Application of sentinel-2 multispectral images for monitoring water hyacinth: a case study in the Lower Mondego (Portugal)
DOI:
https://doi.org/10.14195/1647-7723_31-1_6Keywords:
Water resources, invasive aquatic plants, remote sensing, satellite, vegetation indicesAbstract
Highly invasive exotic species have become a severe threat in many regions of the world due to the consequent reduction of biodiversity, resulting in high environmental and economic costs. Regarding aquatic weeds, especially in vulnerable surface water bodies, this problem is particularly serious. Inherent difficulties in monitoring aquatic invasive plants with conventional methods have led to the use of remote sensing tools for this purpose. This study explores the role of Sentinel-2 satellite data in detecting, mapping, and monitoring the water hyacinth (Eichhornia crassipes) in rivers, giving as an example the use of this technology to study this aquatic weed in watercourses in the Lower Mondego region (Portugal). Multispectral-based vegetation indices are used for this purpose. This approach can contribute significantly to the timely definition of management measures aimed at controlling the water hyacinth’s infestation of water bodies, such measure being crucial to ensuring the multiple functions of these water bodies and preventing associated environmental risks.
Downloads
References
Boothroyd, R. J., Nones M., Guerrero, M. (2021). Deriving planform morphology and vegetation coverage from remote sensing to support river management applications. Frontiers in Environmental Science. 9, 657354. DOI: https://doi.org/10.3389/fenvs.2021.657354
Bradley, B. A., Mustard, J. F. (2006). Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications. 16 (3), 1132−1147. DOI: https://doi.org/10.1890/1051-0761(2006)016[1132:CTLDOA]2.0.CO;2
Carson, H. W., Lass L. W., Callihan R. H., (1995). Detection of yellow hawkweed (Hieracium pratense) with high resolution multispectral digital imagery. Weed Technology. 9, 477−483. DOI: https://doi.org/10.1017/S0890037X0002371X
Ceccato, P., Flasse S., Grégoire, J. M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sensing Environment. 82, 198−207. DOI: https://doi.org/10.1016/S0034-4257(02)00036-6
Chander, S., Pompapathi, V., Gujrati, A., Singh, R. P., Chaplot, N., Patel, U. D. (2018). Growth of invasive aquatic macrophytes over Tapi river. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences., XLII-5, 829–833. DOI: https://doi.org/10.5194/isprs-archives-XLII-5-829-2018
Chandra, G., Ghosh, A., Biswas, D., Chatterjee, S. N. (2006). Host plant preference of Mansonia mosquitoes. Journal of Aquatic Plant Management. 44, 142-144.
Cheruiyot, E. K., Mito, C., Menenti, M., Gorte, B., Koenders, R., Akdim, N. (2014). Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria. Remote Sensing. 6, 7762−7782. DOI: https://doi.org/10.3390/rs6087762
Cho, H. J., Kirui P., Natarajan N. (2008). Test of multispectral vegetation index for floating and canopy-forming submerged vegetation. International Journal of Environmental Research and Public Health. 5, 477−483. DOI: https://doi.org/10.3390/ijerph5050477
Clayton, J. S., Champion P. D. (2006). Risk assessment method for submerged weeds in New Zealand hydroelectric lakes. Hydrobiologia. 570, 183−188. DOI: https://doi.org/10.1007/s10750-006-0179-z
Cuneo, P., Jacobson, C. R., Leishman, M. R. (2009). Landscape scale detection and mapping of invasive African Olive (Olea europaea L. ssp. cuspidata Wall ex G. Don Ciferri) in SW Sydney, Australia using satellite remote sensing. Applied Vegetation Science. 12, 145−154 (2009). DOI: https://doi.org/10.1111/j.1654-109X.2009.01010.x
Cunha, P. P., Dinis, J. Sedimentary dynamics of the Mondego estuary. Aquatic Ecology of the Mondego River Basin: Global Importance of Local Experience. 43−62 Imprensa da Universidade de Coimbra, Coimbra (2002).
Datta, A., Maharaj, S., Prabhu, G. N., Bhowmik, D., Marino, A., Akbari, V., Rupavatharam, S., Sujeetha, J.A.R.P., Anantrao, G.G., Poduvattil, V.K., et al. (2021). Monitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developments. Frontiers in Ecology and Evolution. 9, 631338. DOI: https://doi.org/10.3389/fevo.2021.631338
de Lima, M. I. P., de Lima, J. L. M. P. (2002). Precipitation and hydrology of the Mondego catchment: a scale invariant study. Aquatic Ecology of the Mondego River Basin: Global Importance of Local Experience. Imprensa da Universidade de Coimbra, Coimbra, 13−28.
