Aplicação de imagens multiespectrais de sentinel-2 na monitorização do jacinto-de-água: estudo de caso no Baixo Mondego (Portugal)

Autores

  • Romeu Gerardo Universidade de Coimbra, CERIS (Portugal)
  • Isabel Pedroso de Lima Universidade de Coimbra, MARE-Centro de Ciências do Mar e do Ambiente/ARNET https://orcid.org/0000-0002-5134-4175

DOI:

https://doi.org/10.14195/1647-7723_31-1_6

Palavras-chave:

Recursos hídricos, infestantes aquáticas, deteção remota, satélite, índices de vegetação

Resumo

As espécies exóticas com grande potencial invasor constituem uma séria ameaça à redução da biodiversidade, resultando em custos ambientais e económicos elevados. No caso de plantas invasoras aquáticas, a extensão desta problemática a massas de água superficiais vulneráveis apresenta-se como especialmente gravosa. Dificuldades inerentes à monitorização dessas plantas com métodos convencionais têm levado à utilização de ferramentas de deteção remota para este fim. Neste estudo explora-se o papel dos dados obtidos pelo satélite Sentinel-2, nomeadamente na deteção, mapeamento e monitorização do jacinto-de-água (Eichhornia crassipes) em meio fluvial, dando-se como exemplo a aplicação desta tecnologia no estudo desta invasora aquática em cursos de água na região do Baixo Mondego (Portugal). Para o efeito usam-se índices de vegetação calculados a partir de imagens multiespectrais. Esta abordagem pode dar uma contribuição importante na definição de medidas oportunas de gestão com vista ao controlo da infestação de massas de água por jacinto-de-água, que são fundamentais ao pleno desempenho das múltiplas funções dessas massas de água, e prevenção do risco ambiental associado.

Downloads

Não há dados estatísticos.

Referências

Boothroyd, R. J., Nones M., Guerrero, M. (2021). Deriving planform morphology and vegetation coverage from remote sensing to support river management applications. Frontiers in Environmental Science. 9, 657354. DOI: https://doi.org/10.3389/fenvs.2021.657354

Bradley, B. A., Mustard, J. F. (2006). Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications. 16 (3), 1132−1147. DOI: https://doi.org/10.1890/1051-0761(2006)016[1132:CTLDOA]2.0.CO;2

Carson, H. W., Lass L. W., Callihan R. H., (1995). Detection of yellow hawkweed (Hieracium pratense) with high resolution multispectral digital imagery. Weed Technology. 9, 477−483. DOI: https://doi.org/10.1017/S0890037X0002371X

Ceccato, P., Flasse S., Grégoire, J. M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sensing Environment. 82, 198−207. DOI: https://doi.org/10.1016/S0034-4257(02)00036-6

Chander, S., Pompapathi, V., Gujrati, A., Singh, R. P., Chaplot, N., Patel, U. D. (2018). Growth of invasive aquatic macrophytes over Tapi river. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences., XLII-5, 829–833. DOI: https://doi.org/10.5194/isprs-archives-XLII-5-829-2018

Chandra, G., Ghosh, A., Biswas, D., Chatterjee, S. N. (2006). Host plant preference of Mansonia mosquitoes. Journal of Aquatic Plant Management. 44, 142-144.

Cheruiyot, E. K., Mito, C., Menenti, M., Gorte, B., Koenders, R., Akdim, N. (2014). Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria. Remote Sensing. 6, 7762−7782. DOI: https://doi.org/10.3390/rs6087762

Cho, H. J., Kirui P., Natarajan N. (2008). Test of multispectral vegetation index for floating and canopy-forming submerged vegetation. International Journal of Environmental Research and Public Health. 5, 477−483. DOI: https://doi.org/10.3390/ijerph5050477

Clayton, J. S., Champion P. D. (2006). Risk assessment method for submerged weeds in New Zealand hydroelectric lakes. Hydrobiologia. 570, 183−188. DOI: https://doi.org/10.1007/s10750-006-0179-z

Cuneo, P., Jacobson, C. R., Leishman, M. R. (2009). Landscape scale detection and mapping of invasive African Olive (Olea europaea L. ssp. cuspidata Wall ex G. Don Ciferri) in SW Sydney, Australia using satellite remote sensing. Applied Vegetation Science. 12, 145−154 (2009). DOI: https://doi.org/10.1111/j.1654-109X.2009.01010.x

Cunha, P. P., Dinis, J. Sedimentary dynamics of the Mondego estuary. Aquatic Ecology of the Mondego River Basin: Global Importance of Local Experience. 43−62 Imprensa da Universidade de Coimbra, Coimbra (2002).

