Qualidade de amostras “indeformadas” em solos não coesivos recolhidas com procedimentos avançados

Autores/as

DOI:

https://doi.org/10.14195/2184-8394_153_3

Palabras clave:

Qualidade de amostragem, Dames & Moore, Gel-Push, velocidade de ondas distorcionais

Resumen

Ao longo da última década, as técnicas de amostragem de solos têm evoluído no sentido de reduzirem o atrito na interface entre o amostrador e o solo, minimizando as perturbações e obtendo amostras de alta qualidade para caracterização laboratorial. No âmbito de um projeto de investigação focado no estudo da liquefação em Portugal (LIQ2PROEARTH) e um europeu mais global (LIQUEFACT), foi implementado um campo experimental nas zonas de Benavente e Vila Franca de Xira, no qual foram realizados diversos ensaios in situ (SPT, CPTu, DMT), com medição de ondas sísmicas (SCPTu e SDMT) em locais onde foram recolhidas amostras indeformadas. O presente trabalho apresenta a experiência com amostradores especialmente adaptados a condições difíceis, Dames & Moore e Gel-Push, em depósitos aluvionares granulares com suscetibilidade à liquefação. Os procedimentos de manuseamento e transporte adotados são descritos e o desempenho de cada metodologia é avaliada em termos de integridade material e estrutural. Assim, recorre-se a um método que permite comparar as velocidades das ondas distorcionais obtidas tanto em campo como em laboratório, aqui com recurso a bender elements. Ambos os amostradores mostraram ser competentes na extração de amostras de areias e areias siltosas soltas de elevada qualidade.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Azevedo, J.; Guerreiro, L.; Bento, R.; Lopes, M.; Proença, J. (2010). Seismic vulnerability of lifelines in the greater Lisbon area. Bulletin of Earthquake Engineering, vol. 8, nº1, pp. 157-180. https://doi.org/10.1007/s10518-009-9124-7

Bray, J. D.; Sancio, R. B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, nº9, pp. 1165-1177. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165)

Bray, J. D.; Markham, C. S.; Cubrinovski, M. (2017). Liquefaction assessments at shallow foundation building sites in the Central Business District of Christchurch, New Zealand. Soil Dynamics and Earthquake Engineering, vol. 92, pp. 153-164. https://doi.org/10.1016/j.soildyn.2016.09.049

Chen, C.-C.; Lee, W. F.; Chen, J.-W.; Ishihara, K. (2014). Liquefaction potential of non-plastic silty sand. Journal of Marine Science and Technology, vol. 22, nº2, pp. 137-145. https://doi.org/10.6119/JMST-013-0117-3

Chung, R.M.; Yokel, F.Y.; Wechsler, H. (1984). Pore pressure build up in resonant column tests. Journal of the Geotechnical Engineering Division, ASCE, vol. 110, nº2, pp. 247-261. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:2(247)

Dyvik, R.; Madshus, C. (1985). Lab Measurements of Gmax Using Bender Elements. Proceedings ASCE Annual Convention: Advances in the Art of Testing Soils Under Cyclic Conditions, Detroit, Michigan, pp. 186–197.

Ferreira, C. (2003). Implementação e aplicação de transdutores piezoeléctricos na determinação de velocidades de ondas sísmicas em provetes. Avaliação da qualidade de amostragem em solos residuais. Dissertação de Mestrado em Mecânica dos Solos e Engenharia Geotécnica. FEUP, Portugal.

Ferreira, C.; Viana da Fonseca, A.; Nash, D. (2011). Shear wave velocities for sample quality assessment on a residual soil. Soils and Foundations, vol. 51, nº4, pp. 683-692. https://doi.org/10.3208/sandf.51.683

Ferreira, C.; Viana da Fonseca, A.; Ramos, C.; Saldanha, A. S.; Amoroso, S.; Rodrigues, C. (2020). Comparative analysis of liquefaction susceptibility assessment methods based on the investigation on a pilot site in the greater Lisbon area. Bulletin of Earthquake Engineering, vol. 18, nº1, pp. 109-138. https://doi.org/10.1007/s10518-019-00721-1

Foti, S.; Strobbia, C.; Rix, G.J.; Lai, C. (2014). Surface Wave Methods for Near-Surface Site Characterization (1st ed.). CRC Press. pp. 487. https://doi.org/10.1201/b17268

Gouveia, F.; Viana da Fonseca, A.; Carrilho Gomes, R.; Teves-Costa, P. (2018). Deeper Vs profile constraining the dispersion curve with the ellipticity curve: A case study in Lower Tagus Valley, Portugal. Soil Dynamics and Earthquake Engineering, vol. 109, pp. 188-198. https://doi.org/10.1016/j.soildyn.2018.03.010

Hardin, B.O.; Richart, F.E.Jr. (1963). Elastic wave velocities in granular soils. Journal of Soil Mechanics and Foundation Division, ASCE, vol. 89, nº1, pp. 33-65.