Dersseh, M. G., Melesse, A. M., Tilahun, S. A., Abate, M., Dagnew, D. C. (2019). Water hyacinth: review of its impacts on hydrology and ecosystem services—lessons for management of Lake Tana. Extreme Hydrology and Climate Variability, 237−251. DOI: https://doi.org/10.1016/B978-0-12-815998-9.00019-1
Dube, T., Mutanga, O., Sibanda, M., Bangamwabo, V., Shoko, C. (2017). Testing the detection and discrimination potential of the new Landsat 8 Satellite data on the challenging water hyacinth (Eichhornia crassipes) in freshwater ecosystems. Applied Geography. 84, 11−22. DOI: https://doi.org/10.1016/j.apgeog.2017.04.005
Dube, T., Mutanga, O., Seutloali, K., Adelabu, S., Shoko, C. (2015). Water quality monitoring in sub-Saharan African lakes: a review of remote sensing applications. African Journal of Aquatic Science. 40, 1−7. DOI: https://doi.org/10.2989/16085914.2015.1014994
Dube, T., Gumindoga W., M. Chawira (2014). Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. African Journal of Aquatic Science. 39 (1), 89−95. DOI: https://doi.org/10.2989/16085914.2013.870068
Dufour, S., Rodríguez-González P. M., Laslier M. (2019). Tracing the scientific trajectory of riparian vegetation studies: main topics, approaches and needs in a globally changing world. Science of the Total Environment. 653, 1168−1185. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.383
ESA (2022). https://scihub.copernicus.eu/
Gao, B. (1996). NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environment. 58 (3), 257−266. DOI: https://doi.org/10.1016/S0034-4257(96)00067-3
Gerardo, R., de Lima I. (2022). Assessing the potential of Sentinel-2 data for tracking invasive water hyacinth in a river branch. Journal of Applied Remote Sensing. 16 (1), 014511. DOI: http://dx.doi.org/10.1117/1.JRS.16.014511
Gerardo, R, de Lima I., de Lima, J. L. M. P. (2022). Mapeamento de áreas inundadas usando um índice de água baseado em dados do satélite Sentinel-2: as cheias de 2019 no Baixo Mondego (Portugal). XX SILUBESA - XX Simpósio Luso-Brasileiro de Eng. Sanitária e Ambiental, 5 p.
Getsinger, K., Dibble, E., Rodgers, J., Spencer, D. F. (2014). Benefits of Controlling Nuisance Aquatic Plants and Algae in the United States. Council for Agricultural Science and Technology, Ames.
Ghaderpour, E., Ben Abbes, A., Rhif, M., Pagiatakis, S. D., Farah, I. R. (2020). Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. International Journal of Remote Sensing. 41 (6), 2374−2390. DOI: https://doi.org/10.1080/01431161.2019.1688419
Giardino, C., Bresciani, M., Valentini, E., Gasperini, L., Bolpagni, R., Brando, V. E. (2015). Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sensing Environment. 157, 48−57. DOI: https://doi.org/10.1016/j.rse.2014.04.034
GISD—Global Invasive Species Database (2006). Eichhornia crassipes (aquatic plant). DOI: http://www.issg.org/database/species/ecology.asp?Si=70
Gopal, B. (1987). Water Hyacinth, Elsevier Science Publishers, Amsterdam.
Gu, Y., Brown, J. F., Verdin, J. P., Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters. 34, L06407. DOI: https://doi.org/10.1029/2006GL029127
Guerreiro, A. R. (1976). O jacinto aquático Eichhornia crassipes (Mart.) Solms em Portugal. II Simpósio Nacional Herbologia. 1−17.
