Evaluation of the mechanical and environmental behaviour of inorganic waste materials for use in sustainable geotechnical works
DOI:
https://doi.org/10.14195/2184-8394_164_3Keywords:
municipal solid waste incineration bottom ash, iron ore tailing, circular economy in geotechnical worksAbstract
The application of circular economy principles has been promoted. Environmental geotechnics may give a relevant contribution to waste and by-products valorisation through the replacement of natural aggregates. In this context, a multidisciplinary evaluation is essential to ensure safety and environmental protection. This study aims to support an informed application of certain types of waste in geotechnical works, complementing the geotechnical perspective with pertinent analyses. The materials studied were incineration bottom ash from municipal solid waste and its mixtures with sand and iron ore tailings. These wastes are abundant, and their management is not consensual. The assessment involved physical, geotechnical, chemical, and ecotoxicological characterization. The waste showed low leaching potential and did not cause relevant ecotoxic effects. The samples exhibited good one-dimensional stiffness, reasonable permeability, and shear strength similar to dense granular soils. Overall, the materials demonstrated geotechnical and environmental potential for use as sustainable construction materials in geotechnical works.
Downloads
References
Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G. A.; Asif Tahir, M.; Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, pp. 1295-1309. https://doi.org/10.1016/j.scitotenv.2018.01.066
Adiguzel, D.; Tuylu, S.; Eker, H. (2022). Utilization of tailings in concrete products: A review. Construction and Building Materials, 360, 129574. https://doi.org/10.1016/j.conbuildmat.2022.129574
Alam, Q.; Schollbach, K.; Hoek, C. V.; Laan, S. Van Der; Wolf, T. De; Brouwers, H. J. H. (2019). In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Waste Management, 87, pp. 1-12. https://doi.org/10.1016/j.wasman.2019.01.031
Ameratunga, J.; Sivakugan, N.; Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering. Springer.
Ashraf, M. S.; Ghouleh, Z.; Shao, Y. (2019). Production of eco-cement exclusively from municipal solid waste incineration residues. Resources, Conservation and Recycling, 149 (June), pp. 332-342. https://doi.org/10.1016/j.resconrec.2019.06.018
Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; Van Gerven, T.; Van Zomeren, A. (2016). Treatment and Reuse of Incineration Bottom Ash. In M. N. V. Prasad & K. Shih (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention, pp. 607-645. Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00024-X
Azeiteiro, R. J. N.; Coelho, P. A. L. F.; Taborda, D. M. G.; Grazina, J. C. D. (2017). Critical state–based interpretation of the monotonic behavior of Hostun sand. J. Geotechn. Geoenviron. Eng., 143 (5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001659
Bandarra, B. S.; Passos, H.; Vidal, T.; Martins, R. C.; Quina, M. J.; Pereira, J. L.; Römbke, J. (2023a). Evaluation of a battery of biotests to improve waste ecotoxicity assessment (HP 14), using incineration bottom ash as a case study. Journal of Environmental Management, 344, 118513. https://doi.org/10.1016/j.jenvman.2023.118513
Bandarra, B. S.; Monteiro, L.; Veloso, G.; Abreu, P.; Sousa, H.; Martins, R. C.; Pereira, J. L.; Coelho, P. A. L. F.; Quina, M. J. (2024). Evaluation of MSW incineration bottom ash for environmentally safe geotechnical applications. Construction and Building Materials, 427, 136011. https://doi.org/10.1016/j.conbuildmat.2024.136011
Bandarra, B. S.; Mesquita, C.; Passos, H.; Martins, R. C.; Coelho, P. A. L. F.; Pereira, J. L.; Quina, J. (2023b). An integrated characterisation of incineration bottom ashes towards sustainable application : Physicochemical , ecotoxicological , and mechanical properties. Journal of Hazardous Materials, 455, 131649. https://doi.org/10.1016/j.jhazmat.2023.131649
Bandarra, B. S.; Pereira, J. L.; Martins, R. C.; Maldonado-Alameda, A.; Chimenos, J. M.; Quina, M. J. (2021). Opportunities and barriers for valorizing waste incineration bottom ash: Iberian countries as a case study. Applied Sciences, 11, 9690. https://doi.org/10.3390/app11209690
Bastos, L. A. de C.; Silva, G. C.; Mendes, J. C.; Peixoto, R. A. F. (2016). Using Iron Ore Tailings from Tailing Dams as Road Material. Journal of Materials in Civil Engineering, 28, pp. 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0001613
Becquart, F.; Bernard, F.; Edine, N.; Zentar, R. (2009). Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Management, 29 (4), pp. 1320-1329. https://doi.org/10.1016/j.wasman.2008.08.019
BIO by Deloitte. (2015). Study to assess the impacts of different classification approaches for hazard property “HP 14” on selected waste streams - Final report.
Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M. J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J. M.; Dahlbo, H.; Fagerqvist, J.; Giro-Paloma, J.; Hjelmar, O.; Hyks, J.; Keaney, J.; Lupsea-Toader, M.; O’Caollai, C. J.; Orupõld, K.; Pająk, T.; … Fellner, J. (2020). Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Management, 102, pp. 868-883. https://doi.org/10.1016/j.wasman.2019.11.031
Born, J.-P.; Van Brecht, A. (2014). Recycling potentials of MSWI Bottom Ash. https://www.cewep.eu/wp-content/uploads/2017/10/1318_avb_and_jp_born_2014_cewep_conference_bottom_ash_reuse.pdf
Carmignano, O. R.; Vieira, S. S.; Teixeira, A. P. C.; Lameiras, F. S.; Brandão, P. R. G.; Lago, R. M. (2021). Iron Ore Tailings: Characterization and Applications. Journal of the Brazilian Chemical Society, 32 (10), pp. 1895-1911. https://doi.org/10.21577/0103-5053.20210100
Cele, E. N.; Maboeta, M. (2016). A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation. Journal of Environmental Management, 165, pp. 167-174. https://doi.org/10.1016/j.jenvman.2015.09.029
CEWEP (2019). Confederation of European Waste-to-Energy Plants. Bottom Ash Factsheet. http://www.cewep.eu/2017/09/08/bottom-ash-factsheet/
Chandler, A. J.; Eighmy, T. T.; Hartlén, J.; Hjelmar, O.; Kosson, D. S.; Sawell, S. E.; Sloot, H. A. van der; Vehlow, J. (1997). Municipal Solid Waste Incinerator Residues. The International Ash Working Group (IAWG). Studies in Environmental Science, 67. Elsevier.
Chaturvedi, N.; Ahmed, M. J.; Dhal, N. K. (2014). Effects of iron ore tailings on growth and physiological activities of Tagetes patula L. Journal of Soils and Sediments, 14, pp. 721-730. https://doi.org/10.1007/s11368-013-0777-0
Chimenos, J. M.; Fernández, A. I.; Miralles, L.; Segarra, M.; Espiell, F. (2003). Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23 (10), pp. 887-895. https://doi.org/10.1016/S0956-053X(03)00074-6
Chimenos, J. M.; Fernández, A. I.; Nadal, R.; Espiell, F. (2000). Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials, 79 (3), pp. 287-299. https://doi.org/10.1016/S0304-3894(00)00270-3
Chimenos, J. M.; Segarra, M.; Fernández, M. A.; Espiell, F. (1999). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64 (3), pp. 211-222. https://doi.org/10.1016/S0304-3894(98)00246-5
Choi, Y. W.; Kim, Y. J.; Choi, O.; Lee, K. M.; Lachemi, M. (2009). Utilization of tailings from tungsten mine waste as a substitution material for cement. Construction and Building Materials, 23, pp. 2481-2486. https://doi.org/10.1016/j.conbuildmat.2009.02.006
Coelho, P.; Camacho, D. (2024). The Experimental Characterization of Iron Ore Tailings from a Geotechnical Perspective. Applied Sciences, 14, 5033. https://doi.org/10.3390/app14125033
Das, B. M. (2019). Advanced Soil Mechanics (5th Editio). CRC Press. Taylor & Francis Group.
