Effect of the curing time on the strength and deformability of a cement bound clayey soil

Authors

DOI:

https://doi.org/10.14195/2184-8394_158_2

Keywords:

cement bound soil, unconfined compression strenght, curing time

Abstract

This work presents the laboratory results of a cement bound clayey soil, using a Portland cement, CEM IV/A 32,5 R, added in the proportions of 8 % and 12 % relative to the dry mass of soil. Unconfined compression tests were conducted on specimens compacted in a Proctor mould, under the optimum water content (owc), for different curing times up to 90 days. The results show that the use of cement allows an increase in the unconfined compression strength of 30 % up to 7 days of curing time and only an increase in 6 % from 7 to 90 days of curing time, for the two cement contents studied. Correlations between unconfined compression strength, Rc and the percentage of cement and the curing time are proposed, as well as for the secant Young’s modulus, E30. The models enable the long-term prediction of the behaviour of those mixtures, knowing the compaction and strength properties of the soil used.

Downloads

Download data is not yet available.

References

ACI (1990). State of the art report on soil cement, 230.1R-90. ACI Materials Journal

Antunes, M.; Pais, J.; Legoinha, P. (1992). Neogene deposits of Lisbon and Setúbal Peninsula, Excursion A. Ciências da Terra, Univ. Nova de Lisboa, nº esp. II, pp. 29-35.

AASHTO M145-42 (1991). Standard specification for classification of soils and soil - aggregate mistures for highway construction purposes. American Association of State Highway and Transportation Officials.

ASTM D 2487-17 (2017). Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). https://doi.org/10.1520/D2487-17E01.

Consoli, N.C.; Fonseca, A.V. da, Silva, S.R.; Cruz, R.C.; Fonini, A. (2012). Parameters controlling stiffness and strength of artificially cemented soils. Géotechnique, 62, pp. 177–183. https://doi.org/10.1680/geot.8.P.084.

Consoli, N.C.; Quiñónez, R.A.; González, L.E.; López, R.A. (2017). Influence of Molding Moisture Content and Porosity/Cement Index on Stiffness, Strength, and Failure Envelopes of Artificially Cemented Fine-Grained Soils. Journal of Materials in Civil Engineering, 29, 04016277. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001819.

Couto, A. (2018). Propriedades mecânicas de misturas de solo ligado com cimento com diferentes teores em água. Dissertação de mestrado, Faculdade de Ciências e Tecnologia. Universidade Nova de Lisboa. http://hdl.handle.net/10362/47634.

Cotter, J. (1956). O miocénico marinho de Lisboa (obra póstuma). Comunicações dos Serviços Geológicos de Portugal, supl. ao t. XXXVI, 170 p.

Dias, J. (2012). Estabilização de solos com cimento para obter melhores características mecânicas. Dissertação de mestrado, Faculdade de Ciências e Tecnologia. Universidade Nova de Lisboa. http://hdl.handle.net/10362/7837.

EN 13286-41 (2013). Unbound and hydraulically bound mixtures. Part 41: Test method for the determination of the compressive strength of hydraulically bound mixtures. Comité Europeu de Normalização, Bruxelas, Bélgica.

EN 13286-43 (2013). Unbound and Hydraulically Bound Mixtures. Part 43: Test Method for the determination of the modulus of elasticity of hydraulically bound mixtures. Comité Europeu de Normalização, Bruxelas, Bélgica.

EN 13286-50 (2004). Unbound and hydraulically bound mixtures. Part 50: Method for the manufacture of test specimens of hydraulically bound mixtures using Proctor equipment or vibrating table compaction. Comité Europeu de Normalização, Bruxelas, Bélgica.

EN 14227-10 (2013). Hydraulically bound mixtures specifications. Part 10: soil treated by cement. Comité Europeu de Normalização, Bruxelas, Bélgica.

EN ISO 17892-4 (2016). Geotechnical investigation and testing — Laboratory testing of soil — Part 4: Determination of particle size distribution. International Organization for Standardization: Genebra, Suíça.

Ikhlef, N.-S.; Ghembaza, M.S.; Dadouch, M. (2015). Effect of Treatment with Cement on the Mechanical Characteristics of Silt from Telagh Region of Sidi Belabes, Algeria. Geotechnical and Geological Engineering, 33, pp. 1067–1079. https://doi.org/10.1007/s10706-015-9888-2.

Jiang, Y.J.; Fan, L.F. (2013). An investigation of mechanical behavior of cement-stabilized crushed rock material using different compaction methods. Construction and Building Materials, 48, pp. 508–515. https://doi.org/10.1016/j.conbuildmat.2013.07.017.

