Sensibilidade de modelo analítico de interação onda-solo marinho através de planejamento de experimentos
DOI:
https://doi.org/10.14195/2184-8394_163_1Palabras clave:
Interação onda-solo marinho, análise de sensibilidade, planejamento de experimentosResumen
Os fenômenos associados à interação dinâmica entre ondas e leitos marinhos porosos são objeto de intensas pesquisas ao redor do mundo. O assunto é de extrema importância para a análise da estabilidade de estruturas portuárias e offshore, dutos e taludes submarinos, por exemplo. Neste trabalho, foi conduzida uma análise de sensibilidade de um modelo analítico para representação das tensões, poropressão e deslocamentos induzidos por ondas em leitos marinhos porosos. A análise de sensibilidade foi realizada aplicando-se o método de Taguchi para planejamento de experimentos, em conjunto com uma análise de variância (ANOVA). Foi possível identificar os parâmetros do solo que mais influenciam na resposta do modelo analítico. Foi realizada ainda a otimização dos fatores do modelo analítico a fim de determinar os parâmetros ótimos para um conjunto de dados experimentais analisados.
Descargas
Citas
Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics 12, p. 155. https://doi.org/10.1063/1.1712886
Bouzid, L.; Boutabba, S.; Yallese, M.A.; Belhadi, S.; Girardin, F. (2014). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. The International Journal of Advanced Manufacturing Technology 74, pp. 879–891. https://doi.org/10.1007/s00170-014-6043-9
Christian, J. T.; Taylor, P. K.; Yen, J. K. C.; Erali, D. R. (1974). Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction. Offshore Technology Conference.
Derringer, G.; Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology 12, pp. 214–219. https://doi.org/10.1080/00224065.1980.11980968
Fu. C.; Wang, J.; Zhao, T. (2024). Experimental investigation of pore pressure on sandy seabed around submarine pipeline under irregular wave loading. Sensors, 24(2), 704. https://doi.org/10.3390/s24020704
Hessainia, Z.; Belbah, A.; Yallese, M. A.; Mabrouki, T.; Rigal, J. F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), pp. 1671–1681. https://doi.org/10.1016/j.measurement.2012.12.016
Jeng, D. S. (2013). Porous models for wave-seabed interactions. Springer.
Jeng, D. S.; Cha, D. H. (2003). Effects of dynamic soil behavior and wave non-linearity on the wave-induced pore pressure and effective stresses in porous seabed. Ocean Engineering, 30(16), pp. 2065-2089. https://doi.org/10.1016/S0029-8018(03)00070-2
Jeng, D. S.; Lee, T. L. (2001). Dynamic response of porous seabed to ocean waves. Computers and Geotechnics, 28(2), pp. 99-128. https://doi.org/10.1038/s41598-023-45485-6
Jeng, D. S.; Lin, Y. S. (1999). Pore pressures on a submarine pipeline in a cross anisotropic non-homogeneous seabed under wave loading. Canadian Geotechnical Journal, 36(3), pp. 563–572. https://doi.org/10.1139/t99-005
Jeng, D. S.; Rahman, M. S. (2000). Effective stresses in a porous seabed of finite thickness: Inertia effects. Canadian Geotechnical Journal, 37(4), pp. 1388–1397. https://doi.org/10.1139/t00-063
Lafifi, B.; Rouaiguia, A.; Boumazza, N. (2019). Optimization of geotechnical parameters using Taguchi’s design of experiment (DOE), RSM and desirability function. Innovative Infrastructure Solutions, 4(1), 35. https://doi.org/10.1007/s41062-019-0218-z
Lin, Z.; Pokrajac, D.; Guo, Y.; Jeng, D. S.; Tang, T.; Rey, N.; Zhang, J. (2017). Investigation of nonlinear wave-induced seabed response around mono-pile foundation. Coastal Engineering, 121, pp. 197-211. https://doi.org/10.1016/j.coastaleng.2017.01.002
Madsen, O. S. (1978). Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 1978, 28:4, pp. 377-393. https://doi.org/10.1016/0029-8018(81)90002-0
Montgomery, D. C. (2020). Design and analysis of experiments (9th ed.). John Wiley & Sons.
Moshagen, H.; Torum, A. (1975). Wave induced pressures in permeable seabeds. Journal of the Waterways, Harbors and Coastal Engineering Division, 101(1), pp. 49–57. https://doi.org/10.1061/AWHCAR.0000
Nakamura, H.; Onishi, R.; Minamide, H. (1973). On the seepage in the seabed due to waves. Proceedings of 20th Coastal Engineering Conference, J.S.C.E., pp. 421–428 (in Japanese, translated by Mr. Oh).
Quiuqui, J. P. C.; Tamayo, J. P.; Maghous, S. (2022). Closed-form solutions for wave-induced poroelastic response in seabed under dynamic and quasi-static regimes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1), 16. https://doi.org/10.1007/s40430-021-03300-1
Roy, R. K., (1990). A primer on the Taguchi method. Van Nostrand Reinhold, New York.
Sassa, S.; Sekiguchi, H. (2001). Analysis of wave-induced liquefaction of sand beds. Géotechique, 51 (2), pp. 115–126. https://doi.org/10.3208/sandf1972.24.3_85
Sassa, S.; Sekiguchi, H.; Miyamamoto, J. (2001). Analysis of progressive liquefaction as moving-boundary problem. Géotechique, 51(10), pp. 847–857. https://doi.org/10.1680/geot.2001.51.10.847
Sui, T.; Zhang, C.; Jeng, D. S.; Guo, Y.; Zheng, J.; Zhang, W.; Shi, J. (2019). Wave-induced seabed residual response and liquefaction around a mono-pile foundation with various embedded depth. Ocean Engineering, 173, pp. 157-173. https://doi.org/10.1016/j.oceaneng.2018.12.055
Singh, H. (2012). Taguchi optimization of process parameters: a review and case study. Int J Adv Eng Res Stud 1, pp. 39-41.
Verruijt, A. (1969). Elastic storage of aquifers. In Flow Through Porous Media (ed. R. J. M. DeWiest), Chap. 8. Academic Press.
Yamamoto, T.; Koning, H.; Sellmeijer, H.; Hijum, E. (1978). On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, 87(1). https://doi.org/10.1017/S0022112078003006