Hight, D. W. (2000). Sampling Methods: Evaluation of Disturbance and New Practical Techniques for High Quality Sampling in Soils. 7º Congresso Nacional de Geotecnia, Porto.

Ishihara, K.; Harada, K.; Lee, W. F.; Chan, C. C.; Safiullah, A. M. M. (2016). Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples. Soils and Foundations, vol. 56, nº3, pp. 533-546. https://doi.org/10.1016/j.sandf.2016.04.019

Iwasaki, T.; Tatsuoka, F.; Takagi, Y. (1978). Shear moduli of sands under cyclic torsional shear loading. Soils and Foundations, vol. 18, nº1, pp. 39-56. https://doi.org/10.3208/sandf1972.18.39

Jamiolkowski, M.; Masella, A. (2015). Geotechnical characterization of a tailings deposit in Poland—an update. In S. Marchetti, P. Monaco, & A. Viana da Fonseca (Eds.), 3rd International Conference on the Flat Dilatometer, pp. 25-42. Rome, Italy.

Jorge, C.; Vieira, A. (1997). Liquefaction Potential Assessment - Application to the Portuguese Territory and to the Town of Setubal. Seismic Behaviour of Ground and Geotechnical Structures, Seco and Pinto (Eds.). pp. 33-43.

La Rochelle, P.; Sarrailh, J.; Tavenas, F.; Roy, M.; Leroueil, S (1981). Causes of sampling disturbance and design of a new sampler for sensitive clays. Canadian Geotechnical Journal, vol. 18, nº1, pp. 52-66. https://doi.org/10.1139/t81-006

Ladd, C. C.; DeGroot, D. J. (2003). Recommended Practice for Soft Ground Site Characterization: Arthur Casagrande Lecture. Proceedings of 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, pp. 55, Cambridge, United States of America.

Lai, C.; Bozzoni, F.; Conca, D.; Famà, A.; Özcebe, A. G.; Zuccolo, E.; Meisina, C.; Bonì, R.; Bordoni, M.; Cosentini, R. M.; Martelli, L.; Poggi, V.; Viana da Fonseca, A.; Ferreira, C.; Rios, S.; Cordeiro, D.; Ramos, C.; Molina Gómez, F.; Coelho, C.; Logar, J.; Maček, M.; Oblak, A.; Ozcep, F.; Bozbey, I.; Oztoprak, S.; Sargin, S.; Aysal, N.; Oser, C.; Kelesoglu, M. K. (2020). Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bulletin of Earthquake Engineering, Special Issue: The H2020 European Project LIQUEFACT, https://doi.org/10.1007/s10518-020-00951-8

Landon, M. M.; DeGroot, D. J.; Sheahan, T. C. (2007). Nondestructive Sample Quality Assessment of a Soft Clay Using Shear Wave Velocity, Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, nº4, pp. 424–432. https://doi.org/10.1061/(asce)1090-0241(2007)133:4(424)

Lee, J. -S.; Santamarina, J. C. (2005). Bender Elements: Performance and Signal Interpretation. Journal of Geotechnical and Geoenvironmental Engineering, vol. 131, nº9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)

Lee, W. F.; Ishihara, K.; Chen, C.-C. (2012). Liquefaction of silty sand – preliminary studies from recent Taiwan, New Zealand, and Japan earthquakes. Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, pp. 747–758, Tokyo.

Lo Presti, D. C. F.; Pallara, O.; Lancellota, R.; Armandi, M.; Maniscalco, R. (1993). Monotonic and cyclic loading behaviour of two sands at small strains. Geotechnical Testing Journal, vol. 16, nº4, pp. 409-424. https://doi.org/10.1520/GTJ10281J

Markham, C. S.; Bray, J.; Riemer, M.; Cubrinovski, M. (2016). Characterization of Shallow Soils in the Central Business District of Christchurch, New Zealand. Geotechnical Testing Journal, vol. 39, nº 6, pp. 20150244. https://doi.org/10.1520/GTJ20150244

Molina-Goméz, F.; Ferreira, C.; Ramos, C.; Viana da Fonseca, A. (2020). Performance of Gel-Push sampling in liquefiable soils. Géotechnique Letters, vol. 10, pp. 1-6. https://doi.org/10.1680/jgele.19.00073

Mori, K.; Sakai, K. (2016). The GP sampler: a new innovation in core sampling. In Lehane, Acosta-Martínez, and Kelly (eds) Geotechnical and Geophysical Site Characterisation 5. pp. 99-124, Sydney, Australia.

Osterberg, J. O. (1973). An improved hydraulic piston sampler. In 8th International Conference on Soil Mechanics and Foundation Engineering, pp. 317–321, Moscow.