Davila, R. B.; Fontes, M. P. F.; Pacheco, A. A.; Ferreira, M. da S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, 136151. https://doi.org/10.1016/j.scitotenv.2019.136151
del Valle-zermeño, R.; Chimenos, J. M.; Giró-paloma, J.; Formosa, J. (2014). Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier. Chemosphere, 117, pp. 402-409. https://doi.org/10.1016/j.chemosphere.2014.07.095
Di Gianfilippo, M.; Hyks, J.; Verginelli, I.; Costa, G.; Hjelmar, O.; Lombardi, F. (2018). Leaching behaviour of incineration bottom ash in a reuse scenario : 12 years-field data vs . lab test results. Waste Management, 73, pp. 367-380. https://doi.org/10.1016/j.wasman.2017.08.013
Dou, X.; Ren, F.; Nguyen, M. Q.; Ahamed, A.; Yin, K.; Chan, W. P.; Chang, V. W. C. (2017). Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79 (February), pp. 24-38. https://doi.org/10.1016/j.rser.2017.05.044
El-Deeb Ghazy, M. M.; Habashy, M. M.; Mohammady, E. Y. (2011). Effects of pH on survival, growth and reproduction rates of the crustacean, Daphnia Magna. Australian Journal of Basic and Applied Sciences, 5 (11), pp. 1-10.
EPA. (2001). Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA-821-R-01-015.
Eurostat. (2024). Waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
Forteza, R.; Far, M.; Seguí, C.; Cerdá, V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24 (9), pp. 899-909. https://doi.org/10.1016/j.wasman.2004.07.004
Fulladosa, E.; Murat, J. C.; Martínez, M.; Villaescusa, I. (2005). Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere, 60, pp. 43-48. https://doi.org/10.1016/j.chemosphere.2004.12.026
Gao, B. (2012). Phosphorus Recovery from Sorted MSWI Bottom Ash : the acidic dissolution – precipitation method. Chalmers University of Technology. Göteborg, Sweden.
Ginés, O.; Chimenos, J. M.; Vizcarro, A.; Formosa, J.; Rosell, J. R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169, pp. 643-650. https://doi.org/10.1016/j.jhazmat.2009.03.141
Godlewski, T. (2018). Evaluation of stiffness degradation curves from in situ tests in various soil types. Archives of Civil Engineering, 64 (4), pp. 285-307.
Gupta, G.; Datta, M.; Ramana, G. V.; Alappat, B. J. (2021). MSW incineration bottom ash ( MIBA ) as a substitute to conventional materials in geotechnical applications : A characterization study from India and comparison with literature. Construction and Building Materials, 308, 124925. https://doi.org/10.1016/j.conbuildmat.2021.124925
Han, X.; Wang, F.; Zhao, Y.; Meng, J.; Tian, G.; Wang, L.; Liang, J. (2023). Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: a review. Environmental Chemistry Letters, 21, pp. 1005-1028. https://doi.org/10.1007/s10311-022-01541-7
Hennebert, P. (2018). Proposal of concentration limits for determining the hazard property HP 14 for waste using ecotoxicological tests. Waste Management, 74, pp. 74-85. https://doi.org/10.1016/j.wasman.2017.11.048
Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. (2017). Geotechnical Properties of Mine Tailings. Journal of Materials in Civil Engineering, 29 (2), pp. 1-10. https://doi.org/10.1061/(asce)mt.1943-5533.0001736
Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. (2019). Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Management, 95, pp. 593-603. https://doi.org/10.1016/j.wasman.2019.06.047
Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements, 7, pp. 381-386. https://doi.org/10.2113/gselements.7.6.381
Jiang, P.; Lv, S.; Wang, Y.; Li, N.; Wang, W. (2019). Investigation on direct shear and energy dissipation characteristics of iron tailings powder reinforced by polypropylene fiber. Applied Sciences, 9, 5098. https://doi.org/10.3390/app9235098
Klymko, T.; Dijkstra, J. J.; van Zomeren., A. (2017). Guidance document on hazard classification of MSWI bottom ash. ECN report.
Krishna, R. S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. (2021). Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceramics International, 47, pp. 17826-17843. https://doi.org/10.1016/j.ceramint.2021.03.180
Le, N. H.; Razakamanantsoa, A.; Nguyen, M. L.; Phan, V. T.; Dao, P. L.; Nguyen, D. H. (2018). Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction. Waste Management, 80, pp. 168–174. https://doi.org/10.1016/j.wasman.2018.09.007
Lee, M. T.; Nicholson, P. G. (1997). An Engineering Test Program of MSW Ash Mixed with Quarry Tailings for Use as a Landfill Construction Material. ASTM Special Technical Publication, 1275, pp. 205-218.
