 13876-750 São João da Boa Vista, Brasil https://orcid.org/0000-0002-5093-5117
  • Margarida Quina Universidade de Coimbra, CERES, Departamento de Engenharia Química, 3030-790 Coimbra, Portugal https://orcid.org/0000-0002-9651-2427
  • Paulo Coelho Universidade de Coimbra, CITTA, Departamento de Engenharia Civil, 3030-788 Coimbra, Portugal https://orcid.org/0000-0001-6078-0393

DOI:

https://doi.org/10.14195/2184-8394_164_3

Palavras-chave:

escórias de incineração de resíduos sólidos urbanos, rejeitado de mina de ferro, economia circular em obras geotécnicas

Resumo

A aplicação dos princípios da economia circular tem sido incentivada. A geotecnia ambiental pode dar um contributo relevante na valorização de resíduos e subprodutos através da substituição de agregados naturais. Garantir a segurança e a proteção ambiental exige uma avaliação multidisciplinar. Este trabalho pretende apoiar a aplicação informada de determinados resíduos em obras geotécnicas, complementando a perspetiva geotécnica com análises pertinentes. Foram estudadas escórias de incineração de resíduos sólidos urbanos e suas misturas com areia e rejeitado de mina de ferro. Estes resíduos são abundantes e a sua gestão não é consensual. A avaliação incluiu caracterização física, geotécnica, química e ecotoxicológica. Os resíduos exibiram baixo potencial de lixiviação e não causaram efeitos ecotóxicos relevantes. As amostras apresentaram boa rigidez unidimensional, permeabilidade razoável e resistência ao corte semelhante a solos granulares densos. Globalmente, os materiais demonstraram desempenho geotécnico e ambiental promissor para aplicação como materiais de construção sustentáveis em obras geotécnicas.

Downloads

Não há dados estatísticos.

Referências

Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G. A.; Asif Tahir, M.; Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, pp. 1295-1309. https://doi.org/10.1016/j.scitotenv.2018.01.066

Adiguzel, D.; Tuylu, S.; Eker, H. (2022). Utilization of tailings in concrete products: A review. Construction and Building Materials, 360, 129574. https://doi.org/10.1016/j.conbuildmat.2022.129574

Alam, Q.; Schollbach, K.; Hoek, C. V.; Laan, S. Van Der; Wolf, T. De; Brouwers, H. J. H. (2019). In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Waste Management, 87, pp. 1-12. https://doi.org/10.1016/j.wasman.2019.01.031

Ameratunga, J.; Sivakugan, N.; Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering. Springer.

Ashraf, M. S.; Ghouleh, Z.; Shao, Y. (2019). Production of eco-cement exclusively from municipal solid waste incineration residues. Resources, Conservation and Recycling, 149 (June), pp. 332-342. https://doi.org/10.1016/j.resconrec.2019.06.018

Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; Van Gerven, T.; Van Zomeren, A. (2016). Treatment and Reuse of Incineration Bottom Ash. In M. N. V. Prasad & K. Shih (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention, pp. 607-645. Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00024-X

Azeiteiro, R. J. N.; Coelho, P. A. L. F.; Taborda, D. M. G.; Grazina, J. C. D. (2017). Critical state–based interpretation of the monotonic behavior of Hostun sand. J. Geotechn. Geoenviron. Eng., 143 (5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001659

Bandarra, B. S.; Passos, H.; Vidal, T.; Martins, R. C.; Quina, M. J.; Pereira, J. L.; Römbke, J. (2023a). Evaluation of a battery of biotests to improve waste ecotoxicity assessment (HP 14), using incineration bottom ash as a case study. Journal of Environmental Management, 344, 118513. https://doi.org/10.1016/j.jenvman.2023.118513

Bandarra, B. S.; Monteiro, L.; Veloso, G.; Abreu, P.; Sousa, H.; Martins, R. C.; Pereira, J. L.; Coelho, P. A. L. F.; Quina, M. J. (2024). Evaluation of MSW incineration bottom ash for environmentally safe geotechnical applications. Construction and Building Materials, 427, 136011. https://doi.org/10.1016/j.conbuildmat.2024.136011

Bandarra, B. S.; Mesquita, C.; Passos, H.; Martins, R. C.; Coelho, P. A. L. F.; Pereira, J. L.; Quina, J. (2023b). An integrated characterisation of incineration bottom ashes towards sustainable application : Physicochemical , ecotoxicological , and mechanical properties. Journal of Hazardous Materials, 455, 131649. https://doi.org/10.1016/j.jhazmat.2023.131649