Haller, W. T., Sutton, D. L., Barlowe, W. C. (1974). Effects of salinity on growth of several aquatic macrophytes. Ecology. 55 (4), 891−894. DOI: https://doi.org/10.2307/1934427
Halstead, J. M., Michaud, J., Hallas-Burt, S., Gibbs, J. P. (2003). Hedonic analysis of effects of a nonnative invader (Myriophyllum heterophyllum) on New Hampshire (USA) lakefront properties. Environmental Management. 32 (3), 391−398. DOI: https://doi.org/10.1007/s00267-003-3023-5
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., Kats, L. B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia. 750, 147−170. DOI: https://doi.org/10.1007/s10750-014-2166-0
Hestir, E.L., Khanna, S., Andrew, M.E., Santos, M.J., Viers, J.H., Greenberg, J.A., Rajapakse, S.S., Ustin, S. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing Environment. 112, 4034−4047. DOI: https://doi.org/10.1016/j.rse.2008.01.022
Hill, M. P., Coetzee J. (2017). The biological control of aquatic weeds in South Africa: current status and future challenges. Bothalia-African Biodiversity & Conservation. 47 (2), a2152. DOI: https://doi.org/10.4102/abc.v47i2.2152
Hill M. P., Coetzee, J. A. (2008). Integrated control of water hyacinth (Eichhornia crassipes) in Africa. EPPO Bull./Bull. OEPP, 38 (3), 452−457. DOI: https://doi.org/10.1111/j.1365-2338.2008.01263.x
Holm, L. G., Plucknett, D. L., Pancho, J. V., Herberger, J. P. (1977). The World’s Worst Weeds: Distribution and Biology. Krieger Publishing Company, Malabar, Florida.
Holm, L. G., Weldon L. W., van Blackburn, R. D. (1969). Aquatic weeds. Science. 166 (3906), 699−709. DOI: https://doi.org/10.1126/science.166.3906.699
IPMAa—Instituto Português do Mar e da Atmosfera (2022). Ficha climatológica 1971−2000. URL: https://www.ipma.pt/bin/file.data/climate-normal/cn_71-00_MONTEMOR_O_VELHO.pdf
IPMAb—Instituto Português do Mar e da Atmosfera (2022). Normais climatológicas. URL: https://www.ipma.pt/pt/oclima/normais.clima/
Jones, R. W. (2009). The impact on biodiversity, and integrated control, of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) on the Lake Nsezi-Nseleni river system. (Tese de Doutoramento, Rhodes University).
Joshi, C., De Leeuw, J., Skidmore, A. K., Van Duren, I. C., Van Oosten, H. (2006). Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation. 8, 84−95. DOI: https://doi.org/10.1016/j.jag.2005.08.004
Julien, M. H. (2001). Biological control of water hyacinth with arthropods: a review to 2000. ACIAR Proceedings 102, 8−20.
Kasselmann, C. (1995). Aquarienpflanzen, 1−472 Egen Ulmer GMBH & Co., Stuttgart.
Keller, R. P., Lodge, D. M. (2009). Invasive species. Encyclopedia of Inland Waters. 92−99 Academic Press, New York.
Khanna, S., Santos, M. J., Ustin, S. L., Haverkamp, P. J. (2011). An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. International Journal of Remote Sensing. 32 (4), 1067−1094. DOI: https://doi.org/10.1080/01431160903505328
Kimothi, M. M., Anitha, D., Vasistha, H. B., Soni, P., Chandola, S. K. (2010). Remote sensing to map the invasive weed, Lantana camara in forests. Tropical Ecology. 51, 67−74.
Kriticos, D. J., Brunel S. (2016). Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. PLoS One. 11 (8), e0120054. DOI: https://doi.org/10.1371/journal.pone.0120054
Law, R. (2007). Fisheries-induced evolution: present status and future directions. Marine Ecology Progress Series. 335, 271−277. DOI: https://doi.org/10.3354/meps335271
Lodge, D.M., Williams, S., MacIsaac, H., Hayes, K., Leung, B., Loope, L., Reichard, S., Mack, R.N., Moyle, P.B., Smith, M., Andow, D.A., Carlton, J.T., McMichael, A. (2006). Biological invasions: recommendations for U.S. policy and management. Ecological Applications. 16, 2035−2054. DOI: https://doi.org/10.1890/1051-0761(2006)016[2035:BIRFUP]2.0.CO;2
Lu, J., Wu, J., Fu, Z., Zhu, L. (2007). Water hyacinth in China: a sustainability science-based management framework. Environmental Management. 40, 823. DOI: https://doi.org/10.1007/s00267-007-9003-4
Malik, A. (2007). Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International. 33, 122−138. DOI: https://doi.org/10.1016/j.envint.2006.08.004
McFeeters S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. 17 (7), 1425−1432. DOI: https://doi.org/10.1080/01431169608948714
Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W., Jeppesen, E. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology. 51 (7), 1320−1330. DOI: https://doi.org/10.1111/j.1365-2427.2006.01574.x
Minakawa, N., Sonye, G., Dida, G. O., Futami, K., Kaneko, S. (2008). Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malaria Journal. 7 (119), 1−6. DOI: https://doi.org/10.1186/1475-2875-7-119
Mironga, J. M., Mathooko J. M., Onywere, S. M. (2014). Effects of spreading patterns of water hyacinth (Eichhornia crassipes) on zooplankton population in Lake Naivasha, Kenya. International Journal of Development and Sustainability. Dev. 3 (10), 1971−1987.