Datta, A., Maharaj, S., Prabhu, G. N., Bhowmik, D., Marino, A., Akbari, V., Rupavatharam, S., Sujeetha, J.A.R.P., Anantrao, G.G., Poduvattil, V.K., et al. (2021). Monitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developments. Frontiers in Ecology and Evolution. 9, 631338. DOI: https://doi.org/10.3389/fevo.2021.631338

de Lima, M. I. P., de Lima, J. L. M. P. (2002). Precipitation and hydrology of the Mondego catchment: a scale invariant study. Aquatic Ecology of the Mondego River Basin: Global Importance of Local Experience. Imprensa da Universidade de Coimbra, Coimbra, 13−28.

Dersseh, M. G., Melesse, A. M., Tilahun, S. A., Abate, M., Dagnew, D. C. (2019). Water hyacinth: review of its impacts on hydrology and ecosystem services—lessons for management of Lake Tana. Extreme Hydrology and Climate Variability, 237−251. DOI: https://doi.org/10.1016/B978-0-12-815998-9.00019-1

Dube, T., Mutanga, O., Sibanda, M., Bangamwabo, V., Shoko, C. (2017). Testing the detection and discrimination potential of the new Landsat 8 Satellite data on the challenging water hyacinth (Eichhornia crassipes) in freshwater ecosystems. Applied Geography. 84, 11−22. DOI: https://doi.org/10.1016/j.apgeog.2017.04.005

Dube, T., Mutanga, O., Seutloali, K., Adelabu, S., Shoko, C. (2015). Water quality monitoring in sub-Saharan African lakes: a review of remote sensing applications. African Journal of Aquatic Science. 40, 1−7. DOI: https://doi.org/10.2989/16085914.2015.1014994

Dube, T., Gumindoga W., M. Chawira (2014). Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. African Journal of Aquatic Science. 39 (1), 89−95. DOI: https://doi.org/10.2989/16085914.2013.870068

Dufour, S., Rodríguez-González P. M., Laslier M. (2019). Tracing the scientific trajectory of riparian vegetation studies: main topics, approaches and needs in a globally changing world. Science of the Total Environment. 653, 1168−1185. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.383

ESA (2022). https://scihub.copernicus.eu/

Gao, B. (1996). NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environment. 58 (3), 257−266. DOI: https://doi.org/10.1016/S0034-4257(96)00067-3

Gerardo, R., de Lima I. (2022). Assessing the potential of Sentinel-2 data for tracking invasive water hyacinth in a river branch. Journal of Applied Remote Sensing. 16 (1), 014511. DOI: http://dx.doi.org/10.1117/1.JRS.16.014511

Gerardo, R, de Lima I., de Lima, J. L. M. P. (2022). Mapeamento de áreas inundadas usando um índice de água baseado em dados do satélite Sentinel-2: as cheias de 2019 no Baixo Mondego (Portugal). XX SILUBESA - XX Simpósio Luso-Brasileiro de Eng. Sanitária e Ambiental, 5 p.

Getsinger, K., Dibble, E., Rodgers, J., Spencer, D. F. (2014). Benefits of Controlling Nuisance Aquatic Plants and Algae in the United States. Council for Agricultural Science and Technology, Ames.

Ghaderpour, E., Ben Abbes, A., Rhif, M., Pagiatakis, S. D., Farah, I. R. (2020). Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. International Journal of Remote Sensing. 41 (6), 2374−2390. DOI: https://doi.org/10.1080/01431161.2019.1688419

Giardino, C., Bresciani, M., Valentini, E., Gasperini, L., Bolpagni, R., Brando, V. E. (2015). Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sensing Environment. 157, 48−57. DOI: https://doi.org/10.1016/j.rse.2014.04.034

GISD—Global Invasive Species Database (2006). Eichhornia crassipes (aquatic plant). DOI: http://www.issg.org/database/species/ecology.asp?Si=70

Gopal, B. (1987). Water Hyacinth, Elsevier Science Publishers, Amsterdam.

Gu, Y., Brown, J. F., Verdin, J. P., Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters. 34, L06407. DOI: https://doi.org/10.1029/2006GL029127

Guerreiro, A. R. (1976). O jacinto aquático Eichhornia crassipes (Mart.) Solms em Portugal. II Simpósio Nacional Herbologia. 1−17.