Li, W.; Coop, M. R. (2019). Mechanical behaviour of panzhihua iron tailings. Canadian Geotechnical Journal, 56, pp. 420-435. https://doi.org/10.1139/cgj-2018-0032
Lin, C.-L.; Weng, M.-C.; Chang, C.-H. (2012). Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material. Journal of Environmental Management, 113, pp. 377-382. https://doi.org/10.1016/j.jenvman.2012.09.013
Lindberg, D.,+; Molin, C.; Hupa, M. (2015). Thermal treatment of solid residues from WtE units: A review. Waste Management, 37, pp. 82-94. https://doi.org/10.1016/j.wasman.2014.12.009
LNEC (2015). Documento de aplicação. AEIRU - Agregados artificiais de escórias de incineração de resíduos urbanos para pavimentos rodoviários. Laboratório Nacional de Engenharia Civil, Lisboa, Portugal.
Luo, H.; Cheng, Y.; He, D.; Yang, E. H. (2019). Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the Total Environment, 668, pp. 90-103. https://doi.org/10.1016/j.scitotenv.2019.03.004
Lynn, C. J.; Ghataora, G. S.; Dhir OBE, R. K. (2017). Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. International Journal of Pavement Research and Technology, 10, pp. 185-201. https://doi.org/10.1016/j.ijprt.2016.12.003
Maldonado-Alameda, À.; Giro-Paloma, J.; Alfocea-Roig, A.; Formosa, J.; Chimenos, J. M. (2020a). Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation. Applied Sciences, 10, 4129. https://doi.org/10.3390/APP10124129
Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J. M. (2020b). Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. Journal of Cleaner Production, 242, 118443. https://doi.org/10.1016/j.jclepro.2019.118443
Maria, I.,; Enric, V.; Xavier, Q.; Barra, M.; López, A.; Plana, F. (2001). Use of bottom ash from municipal solid waste incineration as a road material. International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky.
Mei, S.; Zhong, Q.; Chen, S.; Shan, Y. (2022). Investigation of the overtopping-induced breach of tailings dams. Computers and Geotechnics, 149, 104864. https://doi.org/10.1016/j.compgeo.2022.104864
Mesri, G.; Vardhanabhuti, B. (2009). Compression of granular materials. Canadian Geotechnical Journal, 46, pp. 369-392.
Monteiro, L. S. V. E.; Bandarra, B. S.; Quina, M. J.; Coelho, P. A. L. F. (2024). A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions. Construction and Building Materials, 455, 139139. https://doi.org/10.1016/j.conbuildmat.2024.139139
Muhunthan, B.; Taha, R.; Said, J. (2004). Geotechnical Engineering Properties of Incinerator Ash Mixes. Journal of the Air & Waste Management Association, 54 (8), pp. 985-991. https://doi.org/10.1080/10473289.2004.10470959
Neuwahl, F.; Cusano, G.; Benavides, J. G.; Holbrook, S.; Serge, R. (2019). Best Available Techniques (BAT) Reference Document for Waste Incineration. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention). In Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control).
Nordstrom, D. K. (2011). Mine waters: Acidic to circumneutral. Elements, 7, pp. 393-398. https://doi.org/10.2113/gselements.7.6.393
Oehmig, W. N.; Roessler, J. G.; Zhang, J.; Townsend, T. G. (2015). Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes. Journal of Hazardous Materials, 283, pp. 500-506. https://doi.org/10.1016/j.jhazmat.2014.09.040
Oyediran, I. A.; Enya, N. I. (2021). Crude oil Effects on Some Engineering Properties of Sandy Alluvial Soil. International Journal of Mining and Geo-Engineering, 55 (1), pp. 7-10. https://doi.org/10.22059/IJMGE.2020.283051.594815
Pandard, P.; Römbke, J. (2013). Proposal for a “Harmonized” strategy for the assessment of the HP 14 property. Integrated Environmental Assessment and Management, 9 (4), pp. 665-672. https://doi.org/10.1002/ieam.1447
Raju, P. N. P.; Andian, N. S.; Nagaraj, T. S. (1995). Analysis and estimation of the coefficient of consolidation. Geotechnical Testing Journal. ASTM, 18 (2), pp. 252-258. https://doi.org/10.1520/GTJ10325J
Ribé, V.; Nehrenheim, E.; Odlare, M. (2014). Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Management, 34, pp. 1871-1876. https://doi.org/10.1016/j.wasman.2013.12.024
Römbke, J.; Moser, T.; Moser, H. (2009). Ecotoxicological characterisation of 12 incineration ashes using 6 laboratory tests. Waste Management, 29 (9), pp. 2475-2482. https://doi.org/10.1016/j.wasman.2009.03.032
Sarathchandra, S. S.; Rengel, Z.; Solaiman, Z. M. (2022). Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 288, 132573. https://doi.org/10.1016/j.chemosphere.2021.132573
Segui, P.; Safhi, A. el M.; Amrani, M.; Benzaazoua, M. (2023). Mining Wastes as Road Construction Material: A Review. Minerals, 13, 90. https://doi.org/10.3390/min13010090
Silva, R. V.; de Brito, J.; Lynn, C. J.; Dhir, R. K. (2019). Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling, 140, pp. 23-35. https://doi.org/10.1016/j.resconrec.2018.09.011
Sivakugan, N. (2011). Engineering Properties of Soil. In B. M. Das (Ed.), Geotechnical engineering handbook. J. Ross Publishing.
