Theoretical bases of joint strength in rock masses with non-associated flow laws

Authors

DOI:

https://doi.org/10.14195/2184-8394_152_18

Keywords:

Shear strength of rock joints, Theoretical model, Non-associated flow law

Abstract

This article presents the theoretical bases to evaluate the shear strength in rock joints and derive an equation that governs the relationship between tangential and normal stresses acting on the joint. The theoretical equation is applied to two non-linear failure criteria: Modified Hoek and Brown and Modified Mohr-Coulomb, on which non-associated flow laws are applied. The theoretical model considers as dependent variables the geometric dilatation, the instantaneous friction angle and a parameter that incorporates the roughness of the joint surface. This model mathematically deduces a similar equation structure as the empirical law proposed by Barton in 1973. However, a good correlation is only achieved with the empirical values and, therefore, with Barton's equation, by incorporating a law of unassociated flow governing the failure processes. This flow law becomes more significant in highly fractured media, which can be induced in a rock joint.

Downloads

Download data is not yet available.

References

Alejano, L.R.; Alonso E. (2005). Considerations of the dilatancy angle of rocks and rock masses. Int J Rock Mech Sci and Geom Abstr, 42(4):481-07.

Archambault, G.; Roleau, A.; Daigneault, R.; Flamand, R. (1993). Progresive failure of rock masses by a self similar anastomosing process of rupture at all scales and its scale effects on their shear strength. In: Pinto da Cunha, editor. Proc. 2o Int. Workshop on Scale Effects in Rock Masses. Lisbon. Balkema, pp. 133-141.

Asadollahi, P. (2009). Stability analysis of a single three dimensional rock block: effect of dilatancy and high-velocity water jet impact. PhD Thesis, University of Texas, Austin.

Barton, N. (1973). Review of a new shear strength criterion for rock joints. Eng Geol, 7:287-332.

Barton N. (1976). Rock mechanics review: the shear strength of rock and rock joints. Int J Rock Mech Min Sci, 13:255-79.

Barton, N.; Bandis, S. (1982). Effects of block size on the shear behavior of jointed rock. In: Proceedings of the 23rd US Symposium on Rock Mechanics, Berkeley, California.

Barton, N.; Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mech Rock Eng, 10: 1-54.

Belem, T.; Souley, M.; Homand, F. (2007). Modelling surface roughness degradation of rock joint wall during monotonic and cyclic shearing. Acta Geotech, 2:227-48.

Den Outer, A.; Kaashoek, J.F.; Hack, H.R.G.K. (1995). Difficulties with using continuous fractal theory for discontinuity surfaces. Int J Rock Mech Min Sci, 32:3-9.

Detournay, E. (1986). Elastoplastic model of a deep tunnel for a rock with variable dilatancy. Rock Mech Rock Eng, 19:99-108.

Fairhurst, C. (2003). Stress determination in rock: a brief history and review. Int J Rock Mech Min Sci, 40:957-73.

Gens, A.; Carol, I.; Alonso, E.E. (1990). A constitutive model for rock joints, formulation and numerical implementation. Comput Geotech, 9:3-20.

Grasselli, G.; Egger, P. (2003). Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min. Sci, 40:25-40.

Heuze, F.E.; Barbour, T.G. (1982). New models for rock joints and interfaces. ASCE J Geotech Eng Div, 108(5):757-76.

Hoek, E.; Brown, E.T. (1997). Practical estimates of rock mass strength. Int J Rock Mech Sci and Geom Abstr, 34(8):1165-187.

Hoek, E.; Carranza-Torres, C.; Corkum, B. (2002). Hoek-Brown failure criterion - 2002 Edition. In Hammah, R. Bawden, W., Curran. J., Telesnicki M, editors. Proceedings of NARMS-TAC 2002, Mining Innovation and Technology. Toronto, pp. 267-73.

Hoek, E.; Marinos, P.; Benissi, M. (1998). Applicability of the geological strength index (GSI) classification for weak and sheared rock masses; the case of the Athens schist formation. Bull Eng Geol Env, 57(2):151-160.

Hoek, E.; Wood, D.; Shah, S. (1992). A modified Hoek-Brown criterion for jointed rock masses. In: Hudson, J.A., editor. Proceedings of the Rock Characterization Symposium of ISRM: Eurock 92. London: British Geotechnical Society, pp. 209-14.

Homand, F.; Lefevre, F.; Belem, T.; Souley, M. (1990). Rock joints behaviour under cyclic direct shear tests. In: Amadei K, Smealie & Scott, editors. Rock mechanics for industry. Rotterdam: Balkema, p. 399-406.