Haller, W. T., Sutton, D. L., Barlowe, W. C. (1974). Effects of salinity on growth of several aquatic macrophytes. Ecology. 55 (4), 891−894. DOI: https://doi.org/10.2307/1934427

Halstead, J. M., Michaud, J., Hallas-Burt, S., Gibbs, J. P. (2003). Hedonic analysis of effects of a nonnative invader (Myriophyllum heterophyllum) on New Hampshire (USA) lakefront properties. Environmental Management. 32 (3), 391−398. DOI: https://doi.org/10.1007/s00267-003-3023-5

Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., Kats, L. B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia. 750, 147−170. DOI: https://doi.org/10.1007/s10750-014-2166-0

Hestir, E.L., Khanna, S., Andrew, M.E., Santos, M.J., Viers, J.H., Greenberg, J.A., Rajapakse, S.S., Ustin, S. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing Environment. 112, 4034−4047. DOI: https://doi.org/10.1016/j.rse.2008.01.022

Hill, M. P., Coetzee J. (2017). The biological control of aquatic weeds in South Africa: current status and future challenges. Bothalia-African Biodiversity & Conservation. 47 (2), a2152. DOI: https://doi.org/10.4102/abc.v47i2.2152

Hill M. P., Coetzee, J. A. (2008). Integrated control of water hyacinth (Eichhornia crassipes) in Africa. EPPO Bull./Bull. OEPP, 38 (3), 452−457. DOI: https://doi.org/10.1111/j.1365-2338.2008.01263.x

Holm, L. G., Plucknett, D. L., Pancho, J. V., Herberger, J. P. (1977). The World’s Worst Weeds: Distribution and Biology. Krieger Publishing Company, Malabar, Florida.

Holm, L. G., Weldon L. W., van Blackburn, R. D. (1969). Aquatic weeds. Science. 166 (3906), 699−709. DOI: https://doi.org/10.1126/science.166.3906.699

IPMAa—Instituto Português do Mar e da Atmosfera (2022). Ficha climatológica 1971−2000. URL: https://www.ipma.pt/bin/file.data/climate-normal/cn_71-00_MONTEMOR_O_VELHO.pdf

IPMAb—Instituto Português do Mar e da Atmosfera (2022). Normais climatológicas. URL: https://www.ipma.pt/pt/oclima/normais.clima/

Jones, R. W. (2009). The impact on biodiversity, and integrated control, of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) on the Lake Nsezi-Nseleni river system. (Tese de Doutoramento, Rhodes University).

Joshi, C., De Leeuw, J., Skidmore, A. K., Van Duren, I. C., Van Oosten, H. (2006). Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation. 8, 84−95. DOI: https://doi.org/10.1016/j.jag.2005.08.004

Julien, M. H. (2001). Biological control of water hyacinth with arthropods: a review to 2000. ACIAR Proceedings 102, 8−20.

Kasselmann, C. (1995). Aquarienpflanzen, 1−472 Egen Ulmer GMBH & Co., Stuttgart.

Keller, R. P., Lodge, D. M. (2009). Invasive species. Encyclopedia of Inland Waters. 92−99 Academic Press, New York.

Khanna, S., Santos, M. J., Ustin, S. L., Haverkamp, P. J. (2011). An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing. 32 (4), 1067−1094. DOI: https://doi.org/10.1080/01431160903505328

Kimothi, M. M., Anitha, D., Vasistha, H. B., Soni, P., Chandola, S. K. (2010). Remote sensing to map the invasive weed, Lantana camara in forests. Tropical Ecology. 51, 67−74.

Kriticos, D. J., Brunel S. (2016). Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. PLoS One. 11 (8), e0120054. DOI: https://doi.org/10.1371/journal.pone.0120054

Law, R. (2007). Fisheries-induced evolution: present status and future directions. Marine Ecology Progress Series. 335, 271−277. DOI: https://doi.org/10.3354/meps335271

Lodge, D.M., Williams, S., MacIsaac, H., Hayes, K., Leung, B., Loope, L., Reichard, S., Mack, R.N., Moyle, P.B., Smith, M., Andow, D.A., Carlton, J.T., McMichael, A. (2006). Biological invasions: recommendations for U.S. policy and management. Ecological Applications. 16, 2035−2054. DOI: https://doi.org/10.1890/1051-0761(2006)016[2035:BIRFUP]2.0.CO;2