Sorlini, S.; Collivignarelli, M. C.; Abbà, A. (2017). Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Management and Research, 35 (9), pp. 978-990. https://doi.org/10.1177/0734242X17721340
Sormunen, L. A.; Rantsi, R. (2015). To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Waste Management and Research, 33 (11), pp. 995-1004. https://doi.org/10.1177/0734242X15600052
Spreadbury, C. J.; McVay, M.; Laux, S. J.; Townsend, T. G. (2021). A field-scale evaluation of municipal solid waste incineration bottom ash as a road base material: Considerations for reuse practices. Resources, Conservation and Recycling, 168, 105264. https://doi.org/10.1016/j.resconrec.2020.105264
Sridharan, A.; Gurtug, Y. (2004). Swelling behaviour of compacted fine-grained soils. Engineering Geology, 72, pp. 9-18. https://doi.org/10.1016/S0013-7952(03)00161-3
Tang, J.; Steenari, B. M. (2016). Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Management, 48, pp. 315-322. https://doi.org/10.1016/j.wasman.2015.10.003
Wagner, A. C.; de Sousa Silva, J. P.; de Azambuja Carvalho, J. V.; Cezar Rissoli, A. L.; Cacciari, P. P.; Chaves, H. M.; Scheuermann Filho, H. C.; Consoli, N. C. (2023). Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths. Journal of Rock Mechanics and Geotechnical Engineering, 15, pp. 1883-1894. https://doi.org/10.1016/j.jrmge.2022.11.013
Wang, C.; Jing, J.; Qi, Y.; Zhou, Y.; Zhang, K.; Zheng, Y.; Zhai, Y.; Liu, F. (2023). Basic characteristics and environmental impact of iron ore tailings. Frontiers in Earth Science, 11, 1181984. https://doi.org/10.3389/feart.2023.1181984
Wiles, C. C. (1996). Municipal solid waste combustion ash: State-of-the-knowledge. Journal of Hazardous Materials, 47 (1–3), pp. 325-344. https://doi.org/10.1016/0304-3894(95)00120-4
Xu, D.-M.; Zhan, C.-L.; Liu, H.-X.; Lin, H.-Z. (2019). A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environmental Science and Pollution Research, 26, pp. 35657-35669. https://doi.org/10.1007/s11356-019-06555-3
Young, G.; Chen, Y.; Yang, M. (2021). Concentrations, distribution, and risk assessment of heavy metals in the iron tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere, 271, 129546. https://doi.org/10.1016/j.chemosphere.2021.129546
Yusoff, S. A. N. M.; Bakar, I.; Wijeyesekera, D. C.; Zainorabidin, A.; Azmi, M.; Ramli, H. (2017). The effects of different compaction energy on geotechnical properties of kaolin and laterite. AIP Conference Proceedings, 1875 (030009). https://doi.org/10.1063/1.4998380
Zamani, M.; Badv, K. (2019). Assessment of the Geotechnical Behavior of Collapsible Soils: A Case Study of the Mohammad-Abad Railway Station Soil in Semnan. Geotechnical and Geological Engineering, 37, pp. 2847-2860. https://doi.org/10.1007/s10706-018-00800-1
Zhang, X.; Yang, H.; Cui, Z. (2018). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production, 172, pp. 475-480. https://doi.org/10.1016/j.jclepro.2017.09.277
Zhang, Z.; Zhang, L.; Li, A. (2015). Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite. Waste Management, 38 (1), pp. 185-193. https://doi.org/10.1016/j.wasman.2014.12.028