Mitchell, D. S. (1985). African aquatic weeds and their management - The Ecology and Management of African Wetland Vegetation. Geobotany. 177−202 Springer, Dordrecht.
Mladinich, C. S., Bustos, M. R., Stitt, S., Root, R., Brown, K., Anderson, G. L., Hager, S. (2006). The use of Landsat 7 enhanced thematic mapper Plus for mapping leafy spurge. Rangeland Ecology & Management. 59, 500−506. DOI: https://doi.org/10.2111/06-027R1.1
Monteiro, A., Moreira, I., Santos, A. C., Serrasqueiro, P. M. (2003). Water hyacinth (Eichhornia crassipes) in Portugal: synopsis of its bioecology and management. Atas del IX Congreso de la Sociedad Española de Malherbología. 89−103.
Müllerová, J., Pergla. J., Pyšek, P. (2013). Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). International Journal of Applied Earth Observation and Geoinformation. 25, 55−65. DOI: https://doi.org/10.1016/j.jag.2013.03.004
Murkin, H. R., Kadlec, J. A. (1986). Relationships between waterfowl and macro-invertebrate densities in a northern prairie marsh. Journal of Wildlife Management. 50, 212−217. DOI: https://doi.org/10.2307/3801899
Navarro, L. A., Phiri, G. (2000). Water Hyacinth in Africa and the Middle East: A Survey of Problems and Solutions. International Development Research Centre, Ottawa.
Ndimele, P. E., Kumolu-Johnson, C. A., & Anetekhai, M. A. (2011). The invasive aquatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontederiaceae}: problems and prospects. Research Journal of Environmental Sciences. 5, 509−520. DOI: https://doi.org/10.3923/rjes.2011.509.520
Owens, C. S., Madsen, J. D. (1995). Low temperature limits of water hyacinth. Journal of Aquatic Plant Management. 33, 63−68.
Pádua, L., Duarte, L., Antão-Geraldes, A. M., Sousa, J. J., Castro, J. P. (2022). Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data. Plants. 11 (24), 3465. DOI: https://doi.org/10.3390/plants11243465
Palmer, S. C. J., Kutser T., Hunter, P. D. (2015). Remote sensing of inland waters challenges, progress and future directions. Remote Sensing Environment. 157, 1−8. DOI: https://doi.org/10.1016/j.rse.2014.09.021
Parsons, W. T., Cuthbertson, E. G. (2001). Noxious Weeds of Australia, CSIRO Publishing, Collingwood.
Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Bio/Technology. 11, 249−259. DOI: https://doi.org/10.1007/s11157-012-9289-4
Penatti, N. C., de Almeida, T. I. R., Ferreira, L. G., Arantes, A. E., Coe, M. T. (2015). Satellite based hydrological dynamics of the world’s largest continuous wetland. Remote Sensing Environment. 170, 1−13. DOI: https://doi.org/10.1016/j.rse.2015.08.031
Penfound, W. T., Earle, T. T. (1948). The biology of the water hyacinth. Ecological Monographs. 18, 447−472. DOI: https://doi.org/10.2307/1948585
Pyšek, P., Richardson, D. M. (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources. 35 (1), 25−55. DOI: https://doi.org/10.1146/annurev-environ-033009-095548
Ritchie, J. C., Zimba, P. V., Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing. 69, 695−704. DOI: https://doi.org/10.14358/PERS.69.6.695
Roijackers, R., Szabo, S., Scheffer, M. (2004). Experimental analysis of the competition between algae and duckweed. Archiv Fur Hydrobiologie. 160, 401−412.