Lu, J., Wu, J., Fu, Z., Zhu, L. (2007). Water hyacinth in China: a sustainability science-based management framework. Environmental Management. 40, 823. DOI: https://doi.org/10.1007/s00267-007-9003-4

Malik, A. (2007). Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International. 33, 122−138. DOI: https://doi.org/10.1016/j.envint.2006.08.004

McFeeters S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. 17 (7), 1425−1432. DOI: https://doi.org/10.1080/01431169608948714

Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W., Jeppesen, E. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology. 51 (7), 1320−1330. DOI: https://doi.org/10.1111/j.1365-2427.2006.01574.x

Minakawa, N., Sonye, G., Dida, G. O., Futami, K., Kaneko, S. (2008). Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malaria Journal. 7 (119), 1−6. DOI: https://doi.org/10.1186/1475-2875-7-119

Mironga, J. M., Mathooko J. M., Onywere, S. M. (2014). Effects of spreading patterns of water hyacinth (Eichhornia crassipes) on zooplankton population in Lake Naivasha, Kenya. International Journal of Development and Sustainability. Dev. 3 (10), 1971−1987.

Mitchell, D. S. (1985). African aquatic weeds and their management - The Ecology and Management of African Wetland Vegetation. Geobotany. 177−202 Springer, Dordrecht.

Mladinich, C. S., Bustos, M. R., Stitt, S., Root, R., Brown, K., Anderson, G. L., Hager, S. (2006). The use of Landsat 7 enhanced thematic mapper Plus for mapping leafy spurge. Rangeland Ecology & Management. 59, 500−506. DOI: https://doi.org/10.2111/06-027R1.1

Monteiro, A., Moreira, I., Santos, A. C., Serrasqueiro, P. M. (2003). Water hyacinth (Eichhornia crassipes) in Portugal: synopsis of its bioecology and management. Atas del IX Congreso de la Sociedad Española de Malherbología. 89−103.

Müllerová, J., Pergla. J., Pyšek, P. (2013). Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). International Journal of Applied Earth Observation and Geoinformation. 25, 55−65. DOI: https://doi.org/10.1016/j.jag.2013.03.004

Murkin, H. R., Kadlec, J. A. (1986). Relationships between waterfowl and macro-invertebrate densities in a northern prairie marsh. Journal of Wildlife Management. 50, 212−217. DOI: https://doi.org/10.2307/3801899

Navarro, L. A., Phiri, G. (2000). Water Hyacinth in Africa and the Middle East: A Survey of Problems and Solutions. International Development Research Centre, Ottawa.

Ndimele, P. E., Kumolu-Johnson, C. A., & Anetekhai, M. A. (2011). The invasive aquatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontederiaceae}: problems and prospects. Research Journal of Environmental Sciences. 5, 509−520. DOI: https://doi.org/10.3923/rjes.2011.509.520

Owens, C. S., Madsen, J. D. (1995). Low temperature limits of water hyacinth. Journal of Aquatic Plant Management. 33, 63−68.

Pádua, L., Duarte, L., Antão-Geraldes, A. M., Sousa, J. J., Castro, J. P. (2022). Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data. Plants. 11 (24), 3465. DOI: https://doi.org/10.3390/plants11243465

Palmer, S. C. J., Kutser T., Hunter, P. D. (2015). Remote sensing of inland waters challenges, progress and future directions. Remote Sensing Environment. 157, 1−8. DOI: https://doi.org/10.1016/j.rse.2014.09.021

Parsons, W. T., Cuthbertson, E. G. (2001). Noxious Weeds of Australia, CSIRO Publishing, Collingwood.

Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Bio/Technology. 11, 249−259. DOI: https://doi.org/10.1007/s11157-012-9289-4

Penatti, N. C., de Almeida, T. I. R., Ferreira, L. G., Arantes, A. E., Coe, M. T. (2015). Satellite based hydrological dynamics of the world’s largest continuous wetland. Remote Sensing Environment. 170, 1−13. DOI: https://doi.org/10.1016/j.rse.2015.08.031

Penfound, W. T., Earle, T. T. (1948). The biology of the water hyacinth. Ecological Monographs. 18, 447−472. DOI: https://doi.org/10.2307/1948585

Pyšek, P., Richardson, D. M. (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources. 35 (1), 25−55. DOI: https://doi.org/10.1146/annurev-environ-033009-095548

Ritchie, J. C., Zimba, P. V., Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing. 69, 695−704. DOI: https://doi.org/10.14358/PERS.69.6.695

Roijackers, R., Szabo, S., Scheffer, M. (2004). Experimental analysis of the competition between algae and duckweed. Archiv Fur Hydrobiologie. 160, 401−412.