Bandarra, B. S.; Pereira, J. L.; Martins, R. C.; Maldonado-Alameda, A.; Chimenos, J. M.; Quina, M. J. (2021). Opportunities and barriers for valorizing waste incineration bottom ash: Iberian countries as a case study. Applied Sciences, 11, 9690. https://doi.org/10.3390/app11209690

Bastos, L. A. de C.; Silva, G. C.; Mendes, J. C.; Peixoto, R. A. F. (2016). Using Iron Ore Tailings from Tailing Dams as Road Material. Journal of Materials in Civil Engineering, 28, pp. 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0001613

Becquart, F.; Bernard, F.; Edine, N.; Zentar, R. (2009). Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Management, 29 (4), pp. 1320-1329. https://doi.org/10.1016/j.wasman.2008.08.019

BIO by Deloitte. (2015). Study to assess the impacts of different classification approaches for hazard property “HP 14” on selected waste streams - Final report.

Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M. J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J. M.; Dahlbo, H.; Fagerqvist, J.; Giro-Paloma, J.; Hjelmar, O.; Hyks, J.; Keaney, J.; Lupsea-Toader, M.; O’Caollai, C. J.; Orupõld, K.; Pająk, T.; … Fellner, J. (2020). Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Management, 102, pp. 868-883. https://doi.org/10.1016/j.wasman.2019.11.031

Born, J.-P.; Van Brecht, A. (2014). Recycling potentials of MSWI Bottom Ash. https://www.cewep.eu/wp-content/uploads/2017/10/1318_avb_and_jp_born_2014_cewep_conference_bottom_ash_reuse.pdf

Carmignano, O. R.; Vieira, S. S.; Teixeira, A. P. C.; Lameiras, F. S.; Brandão, P. R. G.; Lago, R. M. (2021). Iron Ore Tailings: Characterization and Applications. Journal of the Brazilian Chemical Society, 32 (10), pp. 1895-1911. https://doi.org/10.21577/0103-5053.20210100

Cele, E. N.; Maboeta, M. (2016). A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation. Journal of Environmental Management, 165, pp. 167-174. https://doi.org/10.1016/j.jenvman.2015.09.029

CEWEP (2019). Confederation of European Waste-to-Energy Plants. Bottom Ash Factsheet. http://www.cewep.eu/2017/09/08/bottom-ash-factsheet/

Chandler, A. J.; Eighmy, T. T.; Hartlén, J.; Hjelmar, O.; Kosson, D. S.; Sawell, S. E.; Sloot, H. A. van der; Vehlow, J. (1997). Municipal Solid Waste Incinerator Residues. The International Ash Working Group (IAWG). Studies in Environmental Science, 67. Elsevier.

Chaturvedi, N.; Ahmed, M. J.; Dhal, N. K. (2014). Effects of iron ore tailings on growth and physiological activities of Tagetes patula L. Journal of Soils and Sediments, 14, pp. 721-730. https://doi.org/10.1007/s11368-013-0777-0

Chimenos, J. M.; Fernández, A. I.; Miralles, L.; Segarra, M.; Espiell, F. (2003). Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23 (10), pp. 887-895. https://doi.org/10.1016/S0956-053X(03)00074-6

Chimenos, J. M.; Fernández, A. I.; Nadal, R.; Espiell, F. (2000). Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials, 79 (3), pp. 287-299. https://doi.org/10.1016/S0304-3894(00)00270-3

Chimenos, J. M.; Segarra, M.; Fernández, M. A.; Espiell, F. (1999). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64 (3), pp. 211-222. https://doi.org/10.1016/S0304-3894(98)00246-5

Choi, Y. W.; Kim, Y. J.; Choi, O.; Lee, K. M.; Lachemi, M. (2009). Utilization of tailings from tungsten mine waste as a substitution material for cement. Construction and Building Materials, 23, pp. 2481-2486. https://doi.org/10.1016/j.conbuildmat.2009.02.006

Coelho, P.; Camacho, D. (2024). The Experimental Characterization of Iron Ore Tailings from a Geotechnical Perspective. Applied Sciences, 14, 5033. https://doi.org/10.3390/app14125033

Das, B. M. (2019). Advanced Soil Mechanics (5th Editio). CRC Press. Taylor & Francis Group.