DOI: https://doi.org/10.1127/0003-9136/2004/0160-0401
Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Texas A&M University, Remote Sensing Center, College Station, Texas, USA.
Rushing, W. N. (1974). Water hyacinth research in Puerto Rico. Hyacinth Control Journal. 12, 48−52.
Schaefer, M. T., Lamb, D. W. (2016). A combination of plant NDVI and LiDAR measurements improve the estimation of pasture biomass in tall fescue (Festuca arundinacea var. Fletcher). Remote Sensing. 8 (2), 109. DOI: https://doi.org/10.3390/rs8020109
Serrano, J., Shahidian, S., Marques da Silva J. (2019). Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a mediterranean agro-silvo-pastoral system. Water. 11, 62. DOI: https://doi.org/10.3390/w11010062
Shekede, M., Kusangaya S., Schmidt, K. (2008). Spatio-temporal variations of aquatic weed abundance and coverage in Lake Chivero, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 33, 714−721. DOI: https://doi.org/10.1016/j.pce.2008.06.052
Singh, G., Reynolds, C., Byrne, M., Rosman, B. (2020). A remote sensing method to monitor water, aquatic vegetation, and invasive water hyacinth at national extents. Remote Sensing. 12, 4021. DOI: https://doi.org/10.3390/rs12244021
Spencer, D. F., Ksander, G. G. (2005). Seasonal growth of water hyacinth in the Sacramento/San Joaquin Delta, California. Journal of Aquatic Plant Management. 43, 91−94. DOI: http://hdl.handle.net/1834/19475
Stiers, I., Crohain, N., Josens, G., Triest, L. (2011). Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biological Invasions. 13, 2715−2726. DOI: https://doi.org/10.1007/s10530-011-9942-9
Téllez, T. R., López, E. M. D. R., Granado, G. L., Pérez, E. A., López, R. M., Guzmán, J. M. S. (2008). The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions. 3, 42−53. DOI: https://doi.org/10.3391/ai.2008.3.1.8
Tewabe, D. (2015). Preliminary survey of water hyacinth in Lake Tana, Ethiopia. Global Journal of Allergy, 1, 013−018. DOI: https://doi.org/10.17352/2455-8141.000003
Thamaga, K. H., Dube, T. (2018). Remote sensing of invasive water hyacinth (Eichhornia crassipes): a review on applications and challenges. Remote Sensing Applications: Society and Environment. 10, 36−46 (2018). DOI: https://doi.org/10.1016/j.rsase.2018.02.005
Thouvenot, L., Haury, J., Thiebaut, G. (2013). A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems. 23, 790−803. DOI: https://doi.org/10.1002/aqc.2387
Tiwari, S., Dixit, S., Verma N. (2007). An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia Crassipes. Environment Monitoring Assessment. 129, 253−256. DOI: https://doi.org/10.1007/s10661-006-9358-7
Turner, W. (2013). Satellites: make data freely accessible. Nature. 498, 37. DOI: https://doi.org/10.1038/498037c
Venugopal, G. (1998). Monitoring the effects of biological control of water hyacinth using remotely sensed data: a case study of Bangalore, India. Singapore Journal of Tropical Geography. 19 (1), 91−105. DOI: https://doi.org/10.1111/1467-9493.00027
Vermuyten, E., Meert, P., Wolfs, V., Willems, P. (2020). Impact of seasonal changes in vegetation on the river model prediction accuracy and real-time flood control performance. Journal of Flood Risk Management. 13 (4), e12651. DOI: https://doi.org/10.1111/jfr3.12651
Villamagna. A. M., Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology. 55, 282−298. DOI: https://doi.org/10.1111/j.1365-2427.2009.02294.x
Vis, C., Hudon C. Carignan, R. (2003). An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany. 77 (1), 87−201. DOI: https://doi.org/10.1016/S0304-3770(03)00105-0
Wilcock, R. J., Champion, P. D., Nagels, J. W., Croker, G. F. (1999). The influence of aquatic macrophytes on the hydraulic and physic-chemical properties of a New Zealand lowland stream. Hydrobiologia. 416, 203−214. DOI: https://doi.org/10.1023/A:1003837231848
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Territorium

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing the work with recognition of authorship and initial publication in Antropologia Portuguesa journal.