DOI: https://doi.org/10.1127/0003-9136/2004/0160-0401

Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Texas A&M University, Remote Sensing Center, College Station, Texas, USA.

Rushing, W. N. (1974). Water hyacinth research in Puerto Rico. Hyacinth Control Journal. 12, 48−52.

Schaefer, M. T., Lamb, D. W. (2016). A combination of plant NDVI and LiDAR measurements improve the estimation of pasture biomass in tall fescue (Festuca arundinacea var. Fletcher). Remote Sensing. 8 (2), 109. DOI: https://doi.org/10.3390/rs8020109

Serrano, J., Shahidian, S., Marques da Silva J. (2019). Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a mediterranean agro-silvo-pastoral system. Water. 11, 62. DOI: https://doi.org/10.3390/w11010062

Shekede, M., Kusangaya S., Schmidt, K. (2008). Spatio-temporal variations of aquatic weed abundance and coverage in Lake Chivero, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 33, 714−721. DOI: https://doi.org/10.1016/j.pce.2008.06.052

Singh, G., Reynolds, C., Byrne, M., Rosman, B. (2020). A remote sensing method to monitor water, aquatic vegetation, and invasive water hyacinth at national extents. Remote Sensing. 12, 4021. DOI: https://doi.org/10.3390/rs12244021

Spencer, D. F., Ksander, G. G. (2005). Seasonal growth of water hyacinth in the Sacramento/San Joaquin Delta, California. Journal of Aquatic Plant Management. 43, 91−94. DOI: http://hdl.handle.net/1834/19475

Stiers, I., Crohain, N., Josens, G., Triest, L. (2011). Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biological Invasions. 13, 2715−2726. DOI: https://doi.org/10.1007/s10530-011-9942-9

Téllez, T. R., López, E. M. D. R., Granado, G. L., Pérez, E. A., López, R. M., Guzmán, J. M. S. (2008). The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions. 3, 42−53. DOI: https://doi.org/10.3391/ai.2008.3.1.8

Tewabe, D. (2015). Preliminary survey of water hyacinth in Lake Tana, Ethiopia. Global Journal of Allergy, 1, 013−018. DOI: https://doi.org/10.17352/2455-8141.000003

Thamaga, K. H., Dube, T. (2018). Remote sensing of invasive water hyacinth (Eichhornia crassipes): a review on applications and challenges. Remote Sensing Applications: Society and Environment. 10, 36−46 (2018). DOI: https://doi.org/10.1016/j.rsase.2018.02.005

Thouvenot, L., Haury, J., Thiebaut, G. (2013). A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems. 23, 790−803. DOI: https://doi.org/10.1002/aqc.2387

Tiwari, S., Dixit, S., Verma N. (2007). An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia Crassipes. Environment Monitoring Assessment. 129, 253−256. DOI: https://doi.org/10.1007/s10661-006-9358-7

Turner, W. (2013). Satellites: make data freely accessible. Nature. 498, 37. DOI: https://doi.org/10.1038/498037c

Venugopal, G. (1998). Monitoring the effects of biological control of water hyacinth using remotely sensed data: a case study of Bangalore, India. Singapore Journal of Tropical Geography. 19 (1), 91−105. DOI: https://doi.org/10.1111/1467-9493.00027

Vermuyten, E., Meert, P., Wolfs, V., Willems, P. (2020). Impact of seasonal changes in vegetation on the river model prediction accuracy and real-time flood control performance. Journal of Flood Risk Management. 13 (4), e12651. DOI: https://doi.org/10.1111/jfr3.12651

Villamagna. A. M., Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology. 55, 282−298. DOI: https://doi.org/10.1111/j.1365-2427.2009.02294.x

Vis, C., Hudon C. Carignan, R. (2003). An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany. 77 (1), 87−201. DOI: https://doi.org/10.1016/S0304-3770(03)00105-0

Wilcock, R. J., Champion, P. D., Nagels, J. W., Croker, G. F. (1999). The influence of aquatic macrophytes on the hydraulic and physic-chemical properties of a New Zealand lowland stream. Hydrobiologia. 416, 203−214. DOI: https://doi.org/10.1023/A:1003837231848

##submission.downloads##

Publicado

2024-02-23