Robertson, P. K. (2009). Interpretation of cone penetration tests - a unified approach. Canadian Geotechnical Journal, vol. 46, nº 11, pp. 1337-1355. https://doi.org/10.1139/T09-065

Robertson, P. K.; Cabal, K. L. (2010). Estimating soil unit weight from CPT. 2nd International Symposium on Cone Penetration Testing, pp. 1-8, Huntington Beach, CA, USA.

Saldanha, A. S.; Viana da Fonseca, A.; Ferreira, C. (2018). Microzonation of the liquefaction susceptibility: case study in the lower Tagus valley. Geotecnia, vol. 142, pp. 07-34. http://dx.doi.org/10.24849/j.geot.2018.142.01

Santamarina, J.C.; Klein, K.A.; Fam, M.A (2001). Soils and waves - Particulate materials behavior, characterization and process monitoring. John Wiley & Sons, New York.

Taylor, M. L.; Cubrinovski, M.; Haycock, I. (2012). Application of new “Gel-push” sampling procedure to obtain high quality laboratory test data for advanced geotechnical analyses. In 2012 NZSEE Conference, pp. 1–8, Christchurch, New Zeland.

Teves-Costa, P.; Batlló, J. (2011). The 23 April 1909 Benavente earthquake (Portugal): macroseismic field revision. Journal of Seismology, vol. 15, nº1, pp. 59-70. https://doi.org/10.1007/s10950-010-9207-6

Umehara, Y.; Chiaro, G.; Kiyota, T.; Hosono, Y.; Yagiura, Y.; Chiba, H. (2015). Effectiveness of “Gel-Push” Sampling Technique to Retrieve Undisturbed Sandy Specimens for Liquefaction Test. 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.

Viana da Fonseca, A.; Ferreira, C. (2001). Gestão da qualidade de amostragem em solos residuais e em solos argilosos moles, por análise comparativa de velocidades de ondas sísmicas in situ e em laboratório. Actas da Workshop "Técnicas de Amostragem em Solos e Rochas Brandas e Controlo de Qualidade", FEUP, Porto, Portugal.

Viana da Fonseca, A.; Ferreira, C. (2002a). Aplicação da técnica de bender elements para avaliação da qualidade de amostragem em solos residuais. Actas do XII COBRAMSEG, vol. 1, pp. 187-199. São Paulo, Brasil.

Viana da Fonseca, A.; Ferreira, C. (2002b). Bender elements como técnicas laboratoriais excelentes para avaliação de parâmetros geotécnicos referenciais. Actas do 8º Congresso Nacional de Geotecnia, LNEC, Lisboa, Portugal.

Viana da Fonseca, A.; Pineda, J. (2017). Getting high-quality samples in “sensitive” soils for advanced laboratory tests. Innovative Infrastructure Solutions, vol. 2, nº1, pp. 1-34. https://doi.org/10.1007/s41062-017-0086-3

Viana da Fonseca, A.; Ferreira, C.; Fahey, M. (2009). A framework interpreting bender elements, combining time-domain and frequency-domain methods. Geotechnical Testing Journal, vol. 32, nº 2, 100974. https://doi.org/10.1520/GTJ100974

Viana da Fonseca, A., Ferreira, C., Ramos, C. (2018). Report on ground characterization of the four areas selected as testing sites by using novel techniques and advanced methodologies to perform in situ and laboratory tests. Deliverable D 2.1 of the European H2020 LIQUEFACT research project, pp. 2:1-111.

Viana da Fonseca, A., Ferreira, C., Coelho, C., Quintero, J., Rios, S., Millen, M., Cordeiro, D. (2019a). Microzonation of the Lisbon Area in Portugal. Methodology for assessment of earthquake‐induced risk of soil liquefaction at the four European testing sites (microzonation). Deliverable D 2.7 of the European H2020 LIQUEFACT research project, chpt. 3, pp. 63-157 (www.liquefact.eu: consultado em abril 2021).

Viana da Fonseca, A.; Ferreira, C.; Ramos, C.; Molina-Gómez, F. (2019b). The geotechnical test site in the greater Lisbon area for liquefaction characterisation and sample quality control of cohesionless soils. AIMS Geosciences, vol. 5, nº2, pp. 325-343. https://doi.org/10.3934/geosci.2019.2.325

Viana da Fonseca, A.; Molina-Gómez, F.; Ferreira, C.; Ramos, C. (2019c). Getting high-quality samples for liquefaction testing in Portugal. Final Report, LIQ2PROEARTH – PTDC/ECM-GEO/1780/2014, pp. 104

(https://web.fe.up.pt/~viana/Final%20Report%20Exp%20Site%20Liq2ProEarth.pdf: consultado em maio 2021)

Yoshimi, Y., K. Tokimatsu and J. Ohara (1994), In Situ Liquefaction Resistance of Clean Sands over a Wide Density Range, Géotechnique, vol. 44, nº3, pp. 479-494. https://doi.org/10.1680/geot.1994.44.3.479

Publicado

2021-11-30

Número

Sección

Artículos