Davila, R. B.; Fontes, M. P. F.; Pacheco, A. A.; Ferreira, M. da S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151

del Valle-zermeño, R.; Chimenos, J. M.; Giró-paloma, J.; Formosa, J. (2014). Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier. Chemosphere, 117, pp. 402-409. https://doi.org/10.1016/j.chemosphere.2014.07.095

Di Gianfilippo, M.; Hyks, J.; Verginelli, I.; Costa, G.; Hjelmar, O.; Lombardi, F. (2018). Leaching behaviour of incineration bottom ash in a reuse scenario : 12 years-field data vs . lab test results. Waste Management, 73, pp. 367-380. https://doi.org/10.1016/j.wasman.2017.08.013

Dou, X.; Ren, F.; Nguyen, M. Q.; Ahamed, A.; Yin, K.; Chan, W. P.; Chang, V. W. C. (2017). Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79 (February), pp. 24-38. https://doi.org/10.1016/j.rser.2017.05.044

El-Deeb Ghazy, M. M.; Habashy, M. M.; Mohammady, E. Y. (2011). Effects of pH on survival, growth and reproduction rates of the crustacean, Daphnia Magna. Australian Journal of Basic and Applied Sciences, 5 (11), pp. 1-10.

EPA. (2001). Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA-821-R-01-015.

Eurostat. (2024). Waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation

Forteza, R.; Far, M.; Seguí, C.; Cerdá, V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24 (9), pp. 899-909. https://doi.org/10.1016/j.wasman.2004.07.004

Fulladosa, E.; Murat, J. C.; Martínez, M.; Villaescusa, I. (2005). Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere, 60, pp. 43-48. https://doi.org/10.1016/j.chemosphere.2004.12.026

Gao, B. (2012). Phosphorus Recovery from Sorted MSWI Bottom Ash : the acidic dissolution – precipitation method. Chalmers University of Technology. Göteborg, Sweden.

Ginés, O.; Chimenos, J. M.; Vizcarro, A.; Formosa, J.; Rosell, J. R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169, pp. 643-650. https://doi.org/10.1016/j.jhazmat.2009.03.141

Godlewski, T. (2018). Evaluation of stiffness degradation curves from in situ tests in various soil types. Archives of Civil Engineering, 64 (4), pp. 285-307.

Gupta, G.; Datta, M.; Ramana, G. V.; Alappat, B. J. (2021). MSW incineration bottom ash ( MIBA ) as a substitute to conventional materials in geotechnical applications : A characterization study from India and comparison with literature. Construction and Building Materials, 308, 124925. https://doi.org/10.1016/j.conbuildmat.2021.124925

Han, X.; Wang, F.; Zhao, Y.; Meng, J.; Tian, G.; Wang, L.; Liang, J. (2023). Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review. Environmental Chemistry Letters, 21, pp. 1005-1028. https://doi.org/10.1007/s10311-022-01541-7

Hennebert, P. (2018). Proposal of concentration limits for determining the hazard property HP 14 for waste using ecotoxicological tests. Waste Management, 74, pp. 74-85. https://doi.org/10.1016/j.wasman.2017.11.048

Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. (2017). Geotechnical Properties of Mine Tailings. Journal of Materials in Civil Engineering, 29 (2), pp. 1-10. https://doi.org/10.1061/(asce)mt.1943-5533.0001736

Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. (2019). Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Management, 95, pp. 593-603. https://doi.org/10.1016/j.wasman.2019.06.047

Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements, 7, pp. 381-386. https://doi.org/10.2113/gselements.7.6.381

Jiang, P.; Lv, S.; Wang, Y.; Li, N.; Wang, W. (2019). Investigation on direct shear and energy dissipation characteristics of iron tailings powder reinforced by polypropylene fiber. Applied Sciences, 9, 5098. https://doi.org/10.3390/app9235098

Klymko, T.; Dijkstra, J. J.; van Zomeren., A. (2017). Guidance document on hazard classification of MSWI bottom ash. ECN report.

Krishna, R. S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. (2021). Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceramics International, 47, pp. 17826-17843. https://doi.org/10.1016/j.ceramint.2021.03.180

Le, N. H.; Razakamanantsoa, A.; Nguyen, M. L.; Phan, V. T.; Dao, P. L.; Nguyen, D. H. (2018). Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction. Waste Management, 80, pp. 168–174. https://doi.org/10.1016/j.wasman.2018.09.007

Lee, M. T.; Nicholson, P. G. (1997). An Engineering Test Program of MSW Ash Mixed with Quarry Tailings for Use as a Landfill Construction Material. ASTM Special Technical Publication, 1275, pp. 205-218.