Jonet, J. (1972). Étude des otolithes des téléostéens (Pisces) du Miocêne des environs de Lisbonne. Comunicações dos Serviços Geológicos de Portugal, LVI (1972-73) pp. 107-328.

Kongsukprasert, L.; Tatsuoka, F.; Takahashi, H. (2007). Effects of Curing Period and Stress Conditions on the Strength and Deformation Characteristics of Cement-mixed Soil. Soils and Foundations, 47, pp. 577–596. https://doi.org/10.3208/sandf.47.577.

Lamas, P.C.; Rodrigues Carvalho, J.A. (2005). Failure mechanisms at the northern end of the Costa de Caparica Fossil Cliff. Geotecnia, 104, pp. 3–15.

LNEC E 201 (1967). Solos. Determinação do teor em matéria orgânica. Portugal.

LNEC E 243 (1971). Solo. Solo-cimento. Portugal.

LNEC E 304 (1974). Pavimentos rodoviários. Solo-cimento. Portugal

Moreira, E.B.; Baldovino, J.A.; Rose, J.L.; Luis dos Santos Izzo, R. (2019). Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. Journal of Rock Mechanics and Geotechnical Engineering, 11, pp. 369–378. https://doi.org/10.1016/j.jrmge.2018.04.015.

Neves, J.; Castro, L.; Monteiro, A. (2023). Modelação numérica do comportamento de solos tratados com cimento em pavimentos rodoviários. Geotecnia, 157, pp. 07–28. https://doi.org/10.14195/2184-8394_157_1.

NP 143 (1969). Solos. Determinação dos limites de consistência.

NP EN 196-1 (2017). Métodos de ensaio de cimentos - parte 1: determinação das resistências mecânicas. Instituto Português da Qualidade, Lisboa, Portugal.

NP EN 196-3 (1990). Métodos de ensaio de cimentos - parte 3. Determinação do tempo de presa e da expansibilidade. Instituto Português da Qualidade, Lisboa, Portugal.

NP EN 196-6 (2019). Métodos de ensaio de cimentos - parte 6. Determinação da finura. Instituto Português da Qualidade, Lisboa, Portugal.

NP EN 197-1 (2012). Cimento - parte 1: composição, especificações e critérios de conformidade para cimentos correntes. Instituto Português da Qualidade, Lisboa, Portugal.

Nusit, K.; Jitsangiam, P.; Kodikara, J.; Bui, H.H.; Leung, G.L.M. (2017). Advanced Characteristics of Cement-Treated Materials with respect to Strength Performance and Damage Evolution. Journal of Materials in Civil Engineering, 29, 04016255.

https://doi.org/10.1061/(ASCE)MT.1943-5533.0001772.

Pais, J.; Legoinha, P. (2004). Notícia Explicativa da Carta Geológica do Concelho de Almada. Almada.

Pongsivasathit, S.; Horpibulsuk, S.; Piyaphipat, S. (2019). Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 11, e00301. https://doi.org/10.1016/j.cscm.2019.e00301.

Rios, S.; Ramos, C.; Viana da Fonseca, A.; Cruz, N.; Rodrigues, C. (2019). Mechanical and durability properties of a soil stabilised with an alkali-activated cement. European Journal of Environmental and Civil Engineering 23, pp. 245–267. https://doi.org/10.1080/19648189.2016.1275987.

Rong-rong, Z.; Dong-dong, M. (2020). Effects of Curing Time on the Mechanical Property and Microstructure Characteristics of Metakaolin-Based Geopolymer Cement-Stabilized Silty Clay. Advances in Materials Science and Engineering, 2020, pp. 1–9. https://doi.org/10.1155/2020/9605941.

Santana, T.; Gonçalves, J.; Pinho, F.; Micaelo, R. (2021). Effects of the Ratio of Porosity to Volumetric Cement Content on the Unconfined Compressive Strength of Cement Bound Fine Grained Soils. Infrastructures, 6, 96. https://doi.org/10.3390/infrastructures6070096.

Sheen, Y.-N.; Zhang, L.-H.; Le, D.-H. (2013). Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement. Construction and Building Materials, 48, pp. 822–829. https://doi.org/10.1016/j.conbuildmat.2013.07.046.

Solihu, H. (2020). Cement Soil Stabilization as an Improvement Technique for Rail Track Subgrade, and Highway Subbase and Base Courses: A Review. Journal of Civil and Environmental Engineering, 10. https://doi.org/10.37421/jcde.2020.10.344.

Published

2023-07-26

Issue

Section

Articles