Huang, X.; Haimson, B.C.; Plesha, M.E.; Qui, X. (1993). An investigation of the mechanics of rock joints - part I. Laboratory investigation. Int J Rock Mech Min Sci, 30:257-69.

Huang, S.L.; Oelfke, S.M.; Speck, R.C. (1992). Applicability of fractal characterization and modelling to rock joint profile. Int J Rock Mech Min Sci, 29:89-8.

Hutson, R.W. (1987). Preparation of duplicate rock joints and their changing dilatancy under cyclic shear. PhD Thesis, Northwestern University, Evanston.

Hutson, R.W.; Dowding, C.H. (1990). Joint asperity degradation during cyclic shear. Int J Rock Mech. Min Sci, 27(2):109-19.

Jaeger, J.C. (1971). Friction of rocks and stability of rock slopes. Geotechnique, 21(2):97-34.

Ladanyi, B.; Archambault, G. (1970). Simulations of the shear behavior of a jointed rock mass. In: Proceedings 11th US Symposium on Rock Mechanics, Berkeley, p. 105-125.

Lee, Y.H.; Carr, J.R.; Barr, D.J.; Haas, C.J. (1990). The fractal dimension as a measure of the roughness of rock discontinuity profiles. Int J Rock Mech Min Sci, 27:453-64.

Lee, H.S.; Park, Y.J.; Cho, T.F.; You, K.H. (2001). Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading. Int J Rock Mech Min Sci, 38:976-80.

Leichnitz, W. (1985). Mechanical properties of rock joints. Int J Rock Mech Min Sci, 22(5):313- 21.

Medhurst, T.P.; Brown, E.T. (1998). A study of the mechanical behaviour of coal for pillar design. Int J Rock Mech Min Sci, 35(8):1087-105.

Muralha, J. (1995). Fractal dimension of joint roughness surfaces. In: Proceedings Fractured and Jointed Rock Masses, Rotterdam, p. 205-12.

Newland, P.L.; Alley, B.H. (1957). Volume changes in drained triaxial tests on granular materials. Geotechnique, 7:17-34.

Patton, F.D. (1966). Multiple modes of shear failure in rock. In: Proceedings of the First Congress of International Society of Rock Mechanics, Lisboa, Portugal, p. 509-513.

Plesha, M.E. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation. Int J Num Anal Meth Geomech, 11:345-62.

Qiu, X.; Plesha, M.E.; Huang, X.; Haimson, B.C. (1993). An investigation of the mechanics of rock joints-part II: analytical investigation. Int J Rock Mech Min Sci, 30(3):271-87.

Reeves, M.J. (1985). Rock surface roughness and frictional strength. Int J Rock Mech Min Sci, 22:429-42.

Saeb, S.; Amadei, B. (1992). Modeling rock joints under shear and normal loading. Int. J. Rock Mech Min Sci, 29:267-78.

Samadhiya, N.K.; Viladkar, M.N.; Al-Obaydi, M.A. (2008). Three-dimensional joint/interface element for rough undulating major discontinuities in rock masses. Int J Geomech, 8(6):327- 35.

Schneider, H.J. (1976). The friction and deformation behavior of rock joints. Rock Mech Rock Eng, 8:169-84.

Serrano, A.; Olalla, C. (1994). Ultimate bearing capacity of rock masses, Int J Rock Mech Min Sci, 31(2):93-06.

Serrano, A.; Olalla, C.; Galindo, R.A. (2014). Micromechanical basis for shear strength of rock discontinuities. Int J Rock Mech Min Sci,70:533-46.

Serrano, A.; Olalla, C.; Gonzalez, J. (2000). Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion. Int. J. Rock Mech. Min. Sci, 37:1013-1018.

Singh, M.; Raj, A.; Singh, B. (2011). Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci, 48:546-55.

Singh, M.; Singh, B. (2012). Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks. Int J Rock Mech Min Sci, 51:43-52.

Tse, R.; Cruden, D.M. (1979). Estimating joint roughness coefficients. Int J Rock Mech Min Sci, 16:303-7.

Veermer, P.A.; De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. Heron, 29(3):3-64.

Xie, H.; Wang, J.A.; Kwasniewski, M.A. (1999). Multifractal characterization of rock fracture surfaces. Int J Rock Mech Min Sci, 36:19-7.

Zubelewicz, A.; O’Connor, K.; Dowding, C.H.; Belytschko, T.; Plesha, M.E. (1987). A constitutive model for cyclic behavior of dilatant rock joints. Proceedings 2nd International Conference on constitutive laws for engineering materials, Arizona, p. 1137-1144.

Published

2021-07-30