Li, W.; Coop, M. R. (2019). Mechanical behaviour of panzhihua iron tailings. Canadian Geotechnical Journal, 56, pp. 420-435. https://doi.org/10.1139/cgj-2018-0032

Lin, C.-L.; Weng, M.-C.; Chang, C.-H. (2012). Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material. Journal of Environmental Management, 113, pp. 377-382. https://doi.org/10.1016/j.jenvman.2012.09.013

Lindberg, D.,+; Molin, C.; Hupa, M. (2015). Thermal treatment of solid residues from WtE units: A review. Waste Management, 37, pp. 82-94. https://doi.org/10.1016/j.wasman.2014.12.009

LNEC (2015). Documento de aplicação. AEIRU - Agregados artificiais de escórias de incineração de resíduos urbanos para pavimentos rodoviários. Laboratório Nacional de Engenharia Civil, Lisboa, Portugal.

Luo, H.; Cheng, Y.; He, D.; Yang, E. H. (2019). Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the Total Environment, 668, pp. 90-103. https://doi.org/10.1016/j.scitotenv.2019.03.004

Lynn, C. J.; Ghataora, G. S.; Dhir OBE, R. K. (2017). Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. International Journal of Pavement Research and Technology, 10, pp. 185-201. https://doi.org/10.1016/j.ijprt.2016.12.003

Maldonado-Alameda, À.; Giro-Paloma, J.; Alfocea-Roig, A.; Formosa, J.; Chimenos, J. M. (2020a). Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation. Applied Sciences, 10, 4129. https://doi.org/10.3390/APP10124129

Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J. M. (2020b). Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. Journal of Cleaner Production, 242, 118443. https://doi.org/10.1016/j.jclepro.2019.118443

Maria, I.,; Enric, V.; Xavier, Q.; Barra, M.; López, A.; Plana, F. (2001). Use of bottom ash from municipal solid waste incineration as a road material. International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky.

Mei, S.; Zhong, Q.; Chen, S.; Shan, Y. (2022). Investigation of the overtopping-induced breach of tailings dams. Computers and Geotechnics, 149, 104864. https://doi.org/10.1016/j.compgeo.2022.104864

Mesri, G.; Vardhanabhuti, B. (2009). Compression of granular materials. Canadian Geotechnical Journal, 46, pp. 369-392.

Monteiro, L. S. V. E.; Bandarra, B. S.; Quina, M. J.; Coelho, P. A. L. F. (2024). A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions. Construction and Building Materials, 455, 139139. https://doi.org/10.1016/j.conbuildmat.2024.139139

Muhunthan, B.; Taha, R.; Said, J. (2004). Geotechnical Engineering Properties of Incinerator Ash Mixes. Journal of the Air & Waste Management Association, 54 (8), pp. 985-991. https://doi.org/10.1080/10473289.2004.10470959

Neuwahl, F.; Cusano, G.; Benavides, J. G.; Holbrook, S.; Serge, R. (2019). Best Available Techniques (BAT) Reference Document for Waste Incineration. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention). In Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control).

Nordstrom, D. K. (2011). Mine waters: Acidic to circumneutral. Elements, 7, pp. 393-398. https://doi.org/10.2113/gselements.7.6.393

Oehmig, W. N.; Roessler, J. G.; Zhang, J.; Townsend, T. G. (2015). Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes. Journal of Hazardous Materials, 283, pp. 500-506. https://doi.org/10.1016/j.jhazmat.2014.09.040

Oyediran, I. A.; Enya, N. I. (2021). Crude oil Effects on Some Engineering Properties of Sandy Alluvial Soil. International Journal of Mining and Geo-Engineering, 55 (1), pp. 7-10. https://doi.org/10.22059/IJMGE.2020.283051.594815

Pandard, P.; Römbke, J. (2013). Proposal for a “Harmonized” strategy for the assessment of the HP 14 property. Integrated Environmental Assessment and Management, 9 (4), pp. 665-672. https://doi.org/10.1002/ieam.1447

Raju, P. N. P.; Andian, N. S.; Nagaraj, T. S. (1995). Analysis and estimation of the coefficient of consolidation. Geotechnical Testing Journal. ASTM, 18 (2), pp. 252-258. https://doi.org/10.1520/GTJ10325J

Ribé, V.; Nehrenheim, E.; Odlare, M. (2014). Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Management, 34, pp. 1871-1876. https://doi.org/10.1016/j.wasman.2013.12.024

