Effect of zinc and copper in the disaggregation of six soils of the Federal District, Brazil
DOI:
https://doi.org/10.24849/j.geot.2016.137.03Keywords:
disaggregation, copper, zinc, lateritic soilAbstract
The disaggregation effect of leachate from waste disposal sites on the solids of clay liners, with consequent alteration of mechanical and hydraulic properties, may be significant in lateritic tropical soils, in which clay-minerals are agglomerated and cemented by iron and aluminum oxides. Aggregation is generally measured by comparison between clay content valued in laboratory tests carried out with and without a chemical and/or mechanical disaggregating agent. This paper presents the behavior to chemical disaggregation by sodium hexametaphosphate and zinc and copper solutions (50 to 800 mg/L), and to physical disaggregation of six soils of the Federal District, Brazil, representing six classes of MCT (Miniature, Compacted, Tropical) classification for tropical soils. Zinc and copper caused chemical disaggregation of the investigated soils (copper more than zinc), on the other hand they promoted resistance against the disaggregation caused by ultrasound (zinc more than copper). NA and NA’ soils were little affected by the disaggregation agents, inasmuch as their clay content is very low. NS’ was the most affected soil by chemical disaggregation, and the least sensitive to improvement of resistance against disaggregation by ultrasound. Results indicate that copper solutions may cause more damage to clay liners than zinc solutions.
Downloads
References
ABNT NBR 7181 (1984). Solo - Análise granulométrica. Método de ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 13p.
ABNT NBR 13 602 (1996). Solo - Avaliação da dispersibilidade de solos argilosos – ensaio sedimentométrico comparativo. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 5p.
Alkan, M.; Demirbaş, Ö; Doğan, M. (2005). Electrokinetic properties of sepiolite suspensions in different electrolyte media. Journal of Colloid and Interface Science, 281, No. 1, pp. 240-248.
ASTM D 422 (1998). Standard Test Method for Particle-Size Analysis of Soils. American Society for Testing and Materials, 8 p.
ASTM D 2487 (2006). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials, 12p.
Boscov, M.E.G.; Soares, V.; Vasconcelos, F.D.; Ferrari, A.A.P. (2009). Geotechnical properties of a silt-bentonite mixture for liner construction. Proceedings of 17th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, pp. 217-220, Alexandria, Egito.
Braga, R.M.Q.L. (2010). A utilização de uma camada de solo compactado como revestimento impermeabilizante de fundo de bacias de disposição de lama vermelha produzida em Barcarena-PA. Tese de doutorado. Universidade Federal do Pará, Belém.
DNER-ME254 (1997). Solos compactados em equipamento miniatura - Mini-CBR e expansão. Departamento Nacional de Estradas de Rodagem, Brasil, 14p.
DNER-ME256 (1994a). Solos compactados com equipamento miniatura - determinação da perda de massa por imersão. Departamento Nacional de Estradas de Rodagem, Brasil, 6p.
DNER-ME258 (1994b). Solos compactados em equipamento miniatura – Mini-MCV. Departamento Nacional de Estradas de Rodagem, Brasil, 14p.
EMBRAPA (2011). Manual de métodos de análise de solo. Autoria: Donagema, G.K.; Campos, D.V.B.; Calderano, S.B.; Teixeira, W.G.; Viana, J.H.M. Embrapa Edição Revista 2011.
Freitas-Silva, F.H; Campos, J.E.G. (1998). Geologia do Distrito Federal. Inventário hidrogeológico e dos recursos hídricos superficiais do Distrito Federal. Formato digital. Governo do Distrito Federal, Brasília.
Frempong, E.M.; Yanful, E.K. (2007). Tropical soils-acid mine drainage interactions: Breakthrough curves and some transport parameters. Journal of Environmental Engineering, 133, No.7, pp. 733-741.
Frempong, E.M.; Yanful, E.K. (2008). Interactions between three tropical soils and municipal solid waste landfill leachate. Journal of Geotechnical and Geoenvironmental Engineering, 134, No.4, pp. 379-396.
Godoy, H.; Bernucci, L.B.; Suzuki, C.Y. (2002). Metodologia de investigação geotécnica preliminar para obras viárias: o caso da duplicação da rodovia Raposo Tavares de Cotia a São Roque - Estado de São Paulo. 10º Congresso Brasileiro de Geologia de Engenharia e Ambiental, Anais, 1:107-115, Ouro Preto.
Gurjão, C.M.C. (2005). Estimativa de propriedades geoambientais de camadas impermeabilizantes de solos tropicais. Tese de doutorado. Universidade de Brasília, Programa de Pós-Graduação em Geotecnia, Brasília, 257p.
Head, K.H. (1992). Manual of Soil Laboratory Testing. Vol. I, Soil Classification and Compaction Tests, Pentech Press, London.
Lee, J.M.; Shackelford, C.D.; Benson, C.H.; Jo, H.; Edil, T. (2005). Correlating Index Properties and Hydraulic Conductivity of Geosynthetic Clay Liners. Journal of Geotechnical and Geoenvironmental Engineering, 131, No.11, pp. 1319-1329.
Nogami, J.S.; Villibor, D.F. (1995). Pavimentação de baixo custo usando solos lateríticos. Ed. Villibor, São Paulo.
Quigley, R.M.; Fernandez, F.; Rowe, R.K. (1988). Clayey barrier assessment for impoundment of domestic waste leachate (Southern Ontario) including clay-leachate compatibility by hydraulic conductivity testing. Canadian Geotechnical Journal, 25, No.3, pp. 574-581.
Shackelford, C.D. (1994). Waste-soil interactions that alter hydraulic conductivity. In: Hydraulic conductivity and waste contaminant transport in soil. ASTM, Special Technical Publication, 1142, pp. 111-168.
Shackelford, C.D.; Benson, C.H.; Katsumi, T.; Edil, T.B.; Lin, L. (2000). Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes, 18(2-4), pp. 133-161.
Souto, G.D.A.B. (2009). Lixiviado de aterros sanitários brasileiros - estudo de remoção do nitrogênio amoniacal por processo de arraste com ar (“stripping”). Tese de doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 371 p.