Römbke, J.; Moser, T.; Moser, H. (2009). Ecotoxicological characterisation of 12 incineration ashes using 6 laboratory tests. Waste Management, 29 (9), pp. 2475-2482. https://doi.org/10.1016/j.wasman.2009.03.032

Sarathchandra, S. S.; Rengel, Z.; Solaiman, Z. M. (2022). Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 288, 132573. https://doi.org/10.1016/j.chemosphere.2021.132573

Segui, P.; Safhi, A. el M.; Amrani, M.; Benzaazoua, M. (2023). Mining Wastes as Road Construction Material: A Review. Minerals, 13, 90. https://doi.org/10.3390/min13010090

Silva, R. V.; de Brito, J.; Lynn, C. J.; Dhir, R. K. (2019). Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling, 140, pp. 23-35. https://doi.org/10.1016/j.resconrec.2018.09.011

Sivakugan, N. (2011). Engineering Properties of Soil. In B. M. Das (Ed.), Geotechnical engineering handbook. J. Ross Publishing.

Sorlini, S.; Collivignarelli, M. C.; Abbà, A. (2017). Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Management and Research, 35 (9), pp. 978-990. https://doi.org/10.1177/0734242X17721340

Sormunen, L. A.; Rantsi, R. (2015). To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Waste Management and Research, 33 (11), pp. 995-1004. https://doi.org/10.1177/0734242X15600052

Spreadbury, C. J.; McVay, M.; Laux, S. J.; Townsend, T. G. (2021). A field-scale evaluation of municipal solid waste incineration bottom ash as a road base material: Considerations for reuse practices. Resources, Conservation and Recycling, 168, 105264. https://doi.org/10.1016/j.resconrec.2020.105264

Sridharan, A.; Gurtug, Y. (2004). Swelling behaviour of compacted fine-grained soils. Engineering Geology, 72, pp. 9-18. https://doi.org/10.1016/S0013-7952(03)00161-3

Tang, J.; Steenari, B. M. (2016). Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Management, 48, pp. 315-322. https://doi.org/10.1016/j.wasman.2015.10.003

Wagner, A. C.; de Sousa Silva, J. P.; de Azambuja Carvalho, J. V.; Cezar Rissoli, A. L.; Cacciari, P. P.; Chaves, H. M.; Scheuermann Filho, H. C.; Consoli, N. C. (2023). Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths. Journal of Rock Mechanics and Geotechnical Engineering, 15, pp. 1883-1894. https://doi.org/10.1016/j.jrmge.2022.11.013

Wang, C.; Jing, J.; Qi, Y.; Zhou, Y.; Zhang, K.; Zheng, Y.; Zhai, Y.; Liu, F. (2023). Basic characteristics and environmental impact of iron ore tailings. Frontiers in Earth Science, 11, 1181984. https://doi.org/10.3389/feart.2023.1181984

Wiles, C. C. (1996). Municipal solid waste combustion ash: State-of-the-knowledge. Journal of Hazardous Materials, 47 (1–3), pp. 325-344. https://doi.org/10.1016/0304-3894(95)00120-4

Xu, D.-M.; Zhan, C.-L.; Liu, H.-X.; Lin, H.-Z. (2019). A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environmental Science and Pollution Research, 26, pp. 35657-35669. https://doi.org/10.1007/s11356-019-06555-3

Young, G.; Chen, Y.; Yang, M. (2021). Concentrations, distribution, and risk assessment of heavy metals in the iron tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere, 271, 129546. https://doi.org/10.1016/j.chemosphere.2021.129546

Yusoff, S. A. N. M.; Bakar, I.; Wijeyesekera, D. C.; Zainorabidin, A.; Azmi, M.; Ramli, H. (2017). The effects of different compaction energy on geotechnical properties of kaolin and laterite. AIP Conference Proceedings, 1875 (030009). https://doi.org/10.1063/1.4998380

Zamani, M.; Badv, K. (2019). Assessment of the Geotechnical Behavior of Collapsible Soils: A Case Study of the Mohammad-Abad Railway Station Soil in Semnan. Geotechnical and Geological Engineering, 37, pp. 2847-2860. https://doi.org/10.1007/s10706-018-00800-1

Zhang, X.; Yang, H.; Cui, Z. (2018). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production, 172, pp. 475-480. https://doi.org/10.1016/j.jclepro.2017.09.277

Zhang, Z.; Zhang, L.; Li, A. (2015). Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite. Waste Management, 38 (1), pp. 185-193. https://doi.org/10.1016/j.wasman.2014.12.028

##submission.downloads##

Publicado

2025-08-01

Edição

Secção

Artigos